Waterfront Toronto Queens Quay Revitalization Environmental Assessment # Waterfront Toronto # **Queens Quay** Revitalization Environmental Assessment **Traffic and Transit Operations Report** December 2009 This report takes into account the particular instructions and requirements of our client. It is not intended for and should not be relied upon by any third party and no responsibility is undertaken to any third party Job number 96116 www.arup.com Arup Canada Incorporated # **Contents** | 1 | Introdu | uction | Page
7 | |---|---------|--|-----------| | 2 | Existin | ng Conditions | 8 | | | 2.1 | Data Collection | 8 | | | 2.2 | Site Survey and Observation | 9 | | | 2.3 | Highway Control | 11 | | | 2.4 | Traffic | 13 | | | 2.5 | Transit | 17 | | 3 | Alterna | ative Design Concepts | 18 | | | 3.1 | Do Nothing | 19 | | | 3.2 | Centre Transit | 20 | | | 3.3 | South Side One-way | 21 | | | 3.4 | South Side Two-way | 22 | | 4 | Travel | Demand Forecasts | 23 | | | 4.1 | Existing Volumes | 23 | | | 4.2 | New Development Related Traffic Allowances | 24 | | | 4.3 | Trip Assignment | 26 | | 5 | Opera | tions Analysis | 27 | | | 5.1 | Methodology | 27 | | | 5.2 | Existing Conditions Baseline | 32 | | | 5.3 | Future Do Nothing | 35 | | | 5.4 | Centre Transit | 38 | | | 5.5 | South Side One-Way | 41 | | | 5.6 | South Side Two-Way | 44 | | | 5.7 | Overall Intersection Operations Summary Comparison | 47 | | | 5.8 | Future Queens Quay Transit Operations | 49 | | 6 | Prefer | red Alternative | 51 | | | 6.1 | South Side Transit, Two-Way Traffic | 51 | | | 6.2 | Access Modifications | 52 | #### **Tables** - Table 1: Data Collection Inventory - Table 2: Average Volumes by RESCU Station - Table 3: Locations with Collision Rate above 85th Percentile - Table 4: Spadina to Yonge Eastbound - Table 5: Yonge to Spadina Westbound - Table 6: Peak Hour Transit Patronage - Table 7: Auto Trip Generation - Table 8: Level of Service in relation to levels of delay (based on Highway Capacity Manual) - Table 9: Calculated Peak Hour Factors - Table 10: Queens Quay Intersection Operations Analysis Existing - Table 11: Lake Shore Boulevard Intersection Operations Analysis Existing - Table 12: Queens Quay Intersection Operations Analysis Do Nothing - Table 13: Lake Shore Boulevard Intersection Operations Analysis Do Nothing - Table 14: Queens Quay Intersection Operations Analysis Centre Transit - Table 15: Lake Shore Boulevard Intersection Operations Analysis Centre Transit - Table 16: Queens Quay Intersection Operations Analysis South Side One-Way - Table 17: Operations Analysis Summary South Side Transit, One-Way Traffic - Table 18: Queens Quay Intersection Operations Analysis South Side Two-Way - Table 19: Lake Shore Boulevard Intersection Operations Analysis- South Side Two-Way - Table 20: Queens Quay Overall Intersection Operations Comparative Summary - Table 21: Lake Shore Boulevard Overall Intersection Operations Comparative Summary - Table 22: Transit Analysis Timeline - Table 23: Queens Quay / TTC Loop Operations Summary - Table 24: Queens Quay / Beer Store / EMS Operations Summary - Table 25: Robertson Crescent Operational Scenario Evaluation - Table 26: Queens Quay / Rees Street / Robertson Crescent Operations Summary - Table 27: Queens Quay / Lower Simcoe / Harbourfront Centre Operations Summary - Table 28: Queens Quay / Queens Quay Terminal Operations Summary - Table 29: Queens Quay / York Street and Queens Quay / Bay Street Operations Summary # **Figures** - Figure 1: Study Area - Figure 2: Aerial Photography at Harbourfront Centre Parking Lot - Figure 3: Ground Level Photography at Simcoe Slip - Figure 4 Time Lapse Photography at Lower Simcoe (facing east) - Figure 5: Existing Cross Section (Typical) - Figure 6: Study Area Intersection Locations - Figure 7: ATR Peak Hour Volume Comparison - Figure 8: ATR Count Peak Hour Summary - Figure 9: Do Nothing General Arrangement - Figure 10: Centre Transit General Arrangement - Figure 11: South Side One-Way General Arrangement - Figure 12: South Side Two-Way General Arrangement - Figure 13: Central Area Cordon Linear Regression Analysis - Figure 14: Preferred Alternative South Side Transit, Two-Way Traffic - Figure A1- 1: Existing Traffic Controls, Spadina to York Figure A1- 2: Existing Traffic Controls, York to Jarvis - Figure A2- 1: Existing Transit Routes, Spadina to York - Figure A2- 2: Existing Transit Routes, York to Jarvis # **Traffic Assignment Figures** - Figure A3- 1: AM Existing, Spadina to York - Figure A3- 2: AM Existing, Bay to Cooper - Figure A3- 3: PM Existing Spadina to York - Figure A3- 4: PM Existing, Bay to Cooper - Figure A4- 1: AM Future Centre, Reassigned Existing, Spadina to Bay - Figure A4- 2: AM Future Centre, Reassigned Existing, Bay to Cooper - Figure A4- 3: AM Future Centre, Harbourfront Centre Traffic, Spadina to York - Figure A4- 4: AM Future Centre, Harbourfront Centre Traffic, Bay to Cooper - Figure A4- 5: AM Future Centre, Waterpark Place, Spadina to York - Figure A4- 6: AM Future Centre, Waterpark Place, Bay to Cooper - Figure A4-7: AM Future Centre, Pier 27, Spadina to Bay - Figure A4- 8: AM Future Centre, Pier 27, Bay to Cooper - Figure A4- 9: AM Future Centre, East Bayfront, Spadina to York - Figure A4- 10: AM Future Centre, East Bayfront, Bay to Cooper - Figure A4- 11: AM Future Centre, Railway Lands, Spadina to Bay - Figure A4- 12: AM Future Centre, Railway Lands, Bay to Cooper - Figure A4- 13: AM Future Centre, West Don Lands, Spadina to York - Figure A4- 14: AM Future Centre, West Don Lands, Bay to Cooper - Figure A4- 15: AM Future Centre, Total, Spadina to York - Figure A4- 16: AM Future Centre, Total, Bay to Cooper - Figure A4- 17: PM Future Centre, Reassigned Existing, Spadina to York - Figure A4- 18: PM Future Centre, Reassigned Existing, Bay to Cooper - Figure A4- 19: PM Future Centre, Harbourfront Centre, Spadina to York - Figure A4- 20: PM Future Centre, Harbourfront Centre, Bay to Cooper - Figure A4- 21: PM Future Centre, Waterpark Place, Spadina to York - Figure A4- 22: PM Future Centre, Waterpark Place, Bay to Cooper - Figure A4- 23: PM Future Centre, Pier 27, Spadina to Bay - Figure A4- 24: PM Future Centre, Pier 27, Bay to Cooper - Figure A4- 25: PM Future Centre, East Bayfront, Spadina to York - Figure A4- 26: PM Future Centre, East Bayfront, Bay to Cooper - Figure A4- 27: PM Future Centre, Railway Lands, Spadina to York - Figure A4- 28: PM Future Centre, Railway Lands, Bay to Cooper - Figure A4- 29: PM Future Centre, West Don Lands, Spadina to York - Figure A4- 30: PM Future Centre, West Don Lands, Bay to Cooper - Figure A4- 31: PM Future Centre, Total, Spadina to York - Figure A4- 32: PM Future Centre, Total, Bay to Cooper Figure A5- 1: AM Future South Side One Way, Reassigned Existing, Spadina to York Figure A5- 2: AM Future South Side One Way, Reassigned Existing, Bay to Cooper Figure A5- 3: AM Future South Side One Way, Harbourfront Centre, Spadina to York Figure A5- 4: AM Future South Side One Way, Harbourfront Centre, Bay to Cooper Figure A5- 5: AM Future South Side One Way, Waterpark Place, Spadina to York Figure A5- 6: AM Future South Side One Way, Waterpark Place, Bay to Cooper Figure A5- 7: AM Future South Side One Way, Pier 27, Spadina to York Figure A5- 8: AM Future South Side One Way, Pier 27, Bay to Cooper Figure A5- 9: AM Future South Side One Way, East Bayfront, Spadina to York Figure A5- 10: AM Future South Side One Way, East Bayfront, Bay to Cooper Figure A5- 11: AM Future South Side One Way, Railway Lands, Spadina to York Figure A5- 12: AM Future South Side One Way, Railway Lands, Bay to Cooper Figure A5- 13: AM Future South Side One Way, West Don Lands, Spadina to York Figure A5- 14: AM Future South Side One Way, West Don Lands, Bay to Cooper Figure A5- 15: AM Future South Side One Way, Total, Spadina to York Figure A5- 16: AM Future South Side One Way, Total, Bay to Cooper Figure A5- 17: PM Future South Side One Way, Reassigned Existing, Spadina to York Figure A5- 18: PM Future South Side One Way, Reassigned Existing, Bay to Cooper Figure A5- 19: PM Future South Side One Way, Harbourfront Centre, Spadina to York Figure A5- 20: PM Future South Side One Way, Harbourfront Centre, Bay to Cooper Figure A5- 21: PM Future South Side One Way, Waterpark Place, Spadina to York Figure A5- 22: PM Future South Side One Way, Waterpark Place, Bay to Cooper Figure A5- 23: PM Future South Side One Way, Pier 27, Spadina to York Figure A5- 24: PM Future South Side One Way, Pier 27, Bay to Cooper Figure A5- 25: PM Future South Side One Way, East Bayfront, Spadina to York Figure A5- 26: PM Future South Side One Way, East Bayfront, Bay to Cooper Figure A5- 27: PM Future South Side One Way, Railway Lands, Spadina to York Figure A5- 28: PM Future South Side One Way, Railway Lands, Bay to Cooper Figure A5- 29: PM Future South Side One Way, West Don Lands, Spadina to York Figure A5- 30: PM Future South Side One Way, West Don Lands, Bay to Cooper Figure A5- 31: PM Future South Side One Way, Total, Spadina to York Figure A5- 32: PM Future South Side One Way, Total, Bay to Cooper Figure A6- 1: AM Future South Side Two Way, Reassigned Existing, Spadina to York Figure A6- 2: AM Future South Side Two Way, Reassigned Existing, Bay to Cooper Figure A6- 3: AM Future South Side Two Way, Harbourfront Centre, Spadina to York Figure A6- 4: AM Future South Side Two Way, Harbourfront Centre, Bay to Cooper Figure A6- 5: AM Future South Side Two Way, Waterpark Place, Spadina to York Figure A6- 6: AM Future South Side Two Way, Waterpark Place, Bay to Cooper Figure A6- 7: AM Future South Side Two Way, Pier 27, Spadina to York Figure A6- 8: AM Future South Side Two Way, Pier 27, Bay to Cooper Figure A6- 9: AM Future South Side Two Way, East Bayfront, Spadina to York Figure A6- 10: AM Future South Side Two Way, East Bayfront, Bay to Cooper Figure A6- 11: AM Future South Side Two Way, Railway Lands, Spadina
to York Figure A6- 12: AM Future South Side Two Way, Railway Lands, Bay to Cooper Figure A6- 13: AM Future South Side Two Way, West Don Lands, Spadina to York Figure A6- 14: AM Future South Side Two Way, West Don Lands, Bay to Cooper Figure A6- 15: AM Future South Side Two Way, Total, Spadina to York Figure A6- 16: AM Future South Side Two Way, Total, Bay to Cooper Figure A6- 17: PM Future South Side Two Way, Reassigned Existing, Spadina to York Figure A6- 18: PM Future South Side Two Way, Reassigned Existing, Bay to Cooper Figure A6- 19: PM Future South Side Two Way, Harbourfront Centre, Spadina to York Figure A6- 20: PM Future South Side Two Way, Harbourfront Centre, Bay to Cooper Figure A6- 21: PM Future South Side Two Way, Waterpark Place, Spadina to York Figure A6- 22: PM Future South Side Two Way, Waterpark Place, Bay to Cooper Figure A6- 23: PM Future South Side Two Way, Pier 27, Spadina to York Figure A6- 24: PM Future South Side Two Way, Pier 27, Bay to Cooper Figure A6- 25: PM Future South Side Two Way, East Bayfront, Spadina to York Figure A6- 26: PM Future South Side Two Way, East Bayfront, Bay to Cooper Figure A6- 27: PM Future South Side Two Way, Railway Lands, Spadina to York Figure A6- 28: PM Future South Side Two Way, Railway Lands, Bay to Cooper Figure A6- 29: PM Future South Side Two Way, West Don Lands, Spadina to York Figure A6- 30: PM Future South Side Two Way, West Don Lands, Bay to Cooper Figure A6- 31: PM Future South Side Two Way, Total, Spadina to York Figure A6- 32: PM Future South Side Two Way, Total, Bay to Cooper # **Appendices** # Appendix A # Figures A1 Traffic Control A2 Transit Systems A3 Existing Volumes A4 Future Do Nothing / Centre Transit Volumes A5 Future South Side One-Way Volumes A6 Future South Side Two-Way Volumes #### Appendix B Collision History Data # Appendix C # Synchro Worksheets C1 Existing C2 Do Nothing C3 Centre Transit C4 South Side Two-Way C5 South Side One-Way # Appendix D Transit Analysis - VISSIM Modelling D1 Technical Assumptions Memo D2 Transit Signal Priority Analysis D3 Comparison of Southside and Centre Transit Options Model Results Memo # Appendix E **Travel Demand Forecasts** E1 BA Group Traffic Volume Forecasts # Appendix F # Signal Timing Plans F1 Existing (City of Toronto) F2 Do Nothing F3 Centre Transit F4 South Side Two-Way F5 South Side One-Way # 1 Introduction This report presents the findings of the traffic and transit analysis conducted as part of the Queens Quay Revitalization EA process and informs and supports the Environmental Study Report (ESR). The pedestrian and bicycle improvements recommended as part of the preferred plan are supported by long standing waterfront and city of Toronto planning policies which are discussed in greater detail as part of the ESR. This report provides documentation of data collection techniques, technical assumptions, detailed traffic operations analysis results, and key conclusions regarding Queens Quay operations under existing and future conditions. The intent of this document is to support the goals of the environmental assessment and function as a technical appendix to the ESR. Key goals of the EA are to connect the Martin Goodman Trail throughout the Central Waterfront, improve transit access, improve pedestrian amenity and provide workable traffic access to the area. The main ESR document provides a more in depth review of the policy direction in support of these goals. Queens Quay Revitalization EA Study Area Study Area Study Overlap Figure 1: Study Area The study area includes Queens Quay from just west of Lower Spadina Avenue to just west of Lower Jarvis Street. The context area is bounded by Front and Wellington Streets to the north, Fort York Boulevard to the west, and Don Roadway to the east. The larger area is included to provide context in determining appropriate route choices for motorists with trips originating from or destined to lands accessed from Queens Quay. Key in this regard would be new roadway connections such as the Bremner Boulevard extension to Bathurst Street and the newly constructed Simcoe Street underpass. # **2 Existing Conditions** # 2.1 Data Collection Several types of data were collected to gain a complete understanding of existing conditions on Queens Quay. This section provides a description of the types of data that were collected for the Study. Additional description of the data categories and preliminary findings are provided in Appendix E. **Table 1: Data Collection Inventory** | Туре | Description and Purpose | |--|--| | Aerial Photography | Digital photography of Queens Quay and the waterfront promenade used for surface parking accumulation; observation; confirming geometry | | Ground Level Photography | Digital photography to observe special operating conditions; points of interest; challenges | | Time Lapse Photography | Digital photography to observe special operating conditions; changes over time; long stay parking | | Base Mapping | Digital maps in CAD format with property lines, curbs etc. for use in development functional plans | | Topographic Survey | Detailed legal survey of street including edge of pavement; sidewalks; street furniture; trees; utilities | | Intersection Control | Lane configurations; turn restrictions etc. for input into modelling software | | Signals | Phasing/timing; corridor control strategy; transit signal priority (TSP); controller type for input into modelling software | | Curb Management | On-street parking and loading regulations | | Automatic Traffic Recorder (ATR) Counts | Link volumes recorded mid-block to understand daily and hourly traffic patterns | | Turning Movement Counts | Turning volumes at intersections classified by vehicle type; turning volumes at driveways during peak times to understand peak conditions and used as the baseline for future traffic forecasts. | | RESCU ¹ Counts | 24-hour permanent counting stations on Lake Shore / Gardiner / DVP for understanding daily and hourly traffic patterns | | Collision History | Historical collision data to identify locations where traffic safety may be a concern used to identify possible mitigating measures | | Transit Data Existing Patronage (counts) | Existing and future boarding/alighting by stop location; vehicle operating parameters for input into future year transit models | #### Notes: 1. Road Emergency Services Communications Unit # 2.2 Site Survey and Observation # 2.2.1 Aerial Photography The EA Team commissioned aerial photography of the study area on Saturday August 11th 2007 documenting surface conditions at three key time periods: 1 PM, 3 PM, and 5 PM. These time periods were chosen to capture peak pedestrian, traffic and parking activity along Queens Quay and along the waters edge promenade and also for use in Harbourfront. Aerial photography was used to: - assemble a high resolution image base - conduct surface parking inventory counts - document operational characteristics such as congestion and on-street parking - · confirm geometric conditions Figure 2: Aerial Photography at Harbourfront Centre Parking Lot # 2.2.2 Ground Level Photography The EA Team undertook ground level photography of the study area on Saturday August 11th and Sunday August 26th, 2007 to document surface conditions throughout the day from approximately 12 PM to 8 PM. These time periods were chosen to capture peak afternoon pedestrian activity around the Harbourfront. The purpose of the ground level photography was to observe operating conditions, locations of congestion, points of interest, on-street parking and user conflicts. Figure 3: Ground Level Photography at Simcoe Slip Photos of the site area show that while there is a lot of activity, there is insufficient space allocated for the different types of users on the street. ### 2.2.3 Time Lapse Photography The EA Team undertook time-lapse photography of Queens Quay from Lower Simcoe Street to York Street on Saturday August 11th, 2007 from approximately 9 AM to 9 PM. The purpose of the time-lapse photography was to study operations along Queens Quay "sped up" over select periods of the day. Time-lapse photos were used to observe changes in vehicle patterns, pedestrian movement, and on-street parking. Figure 4 - Time Lapse Photography at Lower Simcoe (facing east) From the footage we were able to note a significant number of the vehicles entering the Harbourfront Centre and Queens Quay Terminal driveways were U-Turns from the Queens Quay / Lower Simcoe intersection. We also noted that buses parked at the curb for extended periods of time which indicated a need to provide formal parking for buses on the waterfront to avoid informal curbside parking. #### 2.2.4 Base Mapping Aerial Lidar base mapping was provided by the city which includes curb lines, building footprints, of the entire central waterfront. This mapping informs cross section designs. # 2.2.5 Topographic Survey The team commissioned a detailed topographic survey of Queens Quay from Spadina to Jarvis for use in the detailed design phase of the project. The survey includes details such as edge of pavement; sidewalks; street furniture; trees; utilities etc. # 2.3 Highway Control ### 2.3.1 Intersection Configurations Intersection configurations were documented from aerial photography and confirmed with site visits. Intersection lane configurations are useful in understanding operating characteristics at each location and for accurate representation of the intersection when using modelling software. Figure 5: Existing Cross Section (Typical) #### 2.3.2 Intersection Control and Signals The City of Toronto provided signal timing information for all intersections within the site area. The signal timing summaries provide cycle length, phase
splits, types of phases; phase sequence, clearance intervals, offsets, pedestrian phases; controller type, transit signal priority scheme and the overall corridor control strategy. This information used as inputs to traffic modelling software which calculates intersection and corridor performance measures. Intersections along Lakeshore Boulevard are equipped with the Split Cycle Offset Optimization Technique (SCOOT) adaptive signal control system, a centrally controlled system deployed throughout the city on key traffic corridors. Intersections along Queens Quay run on the "Arterial Master Signal System" (AMSS). This system is unique in the city and is only deployed on Queens Quay. The system is controlled separately from the "Main Traffic Signal System" (MTSS) which centrally controls most of the signals in the City. Figure 6: Study Area Intersection Locations The City of Toronto recommends that signal timing information used in a study of this type be current to within the last six months. The team has the latest signal timings throughout the study period as provided by the City in January 2009. The current signal strategy on Queens Quay is semi-actuated uncoordinated. Signals along the corridor do not communicate with each other but operate in a "free" condition only responding to traffic and transit calls approaching the intersection. The signals generally cycle between main east-west and north-south phases with the exception of Rees Street which only serves north-south movements if a call is placed by a vehicle or pedestrian. Along Queens Quay, transit runs on "phase insertion" which provides two opportunities per cycle (three at Spadina) for a dedicated transit phase to be served. During the transit phase, no other movement is permitted for either vehicles or pedestrians. This type of operation is inefficient; however does allow for permissive turns over the TTC tracks at intersections. #### 2.3.3 Curb Management Curb management refers to signed parking and loading regulations intended to manage activity within the curb lanes. Changes in curb management throughout the day (time of day changes etc.) can have a significant affect on street operations. Queens Quay has a general no parking rule for its entire length. #### 2.4 Traffic #### 2.4.1 Time Periods Vehicle and pedestrian data was collected for the typical weekday morning and afternoon peak periods. Based on discussion with residents and other stakeholders, the summer weekend peak period was also added. The weekend summer peak is largely the result of visitor traffic to the waterfront. Turning movement count data was collected in the following periods: - Typical Conditions Autumn Weekday, October 4 and 11, 2007 - Large Summer Event Hot & Spicy Food Festival, Saturday August 11, 2007 - Medium Summer Event Ilha Formosa Festival, Sunday August 26, 2007 (during CNE) The team also commissioned 24-hour ATR counts along Queens Quay during two, twoweek periods to coincide with the turning movement count time periods. ATR data was collected for the following time periods: - Friday August 10th to Monday August 27th 2007 - Monday October 1st to Sunday October 14th 2007 The following sections provide some additional detail on the traffic data collected. ### 2.4.2 Automatic Traffic Recorder (ATR) Automatic traffic recorder data is collected to gain a full understanding traffic patterns throughout the day at a particular location, typically mid-block between signalized intersections. From the larger sample of traff data which is collected 24 hours a day for several days, it is possible to draw comparisons between volumes on different days, assess daily traffic patterns, and confirm TMC volumes. ATR count locations were set up at five mid-block locations within the study area: - Lower Spadina Avenue and Rees Street –west of the Beer Store / EMS driveway; - Rees Street and Lower Simcoe Street at the Rabba store: - Lower Simcoe Street and York Street just west of Queens Quay Terminal driveway; - York Street and Bay Street just west of the streetcar portal; and - Bay Street and Yonge Street at 10 Queens Quay. Data from the five mid-block ATR counting stations was summarized to show the average recorded volume along the corridor into the following time periods: - Average summer weekday and weekend day peak hours - Average autumn weekday and weekend peak hours A summary of average midblock volumes is shown in Figure 7. Figure 7: ATR Peak Hour Volume Comparison The analysis indicates that of the four time periods counted, summer weekday/weekend and autumn weekday are the highest volumes. Autumn weekend volumes do not represent a peak condition. This exercise was useful in determining what time period to analyze as a representative vehicle peak for the area. The team elected to focus on the autumn weekday as a representative average condition only slightly less busy than the summer peak. Gardiner Expy / Lake Shore Blvd 650 (800) [575] 300 (600) [550] 350 (600) [575] 575 (650) [75] 675 (700) [725] 680 (700) [650] Automatic Traffic Recorder Location Figure 8: ATR Count Peak Hour Summary #### Notes: 1. morning peak (afternoon peak) [weekend afternoon peak] ### 2.4.3 Turning Movement Counts Turning movement count data is collected to understand how traffic (classified by vehicle type), pedestrians and cyclists move through an intersection. Typically these counts are undertaken during a focused "peak period" of time of two to three hours in order to capture the "peak hour" of traffic volume through an intersection. The team commissioned turning movement counts at each intersection (including driveways) within the study area. Queens Quay only was counted during the summer festivals. For the autumn weekday conditions, Queens Quay was counted October 11th and Lake Shore Boulevard was counted October 4th. The count programme included all intersections on Queens Quay and Lake Shore Boulevard from and including Spadina Avenue to Yonge Street. ### 2.4.4 Road Emergency Services Communications Unit (RESCU) Counts The RESCU system has over 200 detector stations across the Gardiner Expressway and Don Valley Parkway from Highway 427 to Highway 401. Also available from this system are traffic volume counts at 121 different counting stations. The City of Toronto provided the EA Team with 24-hour count information at 33 locations within the EA context area. RESCU counts were used in a similar manner as the ATR counts. Data was gathered for the same time periods as the intersection turning movement counts to provide additional comfort in the TMC data collected. The counts were also useful in determining appropriate peak hour factors to use in analyzing intersection operations along Lake Shore Boulevard. | Table 2: | Average | Volumes b | y RESCU | Station | |----------|---------|-----------|---------|---------| |----------|---------|-----------|---------|---------| | Location | Summer Week | day | Autumn Weekday | | |------------------------|-------------|-----------|----------------|-----------| | | Daily | Peak Hour | Daily | Peak Hour | | LSB WB West of Rees | 11,176 | 1,533 | 10,772 | 1,548 | | LSB EB West of Rees | 27,303 | 2,609 | 26,068 | 2,690 | | LSB WB West of Bay | 25,498 | 2,325 | 25,414 | 2,194 | | Harbour EB West of Bay | 20,729 | 1,761 | 21,161 | 1,729 | There were no significant discrepancies between the RESCU data and the TMC data. Review of the RESCU count data also indicates that summer weekday and autumn weekday daily totals and peak hour totals are similar. #### 2.4.5 Collision History Context Analysis The City of Toronto has provided historical collision data for the past three years along Lake Shore Boulevard and Queens Quay from Lower Spadina Avenue to Lower Jarvis Street. The data was used to undertake and assess collision rates at intersections within the site area to find any key locations where traffic safety may be a concern. From this, potential mitigating measures can be implemented to improve safety. A review of collision history was undertaken at all intersections within the study area. Table 3 presents average number of collision from 2004 to 2007 and summarizes the findings as collisions per million vehicle entering. Key findings: - The average collision rate for all sites observed was 0.72 collisions per million vehicles entering - The 85th percentile collision rate was 1.15 collisions per million vehicle entering. The following five intersections and intersection locations within the site area have collision rates that exceed the 85th percentile. Table 3: Locations with Collision Rate above 85th Percentile | Intersection | Average
Collisions/Year
(2004 to 2007) | Annual Average
Daily Traffic
(AADT) | Collisions per
Million Vehicles
Entering | |-------------------------------|--|---|--| | Lake Shore & York | 21 | 30,656 | 1.90 | | Lake Shore & Bay | 34 | 38,033 | 2.43 | | Queens Quay - Simcoe to York | 8 | 15,969 | 1.37 | | Queens Quay - Spadina to Rees | 11 | 11,742 | 2.57 | | Queens Quay & York | 8 | 18,125 | 1.21 | #### Notes: - 1. Rates calculated as (average collisions) / (AADT*365/1,000,000) - 2. The spreadsheet calculations consider unrounded averages From the detailed report, the highest single occurrence at each intersection location was westbound rear-end collisions. A common feature on all westbound approach at these intersections is a shared through/left turn lane and/or a shared through/right turn lane. While shared through/right turn lanes are very common especially in urban area, shared through/left turn lanes are less common and are a likely factor in the high number of rear end collisions at this location. For the midblock locations, the most frequent occurrence of collisions was either eastbound or westbound turning movement collisions. From observation of operations on Queens Quay, cars
frequently turn across the streetcar right-of-way. Detailed collision reports are contained in Appendix B. #### 2.4.6 **License Plate Trace Survey** A license plate trace survey was commissioned in 2006 and undertaken by Ontario Traffic Inc. The purpose of the study was to gain an understanding of how many vehicle trips on Queens Quay were merely passing through with no origin or destination on Queens Quay. This type of activity is typically referred to a neighbourhood infiltration. The license plate survey found that around 10 to 20 percent of traffic on Queens Quay was entering from one end of the site area and exiting out the other end. These movements were considered cut through trips as they were not originating from or destined to the site area. The results of the license plate trace survey are summarized in Table 4 and Table 5. Table 4: Spadina to Yonge Eastbound | Time Period | Total Cars | Cars Matched | Percent Match | |-------------|------------|--------------|---------------| | AM | 762 | 160 | 21% | | PM | 891 | 175 | 20% | | Total | 1653 | 335 | 20% | Source: Ontario Traffic Inc. Table 5: Yonge to Spadina Westbound | Time Period | Total Cars | Cars Matched | Percent Match | |-------------|------------|--------------|---------------| | AM | 541 | 45 | 8% | | PM | 941 | 99 | 11% | | Total | 1482 | 144 | 10% | Source: Ontario Traffic Inc. Due to the nature of the study, the infiltration traffic reported is considered a minimum. For example, if a vehicle entering at Spadina had made an eastbound left turn at Rees, Lower Simcoe, York or Bay, the vehicle would not have been captured, but would still in fact be cut-through traffic. Similarly, any westbound traffic that entered at Yonge but made a right turn at an intersection between Yonge and Spadina would also have been missed. #### 2.5 Transit # 2.5.1 Existing Patronage The Toronto Transit Commission (TTC) provided existing weekday and weekend passenger boarding and alighting volumes, existing and future transit headways, existing and future transit routes and existing transit signal priority strategy for the study area. Existing transit passenger boarding and alighting volumes were provided for the 509 Harbourfront and 510 Spadina streetcar routes, which are the two routes currently operating along Queens Quay. Weekday volumes were measured in the spring of 2004; weekend volumes were measured in the spring of 2002 (510 Spadina) and spring of 2005 (509 Harbourfront). Table 6: Peak Hour Transit Patronage | Transit Stop | Routes 509 & 510 Combined Patronage | | | | | |--------------------------|-------------------------------------|----------------------|----------------------|--|--| | Eastbound | Weekday
Morning | Weekday
Afternoon | Weekend
Afternoon | | | | Lower Spadina Avenue | 445 | 315 | 410 | | | | Rees Street | 540 | 360 | 430 | | | | Lower Simcoe Street | 590 | 385 | 450 | | | | York Street | 665 | 485 | 495 | | | | LRT Station (Bay Street) | 705 | 635 | 570 | | | | Westbound | | | | | | | Lower Spadina Avenue | 255 | 450 | 390 | | | | Rees Street | 260 | 515 | 385 | | | | Lower Simcoe Street | 285 | 600 | 385 | | | | York Street | 285 | 645 | 430 | | | | LRT Station (Bay Street) | 445 | 735 | 495 | | | Source: Toronto Transit Commission # 3 Alternative Design Concepts In Phase 2 of the Queens Quay Revitalization Environmental Assessment (EA), the study team recommended *Physical Improvements within the Existing Right-of-Way* as the preferred Alternative Planning Solution. (A detailed description of the Environmental Assessment process undertaken for the Queens Quay Revitalization Study is provided in the Environmental Study Report) Five Alternative Design Concepts were identified at the outset of Phase 3 of the Environmental Assessment, based on the preferred Alternative Planning Solution. The five alternatives were shortlisted to three alternatives and "Do Nothing" based on technical and environmental criteria. The alternatives included: - Do Nothing - Centre Transit with on-street bike lanes - Southside Transit/Martin Goodman Trail with Two-way Traffic Operations - Southside Transit/Martin Goodman with One-way Traffic Operations The three alternatives were refined in consultation with the public and stakeholders and were devised to address existing network issues. The four Alternative Design Concepts, including Do Nothing, were subject to a detailed evaluation which included the transit and traffic operations analysis documented in Section 5 of this report. # 3.1 Do Nothing The Do Nothing alternative assumes no operational or physical interventions to the study area. In accordance with EA requirements, this alternative was included in the evaluation process as a baseline condition upon which to compare the other alternatives. Two-way traffic is maintained with transit in the centre median. Dedicated left turns are provided at intersections where possible. Transit runs on dedicated inserted phases within the cycle where all other modes are held. This phase strategy allows for permissive left turns and u-turns over the tracks, but does not allow transit to run with the main east-west green phase. Figure 9: Do Nothing General Arrangement #### 3.2 Centre Transit The centre transit alternative maintains the median LRT right-of-way in its current position while making other physical and operational changes to the roadway around it. The number of automobile lanes is reduced from two in each direction to one in each direction with a bike lane. Eastbound and westbound bike lanes are provided adjacent to the north and south curbs of the street. Dedicated left turn bays are added to all intersections which would allow transit to run with the main east-west green, but does require all left turns to be fully protected in the phasing scheme. This operation is similar to what is currently deployed on Spadina Avenue and St. Clair Avenue West LRT lines. The reduction in roadway width reduces the average north-south crossing distance for pedestrians to 23 metres compared with 25 metres in the do nothing alternative. On-street parking is provided where space permits. Existing driveways between signals which serve lands south of Queens Quay will have right turns access as they do under existing conditions. The existing occurrence of illegal left turns over the streetcar right-of-way will no longer be possible under future conditions because the tracks will be within un-mountable barrier curbs similar to other lines in the city. Today, the right-of-way is mountable. Figure 10: Centre Transit General Arrangement # 3.3 South Side One-way The "south side one-way" alternative is similar to the two-way except only westbound traffic is permitted on the two vehicle lanes, dedicated left turn bays and protected phases are provided at all intersections. This arrangement provides equity of access to property south of Queens Quay. The one-way provides a more typical traffic/transit relationship where there is no-contra flow between eastbound traffic and westbound streetcars which exists in the two-way. With two lanes, vehicles are also able to go around informal curb side parking or stopping without entering the oncoming lane. A key drawback of this arrangement is the loss of eastbound traffic and eastbound left turns into downtown. All eastbound traffic would be forced to use Lake Shore Boulevard exacerbating the existing congestion on the main arterial of the waterfront. Figure 11: South Side One-Way General Arrangement # 3.4 South Side Two-way The two-way south side alternative reconfigures the street by locating all traffic lanes north of the LRT right-of-way with pedestrian and bicycle facilities to the southern side of Queens Quay. Sidewalks are still provided on the north side of the tracks. Similar to the centre alternative, the LRT runs east-west on its own right-of-way. The transit right-of-way is in fact in the same location as existing with only minor changes in alignment. The key benefit of the south side arrangement is the perception that transit is located off street and within the public realm. The Martin Goodman Trail is completed from Spadina Avenue through East Bayfront on a 4 metre (approximate) east-west path located south of the transit ROW. An additional benefit of the south side configuration is that the average crossing distance for pedestrians to approximately 17 metres. Dedicated turn bays are required at intersection where access is required to lands south of Queens Quay. Depending on the geometry at the location, intersections are equipped with either a dedicated left or right turn lane and signal phase for access across the tracks to the south, but not both. Where access is restricted from a particular direction, the team has ensured that access is still available via Lake Shore Boulevard or other north-south streets. Similar to centre transit, transit runs with the main east-west green. Cycle lengths were increased over existing for the peak analysis hour to ensure the best possible transit operating speeds. While this provides the best speeds for east-west transit, north-south pedestrians will experience delays greater than existing. Figure 12: South Side Two-Way General Arrangement # 4 Travel Demand Forecasts Existing volumes were modified based on design changes resulting from the alternatives, and new volume was added to reflect growth as described in the following sections. Four scenarios were developed for evaluation: - Do Nothing - Centre Transit - South Side Two-Way - South Side One-Way The "Do Nothing" and "Centre Transit" alternatives have the same routing options available for motorists and therefore use the same traffic volume forecasts. # 4.1 Existing Volumes #### 4.1.1 Intersection Traffic Count Information Traffic volumes were collected during the morning and afternoon peak periods on the following dates: - Thursday October 4th 2007 (Lake Shore Boulevard corridor) - Thursday October 11th 2007 (Queens Quay corridor)
| Signalized Intersections | Unsignalized Intersections | |--|--| | Queens Quay | Queens Quay | | Lower Spadina Avenue | 401 Queens Quay Aqua Condominium | | TTC Loop | 410 Queens Quay Harbour Terrace | | Beer Store / EMS Driveway | Beer Store / EMS | | Rees Street / Robertson Crescent | Robertson Crescent East | | Lower Simcoe Street | 250/260/270 Queens Quay | | Queens Quay Terminal | 228/230 Queens Quay The Riviera | | York Street | 8 York, 208/218 Queens Quay Waterclub | | Waterpark Place Surface Lot / Harbour Square | 207/211 Queens Quay Queens Quay Terminal | | Bay Street | 33/55/65/77/99 Harbour Square | | Yonge Street | Waterpark Phase 1 & 2 | | Lake Shore Boulevard | Westin Harbour Castle | | Lower Spadina Avenue | 10 Queens Quay World Trade Centre | | Rees Street | Captain John's Seafood | | Lower Simcoe Street | MT27 Parking Lot | | York Street | Freeland | | Bay Street | Cooper | | Yonge Street | Redpath | | | Loblaws | #### 4.1.2 **Volume Balancing** Volumes at signalized intersections are "carried through" to adjacent unsignalized intersections where only driveway ins and outs were recorded. Volumes are carried from signalized intersections easterly until the next downstream signalized intersection. Volumes are carried from signalized intersections along Queens Quay northerly until the next signalized intersection (Lake Shore Boulevard). (Volumes are balanced to Queens Quay). #### 4.2 **New Development Related Traffic Allowances** #### 4.2.1 **Auto Trips** In collaboration with BA Consulting Group Ltd., a comprehensive set of traffic volume forecasts was compiled to assess future conditions within the waterfront. The volumes have been compiled from reports in support of current approved and under construction developments. New traffic is related to: - Harbourfront Centre - Waterpark Place Phase III - Pier 27 Condominium (MT 27) - Railway Lands (including Pinnacle) - East Bayfront - West Don Lands - Lower Don Lands The layers compile to represent a mature state of development to include all approved and under construction development within the central waterfront. This represents a full or 100 percent build-out which is a conservative assumption for development related activity. The volumes are compiled through spreadsheet analysis. Existing and future layers have been provided in Appendix A. No percentage background corridor growth allowance was added to the network. Central area cordon count information for the City of Toronto indicates that from 1985 to 2006 there has been negligible growth overall. A linear regression analysis indicates that there has been approximately 0.13 percent compound annual growth from 1985 to 2006. Year Figure 13: Central Area Cordon Linear Regression Analysis A credit was applied to Queens Quay for traffic associated with existing East Bayfront and Pier 27 land uses. The credit represents traffic that would no longer be in the network after the existing land uses are removed. New traffic is then added to the network for new development on the same lands. Summing the negative traffic layer and the new development layer would give "net new" traffic. This layer is not provided on an individual graphic, but the layers are incorporated in future volumes. Table 7 summarizes the total auto trips generate by planned and approved developments along the Toronto Central waterfront. Details including residential and commercial mix, dwelling units, floor area etc. are contained in Appendix E. Appendix E contains Section 4 – Traffic Volume Forecasts – of BA Group's, "East Bayfront Transit Class Environmental Assessment, Traffic Assessment, Queens Quay Design Alternative" report. **Table 7: Auto Trip Generation** | Development | Morning Peak Hour | | Afternoon Peak Hour | | Hour | | |----------------------|-------------------|-----|---------------------|------|------|-------| | | In | Out | 2-Way | In | Out | 2-Way | | Harbourfront Centre | | | | | | | | - Total Traffic | 80 | 5 | 85 | 25 | 105 | 130 | | - Existing Traffic | 35 | 5 | 40 | 10 | 50 | 60 | | - Net New Traffic | 45 | 0 | 45 | 15 | 55 | 70 | | Waterpark Phase III | | | | | | | | - Net Site Traffic | 270 | 25 | 295 | 35 | 225 | 260 | | MT27 Condo | | | | | | | | - Total Traffic | 45 | 180 | 225 | 175 | 50 | 225 | | - Existing Traffic | 242 | 50 | 292 | 105 | 260 | 365 | | - Net Site Traffic | -197 | 130 | -67 | 70 | -210 | -140 | | East Bayfront | 673 | 890 | 1563 | 1397 | 1243 | 2640 | | Railway Lands East | | | | | | | | - Total Traffic | 940 | 645 | 1585 | 915 | 1035 | 1950 | | - Existing Traffic | 120 | 5 | 125 | 45 | 130 | 175 | | - Net Site Traffic | 820 | 640 | 1460 | 870 | 905 | 1775 | | Lower Don Lands | | | | | | | | (West of Cherry St.) | 131 | 237 | 368 | 207 | 157 | 364 | | West Don Lands | 300 | 805 | 1105 | 910 | 505 | 1415 | ### 4.2.2 Transit Trips Future transit patronage forecasts were provided to the team by the TTC. The forecasts consider 2021 population and employment targets for the waterfront and include the Waterfront West LRT; East Bayfront Transit; West Don Lands Transit and transit servicing the Lower Don Lands/Port Lands and eastern Toronto / Beach. Forecasted boarding and alighting data was provided by TTC. This information was input into the VISSIM models to accurately reflect transit dwell times at stops along Queens Quay. The transit dwell times play an important role in overall transit operations because varying arrival rates of passengers cause varying dwell times making it the least predictable (and therefore most challenging) factor in developing transit signal priority schemes. Transit passenger forecasts are contained in Appendix D1. # 4.3 Trip Assignment # 4.3.1 Existing Auto Trip Reassignments No existing trips were reassigned for either Do Nothing or Centre transit alternatives because for those alternatives, all existing movements are being maintained. For the south side two-way and south side one-way transit alternatives, several existing turning movements are not available under future conditions. Existing traffic volumes on those movements needed to be reassigned. ### 4.3.2 Auto Trip Assignment Traffic volume assignments from adjacent areas have been extrapolated along the network to cover the full study area. Generally some volume is assigned to Lake Shore and some to Queens Quay. The exact number of vehicles that would use either is not possible to calculate, so for purposes of this study allowances have been made for traffic on both streets to account for different driver behaviours. Existing volumes were modified in the following ways: - To account for observed traffic infiltration, westbound traffic volumes on Queens Quay were reduced by 50 vehicles in the west and up to 125 vehicles in the east. The adjustment was only necessary during the morning peak hour. This traffic is assumed to divert to Lake Shore Boulevard and corresponds to approximately 15 percent of existing traffic. We have assumed that all remaining traffic infiltration observed still uses Queens Quay under future conditions. - Some traffic volumes into existing driveways have been reassigned to account for new turn restrictions specified by the alternatives. New traffic volumes were assigned to the network based on directional distribution patterns extracted from Transportation Tomorrow Survey (TTS) data and split between Queens Quay and Lake Shore Boulevard. Detailed trip distribution tables are contained in Table 7 of Appendix E (Section 4 of BA Group's, "East Bayfront Transit Class Environmental Assessment, Traffic Assessment, Queens Quay Design Alternative" report). # **5 Operations Analysis** # 5.1 Methodology ### **5.1.1** Analysis Methodology Detailed traffic operations model of Queens Quay using Synchro 7 operations analysis software based on Highway Capacity Manual (HCM2000) analysis methodology. HCM 2000 methodology provides intersection measures of effectiveness in terms of a volume to capacity (V/C) ratio; delay; and level of service (LOS). - Level of Service (LOS) is based Highway Capacity Manual (HCM) developed by the Transportation Research Board. This method categorizes various levels of delay based on the operations they describe. Table 8 summarizes the delay ranges for each LOS and the following text summarizes the type of conditions a driver is likely to encounter at each LOS. - Delay (or control delay) is measured in seconds and is the sum of "stop delay" (time spent at a red signal) and "queue delay" (time spent decelerating/accelerating and advancing in a queue). Delay is summarized as an average by movement and for the intersection overall. - Volume to capacity ratio (V/C) measures the average amount of capacity available for a given movement. When the traffic volumes reach the capacity of a road, the v/c is equal to 1.0 indicating at-capacity conditions. Table 8: Level of Service in relation to levels of delay (based on Highway Capacity Manual) | Level of Service (LOS) Letter Grade | Control Delay per Vehicle (seconds) | | | |-------------------------------------|-------------------------------------|--|--| | А | ≤ 10 | | | | В | > 10-20 | | | | С | > 20-35 | | | | D | > 35-55 | | | | E | > 55-80 | | | | F | > 80 | | | It is important to note that V/C ratios and LOS values do not always correlate. For example, a high V/C ratio of 0.80 or higher may not result in a LOS of D or E. Conversely, it is possible to have a movement with a low V/C ratio but with high delay such as in the case of fully protected turn phases. In the case of Queens Quay, there are certain phases that serve a low volume of cars but because of the long cycle length needed for transit. There is always sufficient capacity to accommodate the demand, but motorists at times must wait a large portion of the cycle for the phase to show. Lake Shore is the opposite where there is high V/C but relatively low delay and therefore LOS. There
is high volume but because most of the traffic is served with a reasonable level of delay, the average delay for the intersection is also low. The following describe typical operating characteristics of each LOS letter grade: - LOS A describes operations with very low delay. This occurs when signal progression is extremely favourable, and most vehicles arrive during the green phase. Most vehicles do not stop at all. - LOS B describes operations with low but increased delay. This generally occurs with good progression and/or short cycle lengths. Again, most vehicles do not stop at the intersection. - LOS C describes operations with moderate delay. These higher delays may result from fair progression and/or longer cycle lengths. The number of vehicles stopping is significant at this level, although many still pass through the intersection without stopping. - LOS D describes operations with heavy delay. At LOS D, the influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable signal coordination, long cycle lengths, or high v/c ratios. Many vehicles stop, and the proportion of vehicles not stopping declines substantially. - LOS E describes very heavy delay. These high delay values generally indicate poor progression, long cycle lengths, and high v/c ratios near capacity. - LOS F typically describes ever increasing delays as queues begin to form. This is considered to be unacceptable to most drivers. This condition often occurs with oversaturation, i.e., when arrival flow rates exceed the capacity of the intersection. It may also occur at high v/c ratios with cycle failures. In order to compare corridor impacts, measures of effectiveness have been reported primarily for east-west movements along the Queens Quay and Lake Shore Boulevard corridors. In order to provide to best possible east-west progression for transit, side street phases are generally the minimum time required to serve pedestrian crossing times. Detailed summary worksheets, including side street measures of effectiveness, can be found in Appendix C. An evaluation of measure of effectiveness for north-south movements is included in Section 6 – Preferred Alternative. #### 5.1.2 **Analysis Scenarios** A total of five scenarios have been analyzed as part of this study: - Existing Existing traffic with existing signal timings. - Do Nothing Future traffic with existing signal timings. - Centre Transit Future traffic with new signal timings. - South Side Two-Way Future traffic reassigned to reflect future turn restrictions, new signal timings. - South Side One-Way Future traffic reassigned to reflect closure of eastbound traffic lanes on Queens Quay and turn restrictions, new signal timings. #### 5.1.3 **Road Network and Lane Configurations** Existing and Do Nothing lane configurations, storage and taper lengths have been input into Synchro to reflect existing arrangements. Future arrangements reflect the functional road layouts contained in For purposes of this analysis, link speeds have been left at the default value of 48 km/h, and lane widths have been assumed at 3.5 metres for all lanes within the study area. # 5.1.4 Intersections Analyzed The following signalized intersections have been analyzed and form the basis of the operations evaluation: Queens Quay @ Lake Shore Boulevard @ Lower Spadina Avenue Lower Spadina Avenue TTC Loop Rees Street Beer Store / EMS Driveway Lower Simcoe Street Rees Street / Robertson Crescent Lower Simcoe Street Queens Quay Terminal York Street Bay Street Yonge Street York Street Waterpark Place Surface Lot / Harbour Square Bay Street Yonge Street ### 5.1.5 Signal Timings Existing signal timings are input into the evaluation models from signal timing plans provided by the City of Toronto in January 2009. For the existing model: - Queens Quay signals from Lower Spadina to Bay, inclusive, are coded semi-actuated un-coordinated: - Queens Quay / Yonge and Queens Quay / Jarvis are coded fixed time; and, - Offsets were input where info was available. Existing signal timings were unchanged for the Do Nothing scenario. All proposed signal phasing strategies were agreed to in principle by the City of Toronto Urban Traffic Control Systems. The south-side transit intersection configuration, in particular the two-stage crossing strategy adopted at "T" intersections, were also agreed to in principle by the Canadian National Institute for the Blind (CNIB). Basic signal timing assumptions for future scenarios are as follows: - Signal cycle lengths are 120 seconds for the south side transit alternative, and 100 seconds for the centre transit alternative with the exception of Lower Spadina Avenue which is 136 seconds for the centre transit alternative. - Transit runs with the main east-west green phase for the south side and centre transit alternatives. Minimum pedestrian walk internal is 7 seconds with a minimum clearance time equal to pedestrian walking distance divided by 1.2 metres/s walking speed - For the south side transit alternative, any movement (left/right) from Queens Quay to south of the transit right-of-way must operate in a fully protected phase to avoid conflicts with transit vehicles; and also to avoid a condition were permissive turns block eastwest transit vehicles (by sitting on the tracks) while waiting for a gap in cyclist/pedestrian flows along the Martin Goodman mixed use trail and sidewalk. Amber clearance is 4 seconds for all phases. Red clearance is 3 seconds for all phases where vehicles cross the transit right-of-way, and 2 seconds where vehicles do not cross the transit right-of-way (main east-west). Signal timings were consistent between the Synchro and VISSIM models; however the VISSIM models employed a more sophisticated active transit signal priority scheme required for optimum transit performance. Detailed signal phasing plans are included in Appendix F. Synchro does not explicitly represent transit vehicle agents, but can allocate signal time for transit vehicle crossings as specified by the existing signal timing plan. These are represented by "hold" phases where no automobile, bicycle or pedestrian movement are served. #### **5.1.6** Pedestrian Activity Assumptions The base model pedestrian volumes were carried forward into the future alternatives for both the Synchro and VISSIM models. Area land owners indicated a desire for growth in visitors and business; however, no detailed forecasts were available for our use. The Canada Square parcel will generate additional pedestrian activity in the area, but that study would be for the venue to address any specific pedestrian needs in the area. #### **5.1.7** Peak Hour Factors Peak hour factors are used to artificially increase hourly volumes to represent the worst 15 minutes of the hour. Table 9 contains calculated peak hour factors, for the Lake Shore Boulevard and Queens Quay within the study area. Peak hour factors along both corridors are generally over 0.80 with most in the 0.90 to 0.95 range. City of Toronto Synchro analysis guidelines recommend adopting a peak hour factor of 0.90 during the morning peak hour and a 0.95 during the afternoon peak hour. **Table 9: Calculated Peak Hour Factors** | Count Location | October
1 st (Mon) | October
2 nd (Tue) | October
3 rd (Wed) | October
10 th (Wed) | October
11 th (Thu) | October
12 th (Fri) | | |---|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|--| | | Lake Shore Boulevard | | | | | | | | West of Rees | | | | | | | | | WestboundEastbound | 0.87 (0.95)
0.97 (0.89) | 0.94 (0.96)
0.97 (0.96) | 0.93 (0.94)
0.96 (0.98) | 0.93 (0.90)
0.98 (0.78) | 0.93 (0.98)
0.95 (0.97) | 0.88 (0.96)
0.97 (0.98) | | | West of Bay | | | | | | | | | WestboundEastbound | 0.92 (0.91)
0.96 (0.93) | 0.94 (0.95)
0.95 (0.93) | 0.96 (0.98)
0.89 (0.95) | 0.95 (0.92)
0.96 (0.95) | 0.96 (0.92)
0.92 (0.95) | 0.95 (0.93)
0.96 (0.97) | | | Segment | Queens Quay | | | | | | | | Spadina to Rees | | | | | | | | | WestboundEastbound | 0.87 (0.94)
0.89 (0.95) | 0.92 (0.87)
0.89 (0.77) | 0.93 (0.85)
0.86 (0.90) | 0.93 (0.90)
0.89 (0.86) | 0.94 (0.88)
0.81 (0.90) | 0.87 (0.83)
0.94 (0.94) | | | Simcoe to York | | | | | | | | | WestboundEastbound | 0.89 (0.85)
0.87 (0.97) | 0.92 (0.95)
0.90 (0.91) | 0.87 (0.86)
0.78 (0.90) | 0.93 (0.96)
0.93(0.94) | 0.89 (0.94)
0.92 (0.92) | 0.85 (0.96)
0.90 (0.96) | | | York to Bay | | | | | | | | | WestboundEastbound | 0.94 (0.96)
0.92 (0.86) | 0.90 (0.89)
0.88 (0.93) | 0.88 (0.96)
0.88 (0.95) | 0.87 (0.88)
0.97 (0.94) | 0.91 (0.95)
0.90 (0.84) | 0.93 (0.94)
0.89 (0.90) | | #### Notes: morning peak hour (afternoon peak hour) A review of peak hour factors calculated from measured volumes as shown in Table 9 indicates that City's recommended peak hour factors are representative of traffic patterns on Queens Quay and have been adopted. #### 5.1.8 Heavy Vehicles For the traffic operations analysis, existing observed heavy vehicle percentages have been used for the existing and future scenarios. For the VISSIM transit analysis, an average overall composition of 5 percent trucks was used for the traffic volume inputs. #### 5.1.9 Base Saturation Flow Rate Assumptions Saturation flow rate is based on vehicle following time. For example, the two second following rule when driving would result in a total of 1800 vehicles passing a point per hour (i.e. 3600 seconds per hour divide by 2 seconds per vehicle = 1800 vehicles per hour. For this analysis, the ideal Saturation flow rate (vphg – vehicles per hour green) is 1900 for all
movements which is a Synchro Default value that should not be changed without field studies. The analysis for Queens Quay also considered the affects of frequent curb side loading and stopping that is prevalent on Queens Quay. The curb side activity was reflected in the Synchro model by defining the area as "Central Business District" (CBD), which imposes 10 percent base capacity reduction as per the *City of Toronto Synchro Guidelines v5.0* for all intersection within District 1 (former City of Toronto, East York and York). The analysis does not consider a base capacity adjustment for intersection along Lake Shore Boulevard as was done for the Queens Quay corridor. Lake Shore Boulevard is within District 1; however, it is a unique major arterial roadway in that it has very few properties with frontage within the study area due to its location beneath the Gardiner Expressway. As such, there is very little curbside activity that would have an effect on the basic capacity of the roadway, so the 10 percent adjustment would not be appropriate. #### 5.1.10 Analysis Time Periods Based on a detailed review of network traffic patterns and through comparisons between measured summer and autumn traffic volumes, the study team selected the autumn weekday as an appropriate representative day for traffic operations analysis. Most intersections shared the same "natural" morning peak hour of 8:00 to 9:00 and afternoon peak hour of 17:00 to 18:00. In cases where the natural peak of a particular intersection was not as above, the intersection turning movement counts were recalculated to reflect the consolidated peak. This is known as "forcing" the peak hour and is done to ensure the best possible balance in volumes between intersections. # 5.1.11 Transit Analysis Due to limits of the Synchro software, detailed transit operations analysis was conducted using VISSIM microsimulation software. VISSIM is capable of providing detailed measures for transit vehicles such as travel time, delay, and queuing and headway variability. Detailed transit vehicle operating parameters such as acceleration/deceleration speeds, passenger boarding times etc. were provided by the TTC and reflect operating parameters of the planned fleet. Technical specifications are included in Appendix D. # 5.2 Existing Conditions Baseline ### **5.2.1** Traffic Operations Analysis Existing conditions are analyzed to provide a future baseline scenario to which the EA design concepts will be compared. For this scenario, traffic volumes were increased as described in Section 4; however, all lane configurations and signal timings are the same as existing. See Table 12 and Table 13 for summary results. Detailed worksheets are in Appendix C1. # **Queens Quay:** - Currently, most intersections in the Queens Quay corridor are under capacity and operate well in both the morning and afternoon peak hours. - The Lower Spadina Avenue / Queens Quay intersection experiences a higher level of delay than the other intersections along Queens Quay and this is due to the high volume of eastbound left turns over the streetcar tracks, frequency of transit movements, and longer cycle length. - At York Street and Queens Quay, the westbound shared left/through/right turn lane arrangement, coupled with busy traffic conditions and transit only phases, results in additional delays for this approach. The future alternatives attempt to address some of these issues. #### Lake Shore Boulevard: - Under existing conditions, Lake Shore Boulevard intersections are busy during the morning peak period with some intersections approaching capacity constrained conditions (V/C > 0.80). The afternoon peak hour is busier than the morning peak in overall volume, causing certain key intersection to approach capacity and experience higher delays. - At Rees Street, Lake Shore Boulevard operates in capacity-constrained conditions due to the ramp located just downstream (eastbound) of the intersection, resulting in complex weaving movements and a considerable approach volume from the north. All of these movements compete for cycle time and there is not enough to serve all movements. During the afternoon peak hour, eastbound and westbound through movements have V/C ratios of 1.07 and 1.20, respectively. For existing conditions, V/C ratios should always be less than or equal to 1.00. - For the Rees Street analysis, no adjustments were made to the saturation flow rates under existing conditions. A saturation flow study may reveal actual saturation flow rates are higher than the 1900 adopted; however, City Synchro guidelines only allow a base saturation flow rate adjustment of approximately 5 percent which would not get the existing V/C ratio below 1.0. We have assumed this baseline condition and will consider the delta in V/C on these key movements when assessing future scenarios. - York Street / Lake Shore Boulevard intersection is also operating in capacityconstrained conditions during the afternoon peak hour. This is due to high volumes accessing the Gardiner Expressway westbound on-ramps immediately downstream of York Street which affects westbound and southbound movements in particular. Table 10: Queens Quay Intersection Operations Analysis - Existing | Queens Quay @ | Mori | ning Peak | Hour | After | noon Peak | Hour | |---|------|-----------|------|-------|-----------|------| | quoono quuy @ | V/C | Delay | LOS | V/C | Delay | LOS | | Lower Spadina | 0.58 | 36 | D | 0.53 | 34 | С | | Eastbound Left | 0.55 | 70 | Е | 0.50 | 69 | Е | | Eastbound Through | 0.67 | 26 | С | 0.49 | 21 | С | | Westbound Through | 0.32 | 31 | С | 0.64 | 37 | D | | Westbound Right | 0.13 | 46 | D | 0.19 | 29 | С | | TTC Loop | 0.49 | 8 | Α | 0.37 | 12 | В | | Eastbound Left | 0.19 | 46 | D | 0.32 | 44 | D | | Eastbound Through | 0.48 | 1 | Α | 0.35 | 1 | Α | | Westbound Through/Right | 0.21 | 20 | В | 0.41 | 19 | В | | Rees Street | 0.41 | 18 | В | 0.43 | 20 | В | | Eastbound Left | 0.27 | 17 | В | 0.47 | 24 | С | | Eastbound Through/Right | 0.47 | 18 | В | 0.30 | 16 | В | | Westbound Shared | 0.30 | 16 | В | 0.51 | 19 | В | | Lower Simcoe Street | 0.35 | 20 | С | 0.40 | 14 | В | | Eastbound Left | 0.13 | 17 | В | 0.13 | 11 | В | | Eastbound Through/Right | 0.45 | 20 | С | 0.27 | 12 | В | | Westbound U-Turn | 0.25 | 20 | В | 0.12 | 11 | В | | Westbound Through/Right | 0.28 | 18 | В | 0.41 | 13 | В | | York Street | 0.62 | 32 | С | 0.61 | 40 | D | | Eastbound Left | 0.49 | 23 | С | 0.43 | 23 | С | | Eastbound Through/Right | 0.47 | 24 | С | 0.38 | 23 | С | | Westbound Shared | 0.78 | 43 | D | 0.94 | 56 | Е | | Waterpark Place Surface Lot | 0.49 | 20 | С | 0.42 | 19 | В | | Eastbound Shared | 0.48 | 18 | В | 0.36 | 17 | В | | Westbound Shared | 0.45 | 18 | В | 0.49 | 18 | В | | Bay Street | 0.52 | 17 | В | 0.52 | 20 | С | | Eastbound Left | 0.32 | 9 | Α | 0.34 | 13 | В | | Eastbound Through/Right | 0.33 | 10 | Α | 0.32 | 13 | В | | Westbound Left | 0.20 | 17 | В | 0.20 | 21 | С | | Westbound Through | 0.55 | 20 | В | 0.59 | 25 | С | | Yonge Street | 0.39 | 15 | В | 0.38 | 15 | В | | Eastbound Left | 0.33 | 14 | В | 0.30 | 14 | В | | Eastbound Through | 0.34 | 12 | В | 0.34 | 12 | В | | Westbound Through/Right | 0.42 | 13 | В | 0.39 | 13 | В | Table 11: Lake Shore Boulevard Intersection Operations Analysis – Existing | Lake Shore Boulevard @ | Mori | ning Peak | Hour | After | noon Peak | Hour | |--|------|-----------|------|-------|-----------|------| | | V/C | Delay | LOS | V/C | Delay | LOS | | Lower Spadina Avenue | 0.74 | 24 | С | 0.75 | 27 | С | | Eastbound Left (Ramp) | 0.69 | 18 | В | 0.47 | 18 | В | | Eastbound Through/Right | 0.82 | 22 | С | 0.85 | 27 | С | | Rees Street | 0.69 | 26 | С | 0.95 | 101 | F | | Eastbound Left | 0.61 | 39 | D | 0.79 | 59 | Е | | Eastbound Through/Right | 0.84 | 25 | С | 1.07 | 85 | F | | Westbound Left | 0.16 | 61 | Е | 0.49 | 56 | Е | | Westbound Through/Right | 0.68 | 13 | В | 1.20 | 148 | F | | Lower Simcoe Street | 0.44 | 15 | В | 0.67 | 16 | В | | Eastbound Left | 0.77 | 67 | Е | 0.53 | 56 | Е | | Eastbound Through/Right | 0.60 | 18 | В | 0.46 | 12 | В | | Westbound Through/Right | 0.45 | 5 | Α | 0.45 | 14 | В | | York Street | 0.83 | 13 | В | 0.93 | 22 | С | | Westbound Through/Left | 0.58 | 8 | Α | 0.91 | 15 | В | | Westbound Through/Right | 0.80 | 9 | Α | 0.47 | 6 | Α | | Bay Street | 0.57 | 17 | В | 0.65 | 28 | С | | Westbound Shared | 0.85 | 19 | В | 0.84 | 28 | С | | Yonge Street | 0.84 | 25 | С | 0.77 | 28 | С | | Westbound Through/Right | 0.86 | 34 | С | 0.72 | 24 | С | | Hards are Office of O | Mor | ning Peak | Hour | After | noon Peak | Hour | | Harbour Street @ | V/C | Delay | LOS | V/C | Delay | LOS | | York Street | 0.58 | 18 | В | 0.67 | 35 | D | | Eastbound Shared | 0.50 | 6 | Α | 0.59 | 39 | D | | Bay Street | 0.85 | 33 | С | 0.61 | 22 | С | | Eastbound Left | 0.68 | 11 | В | 0.82 | 25 | С | | Eastbound Through | 0.68 | 9 | Α | 0.81 | 19 | В | | Eastbound Through (Ramp) | 1.09 | 103 | F | 0.70 | 34 | С | | Yonge Street | 0.49 | 22 | С | 0.45 | 13 | В | | Eastbound Left | 0.72 | 23 | С | 0.32 | 5 | Α | | Eastbound Left/Through | 0.68 | 20 | В | 0.31 | 5 | Α | # 5.3 Future Do Nothing #### **5.3.1** Traffic Operations Analysis Do Nothing was analyzed to provide a future baseline scenario to which the EA design concepts will be compared. For this scenario, traffic volumes were increased as described in Section 4; however, all lane configurations and signal timings are the same as
existing. See Table 12 and Table 13 for summary results. Detailed worksheets are in Appendix C2. #### **Queens Quay:** - The Queens Quay / Lower Spadina intersection operates acceptably during the morning peak hour with an overall LOS D and individual movement LOS ranging from C to E. Through movement V/C ratios are below 0.90. The afternoon peak hour is busier with an overall LOS of F. The westbound through movement is at a V/C of 1.26 and high delays. - Queens Quay intersections with TTC Loop, Rees Street, Lower Simcoe Street, Waterpark Place Surface Lot / Harbour Square and Bay Street operate acceptably during both the morning and afternoon peak hours with overall intersection LOS B to C. Individual movement LOS range from A to D and V/C ratios are all below 0.60. Westbound at Bay Street is approaching capacity at 0.96; however volume is getting through with reasonable average delay (LOS D). - York Street and Queens Quay has an overall LOS of D during the morning peak hour with the west westbound shared lanes operating at LOS E and a V/C ratio of 0.96. Eastbound movements operate well at LOS C. During the afternoon peak hour the overall intersection LOS is F and is governed again by the westbound shared lanes operating at LOS F with a V/C ratio of 1.27. - The Yonge Street and Queens Quay has an overall LOS of C, with the eastbound left turn movement operating at LOS F and E during the morning and afternoon peak hours. This could be address through the addition of a dedicated eastbound left turn phase. #### Lake Shore Boulevard: - During the morning peak hour, Lake Shore Boulevard begins to experience capacity constraints westbound at Bay Street and Yonge Street. The eastbound off-ramp at Bay is also exceeding capacity; however, there is a study currently under way assessing alternative configurations for this ramp. For the purposes of this analysis, we have assumed the existing arrangement. - The results of the analysis indicate, therefore, that the afternoon peak hour operates fairly well. While this may be true from an intersection capacity perspective considering Lake Shore Boulevard. In reality, there is queuing related to the Gardiner Expressway on-ramps which is not reflected in this analysis. Two key areas of concern are the Rees Street intersection and Bay Street intersection. The large volumes of Gardiner ramp related traffic at these intersections has an impact which may be mitigated through ongoing work through other studies. Note: Since the existing conditions analysis was undertaken, bike lanes have been added to Lower Simcoe Street and Rees Street between Lake Shore Boulevard and Queens Quay. The existing conditions analysis reflects the former arrangements before the addition of bike lanes, and the Do Nothing analysis reflects the lane arrangement after the addition of bike lanes. Table 12: Queens Quay Intersection Operations Analysis - Do Nothing | Queens Quay @ | Mori | ning Peak | Hour | After | noon Peak | Hour | |---|------|-----------|------|-------|-----------|------| | Queens Quay @ | V/C | Delay | LOS | V/C | Delay | LOS | | Lower Spadina | 0.66 | 46 | D | 0.82 | 91 | F | | Eastbound Left | 0.45 | 54 | D | 0.41 | 54 | D | | Eastbound Through | 0.86 | 41 | D | 0.90 | 46 | D | | Westbound Through | 0.85 | 59 | E | 1.26 | 178 | F | | Westbound Right | 0.09 | 33 | С | 0.29 | 37 | D | | TTC Loop | 0.54 | 11 | В | 0.52 | 15 | В | | Eastbound Left | 0.19 | 46 | D | 0.31 | 46 | D | | Eastbound Through | 0.52 | 2 | Α | 0.50 | 2 | Α | | Westbound Through/Right | 0.34 | 23 | С | 0.57 | 26 | С | | Rees Street | 0.42 | 19 | В | 0.52 | 22 | С | | Eastbound Left | 0.32 | 18 | В | 0.64 | 35 | С | | Eastbound Through/Right | 0.51 | 19 | В | 0.49 | 19 | В | | Westbound Shared | 0.42 | 18 | В | 0.27 | 22 | С | | Lower Simcoe Street | 0.41 | 22 | С | 0.57 | 17 | В | | Eastbound Left | 0.06 | 18 | В | 0.30 | 16 | В | | Eastbound Through/Right | 0.52 | 22 | С | 0.42 | 14 | В | | Westbound U-Turn | 0.41 | 25 | С | 0.17 | 12 | В | | Westbound Through/Right | 0.38 | 20 | В | 0.58 | 16 | В | | York Street | 0.69 | 40 | D | 0.78 | 98 | F | | Eastbound Left | 0.58 | 26 | С | 0.61 | 30 | С | | Eastbound Through/Right | 0.53 | 25 | С | 0.55 | 25 | С | | Westbound Shared | 0.96 | 62 | Е | 1.27 | 167 | F | | Waterpark Place Surface Lot | 0.70 | 25 | С | 0.79 | 36 | D | | Eastbound Shared | 0.64 | 22 | С | 0.58 | 24 | С | | Westbound Shared | 0.73 | 24 | С | 0.68 | 27 | С | | Bay Street | 0.64 | 21 | С | 0.67 | 32 | С | | Eastbound Left | 0.47 | 12 | В | 0.72 | 25 | С | | Eastbound Through/Right | 0.35 | 10 | Α | 0.49 | 15 | В | | Westbound Left | 0.21 | 17 | В | 0.28 | 26 | С | | Westbound Through | 0.81 | 27 | С | 0.96 | 50 | D | | Yonge Street | 0.88 | 29 | С | 0.81 | 21 | С | | Eastbound Left | 1.14 | 126 | F | 0.91 | 59 | Е | | Eastbound Through | 0.29 | 12 | В | 0.42 | 13 | В | | Westbound Through/Right | 0.62 | 16 | В | 0.56 | 15 | В | Table 13: Lake Shore Boulevard Intersection Operations Analysis - Do Nothing | Lake Shore Boulevard @ | Mor | ning Peak | Hour | After | noon Peak | Hour | |--|------|-----------|------|-------|-----------|------| | | V/C | Delay | LOS | V/C | Delay | LOS | | Lower Spadina Avenue | 0.76 | 25 | С | 0.81 | 32 | С | | Eastbound Left (Ramp) | 0.72 | 19 | В | 0.51 | 19 | В | | Eastbound Through/Right | 0.85 | 23 | С | 0.95 | 35 | С | | Rees Street | 0.74 | 30 | С | 1.02 | 126 | F | | Eastbound Left | 0.61 | 39 | D | 0.80 | 45 | D | | Eastbound Through/Right | 0.89 | 38 | С | 1.21 | 116 | F | | Westbound Left | 0.16 | 52 | D | 0.49 | 40 | D | | Westbound Through/Right | 0.98 | 30 | С | 1.36 | 177 | F | | Lower Simcoe Street | 0.52 | 17 | В | 0.83 | 30 | С | | Eastbound Left | 0.87 | 75 | Е | 0.82 | 34 | С | | Eastbound Through/Right | 0.64 | 22 | С | 0.57 | 24 | С | | Westbound Through/Right | 0.64 | 4 | Α | 1.05 | 33 | С | | York Street | 0.98 | 21 | С | 1.81 | 61 | E | | Westbound Through/Left | 0.90 | 9 | Α | 1.06 | 38 | D | | Westbound Through/Right | 1.05 | 31 | С | 0.53 | 5 | Α | | Bay Street | 0.82 | 98 | F | 0.82 | 45 | D | | Westbound Shared | 1.29 | 144 | F | 1.08 | 55 | D | | Yonge Street | 1.06 | 107 | F | 0.91 | 42 | D | | Westbound Through/Right | 1.30 | 172 | F | 1.00 | 48 | D | | | Mor | ning Peak | Hour | After | noon Peak | Hour | | Harbour Street @ | V/C | Delay | LOS | V/C | Delay | LOS | | York Street | 0.67 | 20 | С | 0.97 | 41 | D | | Eastbound Shared | 0.57 | 9 | Α | 0.81 | 20 | В | | Bay Street | 0.96 | 41 | D | 0.98 | 72 | E | | Eastbound Left | 0.80 | 17 | В | 1.12 | 88 | F | | Eastbound Through | 0.81 | 14 | В | 1.10 | 71 | Е | | Eastbound Through (Ramp) | 1.18 | 136 | F | 1.16 | 122 | F | | Yonge Street | 0.61 | 26 | С | 0.71 | 13 | В | | Eastbound Left | 0.82 | 28 | С | 0.46 | 4 | Α | | Eastbound Left/Through | 0.83 | 26 | С | 0.47 | 4 | Α | #### 5.4 Centre Transit # **5.4.1** Traffic Operations Analysis The centre transit Synchro traffic operations analysis was matched, as closely as possible, to the VISSIM transit operations analysis. All cycle lengths except for Spadina, Bay and Yonge are 100 seconds as per the analysis undertaken by the TTC. Fully protected left turn phases across the TTC tracks are generally minimums to allow maximum east west green time for transit. See Table 14 and Table 15 for summary results. Detailed worksheets are in Appendix C3. #### **Queens Quay:** - The Lower Spadina Avenue intersection operates with an overall LOS D during both the morning and afternoon peak hours. Eastbound left turns operating at LOS E during both peaks however have V/C ratios less than 0.70. The westbound through movement is still an operational concern during the afternoon peak with a LOS E and V/C of 0.95. - The TTC Loop, Beer Store / EMS and Yonge Street intersections operate well with overall LOS A to C, individual movement LOS A to D, and individual V/C ratios of 0.86 or less. - Queens Quay intersections at Rees Street, Lower Simcoe Street, York Street, Water Park Place Surface Lot / Harbour Square operate a LOS C to D overall during the morning and afternoon peak hours. A common trait of these intersections is the necessity for fully protected eastbound and westbound left turns over the tracks. The protected lefts result in fairly high delays (LOS D to F); however the capacity can generally be accommodated. The only instance where the movement is over capacity is the eastbound left at Rees Street which could be mitigated by providing a short callable green time extension or increasing the minimum phase time. It is possible to improve the LOS of these movements by adding additional turn phase time at the expense of east-west traffic and transit. - The Bay Street intersection operates at overall LOS D with the eastbound lefts and westbound through movements competing for time in the cycle. The short 90 second cycle length used in the centre transit analysis could be extended to mitigate the capacity issues at this location. (i.e. south side transit uses a 103 second cycle length at Bay and Queens Quay). #### Lake Shore Boulevard: Along Lake Shore Boulevard, some efficiency can be realized through signal timing adjustments. Notably, operations at intersections with Harbour Street have been improved over Do Nothing. We still expect capacity constraints at Bay Street and Yonge Street westbound during the morning peak hour, at also at Rees Street during both peak hours. Centre Transit provides a feasible alternative which could provide generally acceptable traffic operations. Cycle lengths and signal timings could be further optimized to provide better
operations along the corridor. The key inherent constraints with the centre transit alternative is due to the fully protected eastbound left turns competing for time with westbound through movements on Queens Quay. Side streets will generally experience more delay than the main east-west movements. Table 14: Queens Quay Intersection Operations Analysis - Centre Transit | Queens Quay @ | Morr | ning Peak | Hour | Afteri | noon Peak | Hour | |---|---------|-----------|------|---------|-----------|------| | quoono quuy @ | V/C | Delay | LOS | V/C | Delay | LOS | | Lower Spadina | 0.69 | 38 | D | 0.75 | 48 | D | | Eastbound Left | 0.68 | 76 | Е | 0.60 | 69 | Ε | | Eastbound Through | 0.78 | 32 | С | 0.81 | 34 | С | | Westbound Through | 0.64 | 39 | D | 0.95 | 67 | Е | | Westbound Right | 0.09 | 27 | С | 0.23 | 30 | С | | TTC Loop | 0.50 | 4 | Α | 0.47 | 9 | Α | | Eastbound Left | 0.28 | 46 | D | 0.40 | 47 | D | | Eastbound Through | 0.50 | 1 | Α | 0.48 | 1 | Α | | Westbound Through/Right | 0.23 | 3 | Α | 0.39 | 13 | В | | Beer Store / EMS | 0.54 | 4 | Α | 0.64 | 22 | С | | Eastbound Left | No vol. | - | - | 0.23 | 54 | D | | Eastbound Through/Right | 0.56 | 4 | Α | 0.67 | 14 | В | | Westbound Left | No vol. | - | - | No vol. | - | - | | Westbound Through/Right | 0.32 | 1 | Α | 0.83 | 29 | С | | Rees Street | 0.66 | 35 | С | 0.77 | 39 | D | | Eastbound Left | 0.85 | 76 | Е | 1.05 | 148 | F | | Eastbound Through/Right | 0.87 | 43 | D | 0.84 | 19 | В | | Westbound Left | 0.54 | 67 | Е | 0.48 | 59 | Е | | Westbound Through/Right | 0.68 | 15 | В | 1.03 | 43 | D | | Lower Simcoe Street | 0.71 | 43 | D | 0.75 | 55 | D | | Eastbound Left | 0.68 | 55 | Е | 0.78 | 60 | Ε | | Eastbound Through/Right | 0.95 | 47 | D | 0.86 | 47 | D | | Westbound Left | 0.86 | 62 | Е | 0.91 | 87 | F | | Westbound Through/Right | 0.66 | 36 | D | 1.07 | 66 | Е | | York Street | 0.72 | 26 | С | 0.78 | 34 | С | | Eastbound Left | 0.81 | 64 | Е | 0.85 | 89 | F | | Eastbound Through/Right | 0.89 | 22 | С | 0.85 | 29 | С | | Westbound Left | 0.38 | 63 | Е | 0.23 | 60 | Е | | Westbound Through | 0.83 | 25 | С | 1.01 | 42 | D | | Westbound Right | 0.31 | 11 | В | 0.43 | 10 | Α | | Waterpark Place Surface Lot | 0.64 | 24 | С | 0.96 | 42 | D | | Eastbound Left | 0.56 | 65 | Е | 0.36 | 65 | Е | | Eastbound Through/Right | 0.84 | 17 | В | 0.87 | 19 | В | | Westbound Left | 0.42 | 55 | D | 0.47 | 55 | Е | | Westbound Through | 0.80 | 30 | С | 0.98 | 51 | D | | Westbound Right | 0.34 | 18 | В | 0.0. | 12 | В | | Bay Street | 1.06 | 49 | D | 0.84 | 55 | D | | Eastbound Left | 0.87 | 59 | E | 1.20 | 153 | F | | Eastbound Through/Right | 0.72 | 21 | С | 0.90 | 34 | С | | Westbound Left | 0.23 | 16 | В | 0.35 | 25 | С | | Westbound Through | 1.11 | 84 | F | 1.06 | 79 | Е | | Westbound Right | 0.37 | 14 | В | 0.21 | 19 | В | | Yonge Street | 0.65 | 22 | С | 0.74 | 25 | С | | Eastbound Left | 0.86 | 42 | D | 0.81 | 40 | D | | Eastbound Through | 0.49 | 19 | Α | 0.73 | 20 | В | | Westbound Through/Right | 0.70 | 23 | С | 0.64 | 21 | С | Table 15: Lake Shore Boulevard Intersection Operations Analysis – Centre Transit | Lake Shore Boulevard @ | Mori | ning Peak | Hour | After | noon Peak | Hour | | |--|------|-----------|------|-------|-----------|--------|--| | | V/C | Delay | LOS | V/C | Delay | LOS | | | Lower Spadina Avenue | 0.76 | 25 | С | 0.82 | 27 | С | | | Eastbound Left (Ramp) | 0.72 | 19 | В | 0.48 | 17 | В | | | Eastbound Through/Right | 0.85 | 23 | С | 0.89 | 28 | С | | | Rees Street | 0.74 | 27 | С | 1.09 | 116 | F | | | Eastbound Left | 0.61 | 39 | D | 0.97 | 73 | Е | | | Eastbound Through/Right | 0.89 | 28 | С | 1.21 | 119 | F | | | Westbound Left | 0.16 | 57 | Е | 0.49 | 39 | D | | | Westbound Through/Right | 0.84 | 16 | В | 1.29 | 143 | F | | | Lower Simcoe Street | 0.52 | 15 | В | 0.83 | 30 | С | | | Eastbound Left | 0.09 | 9 | Α | 0.82 | 36 | D | | | Eastbound Through/Right | 0.64 | 20 | В | 0.57 | 26 | С | | | Westbound Through/Right | 0.63 | 6 | Α | 1.05 | 32 | С | | | York Street | 0.98 | 21 | С | 1.17 | 73 | E | | | Westbound Through/Left | 0.90 | 10 | Α | 1.10 | 56 | Е | | | Westbound Through/Right | 1.05 | 31 | С | 0.54 | 6 | Α | | | Bay Street | 0.82 | 98 | F | 0.83 | 30 | С | | | Westbound Shared | 1.29 | 144 | F | 0.99 | 25 | С | | | Yonge Street | 1.06 | 109 | F | 0.93 | 37 | D | | | Westbound Through/Right | 1.30 | 172 | F | 0.93 | 34 | С | | | H. I 2 (1) 4 | Mor | ning Peak | Hour | After | noon Peak | (Hour | | | Harbour Street @ | V/C | Delay | LOS | V/C | Delay | LOS | | | York Street | 0.67 | 20 | В | 0.87 | 36 | D | | | Eastbound Shared | 0.57 | 8 | Α | 0.87 | 24 | С | | | Bay Street | 0.80 | 22 | С | 0.91 | 33 | С | | | Eastbound Left | 0.80 | 18 | В | 0.88 | 21 | С | | | Eastbound Through | 0.81 | 14 | В | 0.85 | 16 | В | | | Eastbound Through (Ramp) | 0.66 | 23 | С | 0.90 | 40 | D | | | Yonge Street | 0.61 | 18 | В | 0.70 | 13 | В | | | Eastbound Left | 0.82 | 17 | В | 0.71 | 5 | Α | | | Eastbound Left/Through | 0.83 | 14 | В | 0.74 | 5 | Α | | # 5.5 South Side One-Way # 5.5.1 Traffic Operations Analysis The south side transit one-way Synchro traffic operations analysis uses the same intersection offsets used for the south side two-way scenario. All cycle lengths except for Bay and Yonge are 120 seconds. Fully protected left turn phases across the TTC tracks are generally minimums to allow maximum east west green time for transit. See Table 16 and Table 17 for summary results. Detailed worksheets are in Appendix C4. #### **Queens Quay:** - Lower Spadina Avenue, Beer Store / EMS, Bay Street and Yonge Street operate acceptably during the morning and afternoon peak hours with overall intersection LOS ranging from A to D. Individual movement LOS range from A to D with all movements operating at V/C of 0.85 (Spadina westbound) or lower. - TTC Loop, Rees Street, Lower Simcoe and Queens Quay Terminal operate well overall with LOS ranging from A to C. These intersections however have fully protected westbound left turns over the TTC right-of-way which experience higher delays resulting in LOS E to F. It is possible to improve the LOS of these movements by adding more turn phase time at the expense of east-west transit time. - York Street operates fairly well with overall LOS C and D during the morning and afternoon peak hours respectively. The southbound left turn movement is heavily loaded with the detour traffic returning to Queens Quay form eastbound Lake Shore Boulevard and is operating a LOS C to D with a V/C of 0.84 to 0.85. The extended southbound phase does take some time from westbound through movements which are operating at LOS D with V/C ratios of 0.76 to 0.94. # Lake Shore Boulevard: - Due to the reassignment of eastbound Queens Quay traffic to eastbound Lake Shore Boulevard through Lower Spadina Avenue, Rees Street and Lower Simcoe to York Street, traffic operations at these intersections has deteriorated compared to all other future scenarios. For example, the traffic diversion caused eastbound through movements at Lower Spadina Avenue and Rees Street to exceed available capacity and operate at LOS E to F. - Rees Street would experience capacity constrained conditions during the afternoon peak hour in particular. - Rerouting of Railway Lands traffic from Queens Quay to Lake Shore Boulevard has also placed additional volume on the eastbound left turn at Lower Simcoe Street causing this movement to potentially exceed capacity and experience long delays. - The same constraints still experienced at Bay and Yonge Streets westbound. The south side transit with one-way traffic is a feasible traffic operations alternative for Queens Quay, however could have adverse affects on Lake Shore Boulevard operations, in particular between Lower Spadina and York Street. Due to their nature, fully protected westbound left turns over the TTC right-of-way may experience delays similar to the fully protected left and right turns of the other alternatives. A notable benefit of the south side transit one-way traffic alternative would be simplified geometry on Queens Quay between Spadina and York, plus there would be no need for a "contra flow" buffer between the vehicle travel lanes and TTC right-of-way. Table 16: Queens Quay Intersection Operations Analysis – South Side One-Way | Queens Quay @ | Morr | ning Peak | Hour | Afteri | noon Peak | Hour | |---|---------|-----------|------|---------|-----------|------| | quoono quay @ | V/C | Delay | LOS | V/C | Delay | LOS | | Lower Spadina | 0.36 | 19 | В | 0.54 | 40 | D | | Westbound Through | 0.51 | 20 | С | 0.85 | 45 | D | | Westbound Right | 0.10 | 8 | Α | 0.20 | 27 | С | | TTC Loop | 0.19 | 11 | В | В | 11 | В | | Westbound Left | 0.33 | 75 | E | F | 91 | F | | Westbound Through/Right | 0.00 | 4 | Α | Α | 7 | Α | | Beer Store / EMS | 0.17 | 5 | Α | 0.30 | 4 | Α | | Westbound Left | No vol. | - | - | No vol. | - | - | | Westbound Through/Right | 0.20 | 4 | Α | 0.36 | 3 | Α | | Rees Street | 0.24 | 16 | В | 0.33 | 21 | С | | Westbound Left | 0.43 | 70 | Е | 0.57 | 69 | Е | | Westbound Through/Right | 0.24 | 3 | Α | 0.36 | 12 | В | | Lower Simcoe Street |
0.24 | 15 | В | 0.34 | 12 | В | | Westbound Left | 0.60 | 89 | F | 0.38 | 71 | Е | | Westbound Through/Right | 0.26 | 2 | Α | 0.39 | 5 | Α | | Queens Quay Terminal | 0.24 | 6 | Α | 0.30 | 4 | Α | | Westbound Left | 0.33 | 82 | F | 0.46 | 77 | Е | | Westbound Through | 0.27 | 2 | Α | 0.35 | 1 | Α | | York Street | 0.80 | 34 | С | 0.87 | 44 | D | | Westbound Left | 0.12 | 32 | С | 0.10 | 24 | С | | Westbound Through/Right | 0.76 | 45 | D | 0.94 | 53 | D | | Southbound Left | 0.85 | 26 | С | 0.84 | 37 | D | | Bay Street | 0.79 | 26 | С | 0.60 | 23 | С | | Eastbound Left | 0.47 | 16 | В | 0.37 | 13 | В | | Eastbound Through/Right | 0.61 | 19 | В | 0.51 | 15 | В | | Westbound Left | 0.19 | 15 | В | 0.16 | 18 | В | | Westbound Through/Right | 0.80 | 23 | С | 0.68 | 26 | С | | Yonge Street | 0.52 | 15 | В | 0.64 | 27 | С | | Eastbound Left | 0.41 | 9 | Α | 0.52 | 32 | С | | Eastbound Through | 0.49 | 7 | Α | 0.49 | 27 | С | | Westbound Through/Right | 0.52 | 12 | В | 0.51 | 15 | В | Table 17: Operations Analysis Summary – South Side Transit, One-Way Traffic | Lake Shore Boulevard @ | Mori | ning Peak | Hour | After | noon Peak | Hour | |--|------|-----------|------|-------|-----------|------| | | V/C | Delay | LOS | V/C | Delay | LOS | | Lower Spadina Avenue | 0.85 | 45 | D | 0.95 | 60 | E | | Eastbound Left (Ramp) | 0.72 | 20 | В | 0.50 | 15 | В | | Eastbound Through/Right | 1.05 | 57 | E | 1.07 | 62 | Е | | Rees Street | 0.89 | 72 | E | 1.30 | 151 | F | | Eastbound Left | 0.68 | 41 | D | 1.12 | 114 | F | | Eastbound Through/Right | 1.14 | 95 | F | 1.39 | 213 | F | | Westbound Left | 0.16 | 66 | Е | 0.49 | 47 | D | | Westbound Through/Right | 0.98 | 40 | D | 1.08 | 79 | Е | | Lower Simcoe Street | 0.70 | 14 | В | 0.92 | 46 | D | | Eastbound Left | 0.18 | 6 | Α | 1.69 | 365 | F | | Eastbound Through/Right | 0.89 | 20 | С | 0.83 | 20 | С | | Westbound Through/Right | 0.64 | 4 | Α | 1.05 | 42 | D | | York Street | 0.92 | 14 | В | 1.14 | 71 | E | | Westbound Through/Left | 0.85 | 9 | Α | 1.10 | 56 | Е | | Westbound Through/Right | 0.98 | 9 | Α | 0.54 | 6 | Α | | Bay Street | 0.82 | 99 | F | 0.83 | 34 | С | | Westbound Shared | 1.29 | 145 | F | 1.01 | 32 | С | | Yonge Street | 1.06 | 109 | F | 0.93 | 36 | D | | Westbound Through/Right | 1.30 | 172 | F | 0.93 | 33 | С | | Hards are Office of O | Mori | ning Peak | Hour | After | noon Peak | Hour | | Harbour Street @ | V/C | Delay | LOS | V/C | Delay | LOS | | York Street | 0.78 | 22 | С | 1.02 | 68 | Е | | Eastbound Shared | 0.83 | 18 | В | 1.01 | 51 | D | | Bay Street | 0.82 | 24 | С | 0.96 | 39 | D | | Eastbound Left | 0.82 | 21 | С | 0.99 | 37 | D | | Eastbound Through | 0.83 | 18 | В | 0.97 | 28 | С | | Eastbound Through (Ramp) | 0.70 | 24 | С | 0.98 | 53 | D | | Yonge Street | 0.56 | 17 | В | 0.69 | 12 | В | | Eastbound Left | 0.82 | 18 | В | 0.47 | 5 | Α | | Eastbound Left/Through | 0.83 | 14 | В | 0.48 | 5 | Α | # 5.6 South Side Two-Way # **5.6.1** Traffic Operations Analysis The south side transit, two-way Synchro traffic operations analysis was matched, as closely as possible, to the VISSIM transit operations analysis for this scenario. All cycle lengths except for Bay and Yonge are 120 seconds. Fully protected right turn phases across the TTC tracks are minimums to allow maximum east west green time for transit. See Table 18 and Table 19 for summary results. Detailed worksheets are in Appendix C5. #### **Queens Quay:** - The Lower Spadina / Queens Quay intersection operates fairly well with overall LOS C during the morning and afternoon peak hours. Individual movement LOS ranges from LOS A to D with all movements operating with V/C of 0.83 or lower. The greatest improvements in operations at this intersection is the ability of eastbound left turns to operate permissive, allowing turn on inter-green and more time to allocated to the westbound through. - The TTC Loop operates acceptably during the morning and afternoon peak hours with overall LOS of B to C. Individual movement LOS ranging from A to D at V/Cs are all below 0.80. The exception is the westbound left turn at LOS E during the afternoon peak hour. This is because the phase must be fully protected to cross the TTC right-foway. - The Beer Store / EMS, Lower Simcoe Street, Bay Street and Yonge Street intersections all operate fairly well with overall intersection LOS ranging from A to C and individual movement LOS ranging from A to D during the morning and afternoon peak hours. All movements are below a V/C ratio of 0.80 with the exception of the westbound through at Bay and Yonge Streets where it operates at 0.82 to 0.94. - Rees Street and Queens Quay Terminal operate well overall with LOS B to C; however the fully protected right turns over the TTC right-of-way have fairly high delays resulting in LOS D to F. This is again due to the fully protected turns being minimum phase lengths to provide maximum east-west green time for transit. It is important to note that there is sufficient capacity for these movements, and it is possible to provide more time to turns for better LOS at the expense of east-west transit time. - York Street operates well overall with LOS B during the morning and afternoon peak hours. The westbound left turn at York Street is the only movement worse than LOS B, at LOS E. This is again due to the phase being fully protected in order to cross the TTC right-of-way. While delays are fairly high, there is sufficient capacity to accommodate the movement. # Lake Shore Boulevard: Lake Shore Boulevard operations are similar to Centre Transit with constrains at Yonge and Bay Street westbound during the morning peak hour, and at Rees Street in afternoon peak hour. The south side transit with two-way traffic is a feasible traffic operations alternative. Due to their nature, fully protected westbound left and eastbound right turns over the TTC right-of-way have delays similar to the fully protected eastbound and westbound left turns of the centre transit alternative. A notable benefit of the south side transit is that eastbound left turns can run permissive which can allows for more time in the cycle for westbound through. Table 18: Queens Quay Intersection Operations Analysis – South Side Two-Way | Queens Quay @ | Morr | ning Peak | Hour | After | noon Peak | Hour | |---|---------|-----------|------|---------|-----------|------| | anomo ana, @ | V/C | Delay | LOS | V/C | Delay | LOS | | Lower Spadina | 0.64 | 25 | С | 0.63 | 33 | С | | Eastbound Left | 0.27 | 21 | С | 0.39 | 26 | С | | Eastbound Through | 0.79 | 35 | С | 0.83 | 37 | D | | Westbound Through | 0.51 | 10 | В | 0.76 | 30 | С | | Westbound Right | 0.10 | 3 | Α | 0.19 | 24 | С | | TTC Loop | 0.63 | 22 | С | 0.60 | 19 | В | | Eastbound Left | 0.06 | 5 | Α | 0.16 | 6 | Α | | Eastbound Through | 0.78 | 18 | В | 0.75 | 14 | В | | Westbound Left | 0.33 | 53 | D | 0.52 | 75 | Е | | Westbound Through/Right | 0.45 | 24 | С | 0.78 | 21 | С | | Beer Store / EMS | 0.51 | 9 | Α | 0.54 | 15 | В | | Eastbound Left | No vol. | - | - | 0.02 | 1 | Α | | Eastbound Through | 0.64 | 11 | В | 0.61 | 10 | Α | | Westbound Left | No vol. | - | - | No vol. | - | - | | Westbound Through/Right | 0.39 | 5 | Α | 0.67 | 18 | В | | Rees Street | 0.60 | 20 | С | 0.73 | 27 | С | | Eastbound Through/Left | 0.67 | 9 | Α | 0.82 | 35 | С | | Eastbound Right | 0.68 | 99 | F | 0.52 | 46 | D | | Westbound Through/Right | 0.50 | 22 | С | 0.71 | 9 | Α | | Lower Simcoe Street | 0.62 | 16 | В | 0.65 | 22 | С | | Eastbound Left | 0.23 | 6 | Α | 0.41 | 16 | В | | Eastbound Through | 0.68 | 11 | В | 0.61 | 17 | В | | Westbound Left | 0.60 | 52 | D | 0.53 | 51 | D | | Westbound Through/Right | 0.42 | 11 | В | 0.67 | 18 | В | | Queens Quay Terminal | 0.49 | 13 | В | 0.55 | 12 | В | | Eastbound Through | 0.62 | 9 | Α | 0.55 | 9 | Α | | Eastbound Right | 0.32 | 71 | Е | 0.46 | 64 | E | | Westbound Through | 0.60 | 14 | В | 0.69 | 12 | В | | York Street | 0.64 | 19 | В | 0.62 | 16 | В | | Eastbound Left | 0.33 | 6 | Α | 0.26 | 6 | Α | | Eastbound Through | 0.66 | 11 | В | 0.67 | 12 | В | | Westbound Left | 0.52 | 63 | Е | 0.46 | 63 | Е | | Westbound Through | 0.40 | 10 | В | 0.59 | 12 | В | | Westbound Right | 0.17 | 8 | Α | 0.30 | 9 | Α | | Bay Street | 0.81 | 31 | В | 0.80 | 26 | С | | Eastbound Left | 0.52 | 17 | В | 0.69 | 22 | С | | Eastbound Through/Right | 0.63 | 16 | В | 0.76 | 20 | В | | Westbound Left | 0.16 | 20 | В | 0.23 | 19 | В | | Westbound Through | 0.94 | 45 | D | 0.86 | 33 | С | | Westbound Right | 0.30 | 29 | С | 0.35 | 21 | С | | Yonge Street | 0.74 | 21 | С | 0.72 | 21 | С | | Eastbound Left | 0.53 | 19 | В | 0.48 | 13 | В | | Eastbound Through | 0.56 | 16 | В | 0.72 | 17 | В | | Westbound Through | 0.82 | 23 | С | 0.65 | 16 | В | | Westbound
Right | 0.14 | 8 | Α | 0.20 | 9 | Α | Table 19: Lake Shore Boulevard Intersection Operations Analysis – South Side Two-Way | Lake Shore Boulevard @ | Mori | ning Peak | Hour | After | noon Peak | Hour | |--|------|-----------|------|-------|-----------|------| | Lake Onore Boulevara @ | V/C | Delay | LOS | V/C | Delay | LOS | | Lower Spadina Avenue | 0.77 | 25 | С | 0.83 | 28 | С | | Eastbound Left (Ramp) | 0.73 | 20 | В | 0.50 | 17 | В | | Eastbound Through/Right | 0.86 | 24 | С | 0.91 | 29 | С | | Rees Street | 0.75 | 28 | С | 1.08 | 120 | F | | Eastbound Left | 0.61 | 39 | D | 0.97 | 72 | E | | Eastbound Through/Right | 0.91 | 29 | С | 1.24 | 132 | F | | Westbound Left | 0.16 | 59 | Е | 0.49 | 40 | D | | Westbound Through/Right | 0.84 | 17 | В | 1.29 | 143 | F | | Lower Simcoe Street | 0.54 | 17 | В | 0.86 | 31 | С | | Eastbound Left | 0.09 | 9 | Α | 0.82 | 35 | D | | Eastbound Through/Right | 0.66 | 21 | С | 0.59 | 27 | С | | Westbound Through/Right | 0.63 | 11 | В | 1.05 | 33 | С | | York Street | 0.99 | 21 | С | 1.15 | 72 | E | | Westbound Through/Left | 0.90 | 10 | Α | 1.07 | 46 | D | | Westbound Through/Right | 1.05 | 31 | С | 0.53 | 6 | Α | | Bay Street | 0.82 | 99 | F | 0.84 | 31 | С | | Westbound Shared | 1.29 | 145 | F | 0.99 | 27 | С | | Yonge Street | 1.06 | 109 | F | 0.93 | 37 | D | | Westbound Through/Right | 1.30 | 172 | F | 0.93 | 33 | С | | | Mori | ning Peak | Hour | After | noon Peak | Hour | | Harbour Street @ | V/C | Delay | LOS | V/C | Delay | LOS | | York Street | 0.67 | 20 | В | 0.89 | 36 | D | | Eastbound Shared | 0.58 | 7 | Α | 0.88 | 24 | С | | Bay Street | 0.81 | 22 | С | 0.93 | 34 | С | | Eastbound Left | 0.80 | 18 | В | 0.87 | 21 | С | | Eastbound Through | 0.81 | 14 | В | 0.85 | 16 | В | | Eastbound Through (Ramp) | 0.67 | 23 | В | 0.86 | 34 | С | | Yonge Street | 0.57 | 17 | В | 0.69 | 12 | В | | Eastbound Left | 0.82 | 17 | В | 0.46 | 6 | Α | | Eastbound Left/Through | 0.84 | 14 | В | 0.48 | 5 | Α | # 5.7 Overall Intersection Operations Summary Comparison # 5.7.1 Queens Quay Summary Comparison Under Do Nothing, there were two instances where traffic operations approach level of service E or F. This is due to the signal strategy currently deployed on Queens Quay today and its inability to adapt to future traffic levels. In particular, there is a constraint at the York Street intersection during the afternoon peak hour in the westbound direction. This constraint is due to inadequate time in the cycle to accommodate the increased demand. The shared westbound through/left turn lane places an additional constraint on westbound through capacity if through vehicles get stuck behind a left turn vehicle waiting for a gap in on-coming traffic. At Spadina, the constraints are similar to existing and are due to the high number of transit movements and dedicated phases which compete with auto demand at the intersection. The south side alternatives operate similarly in terms of traffic operations along Queens Quay. Overall intersection levels-of-service (LOS) are LOS D or better. The south side transit arrangement provides some benefit to traffic over centre transit because the majority of traffic is oriented to the north. When transit is on the south side of the street, there is less volume turning over the TTC right-of-way. Based on this analysis, the south side two-way transit alternative provides the best overall operations in terms of overall intersection delay to traffic. Detailed traffic operations worksheets are provided in Appendix C. Table 20: Queens Quay Overall Intersection Operations Comparative Summary | Queens Quay @ | Do Nothing | Centre
Transit | South Side
One-Way | South Side
Two-Way | |--------------------------------------|--------------|-------------------|-----------------------|-----------------------| | Lower Spadina Avenue | D/F | D/D | B/D | C/C | | TTC Loop | B/B | A/A | B/B | C/B | | EMS / Beer Store | Unsignalized | A/C | A/A | A/B | | Rees Street | B/C | C/D | B/C | B/C | | Robertson Crescent East ² | Unsignalized | Unsignalized | Unsignalized | A/A | | Lower Simcoe Street | C/B | D/D | B/B | B/C | | Queens Quay Terminal | Unsignalized | Unsignalized | A/A | B/B | | York Street | D/F | C/C | C/D | B/B | | Harbour Square | C/D | C/D | Removed | Removed | | Bay Street | C/C | D/D | C/C | B/C | | Yonge Street | C/C | C/C | B/C | C/C | # Notes: - morning peak hour / afternoon peak hour - 2. See section 6.2.3 for analysis details # 5.7.2 Lake Shore Boulevard Summary Comparison Under "Do Nothing", traffic operations begin to deteriorate along Lake Shore Boulevard due to the high level of forecasted development throughout the central waterfront. The impacts to Lake Shore Boulevard due to waterfront traffic growth are similar as shown for all future scenarios. The south side one-way alternative does have increased localized impacts on Lake Shore Boulevard because of added eastbound traffic between Lower Spadina Avenue and York Street; however, the overall network impacts are in the same order-of-magnitude. For both the Centre Transit and South Side Two-Way alternatives, Lake Shore Boulevard operates under similar conditions. Rees Street operates at LOS F during the afternoon peak due to heavy demand in every direction. Bay Street and Yonge Street may also experience delays resulting in LOS F due to heavy demand from the eastbound Gardiner off-ramps competing for time with westbound development traffic. It is important to note that while future growth will place higher demand on the waterfront road network; Queens Quay is not intended to be a relief "valve" for Lake Shore Boulevard. Capacity constraints on Lake Shore Boulevard will need to be addressed from a systems point of view considering all available modes of transportation. Several individual movements and approaches on Lake Shore Boulevard are forecasted to experience at capacity and high delay conditions. Detailed traffic operations worksheets are provided in Appendix C. Table 21: Lake Shore Boulevard Overall Intersection Operations Comparative Summary | Lake Shore Boulevard @ | Do Nothing | Centre
Transit | South Side
One-Way | South Side
Two-Way | |------------------------|------------|-------------------|-----------------------|-----------------------| | Lower Spadina Avenue | C/C | C/C | D/E | C/C | | Rees Street | C/F | C/F | E/F | C/F | | Lower Simcoe Street | B/C | B/C | B/D | B/C | | York Street (WB) | C/E | C/E | B/E | C/E | | Bay Street (WB) | F/D | F/C | F/C | F/C | | Yonge Street (WB) | F/D | F/D | F/D | F/D | | Harbour Street @ | | | | | | York Street (EB) | C/D | B/D | C/E | B/D | | Bay Street (EB) | D/E | C/C | C/D | C/C | | Yonge Street (EB) | C/B | B/B | B/B | B/B | #### Notes: morning peak hour / afternoon peak hour # 5.8 Future Queens Quay Transit Operations In order to assess impacts on transit operations for future configurations of Queens Quay, we modelled both south side two-way and centre transit options using VISSIM microsimulation software. We worked with PTV America to develop a unique transit signal priority and coordination scheme to maximize transit travel speeds throughout the corridor. The results of these models demonstrated that additional signals had additional impact on transit operations in terms of delay and service reliability. Originally, the centre and south side alternatives had 9 and 12 signals, respectively, from Lower Spadina Avenue to Cherry Street. Because the centre transit alternative had fewer signals, the analysis showed that it was 20 to 30 percent faster throughout the corridor. Service reliability was also measured and found that the centre transit alternative adhered to its scheduled headway somewhat better than south side, with centre operating at LOS A to C, and south side operating at LOS A to D. Detailed results and documentation of the transit analysis is included in Appendix D. Given the importance of providing the best possible transit service for the waterfront in order to achieve the transit modal split targets necessary to support development, it was determined that all options had to minimize the number of signalized intersections. A baseline VISSIM analysis was completed for the initial centre and south side alternatives in Spring 2008. The south side alternative was refined and retested since that time. Table 22 summarizes the travel time results of the transit operations analysis done since the original analysis. The analysis completed for the final south side configuration includes total of 9 signals west of Bay Street – the same number of signals included in the centre transit alternative. Analysis of the final south side configuration indicated that it was possible to greatly improve speeds by reducing signals. The transit speed of the south side alternative was improved and found to be only 1 to 8 percent slower than centre transit. It is important to note that because the corridor is short, the difference in actual travel time is approximately 2 to 26 seconds. Further discussion on the transit scenarios that were analyzed during the study is provided in Appendix D. From a transit operations perspective, the south side and centre transit alternatives provide the similar levels of service with minor variations in travel speeds which can be attributed to scenario specific differences at intersections such as geometry and signal timings. Table 22: Transit Analysis Timeline | | No. of | No. of Signals | Average | Average Speed | Average T | Average Travel Time | |---|--------|----------------|--------------
---------------------------|------------|-------------------------| | Model Scenario | West | East | West | East | West | East | | Existing Condition | 8 | N/A | 12.4 to 14.0 | Y/N | W/N | N/A | | Centre Transit: Baseline Model
(Spring 2008) | 6 | ß | 17.2 to 20.9 | 20.6 to 23.1 | 258 to 308 | 287 to 316 | | South Side Transit: Baseline Model (Spring 2008) | 12 | 11 | 13.2 to 17.3 | 16.9 to 19.3 | 312 to 405 | 311 to 356 | | South Side Transit: Final
Configuration
(Sept 2009) | 6 | 9 | 16.0 to 21.1 | 18.0 to 19.7 ² | 260 to 334 | 305 to 334 ² | | Difference: Final Configuration
South Side from Centre | 0 | +1 | -1.2 to -0.2 | -1.6 to -3.4 | +2 to +26 | +18 to +18 | | Percentage Change | | | | | 1 to 8% | 5 to 6% | # Notes: - Models considered corridor from Spadina Avenue to Cherry Street. Signal count from Bathurst Street to Parliament Street - Redpath West entrance. RI/RO assumed for Centre Transit. - Interpolated figures: Based on an additional 18 seconds per trip to account for delay caused by adding one signal (18 seconds). - Note possible to interpolate. -. ഗ. ღ. 4. # 6 Preferred Alternative # 6.1 South Side Transit, Two-Way Traffic Based on this analysis and considering the more broad policy and public realm objectives, the team recommended that the south side two-way alternative (illustrated in Figure 14) as the best overall solution for Queens Quay. The recommendation is based on the following key points: - Reduced north-south crossing distance for pedestrians allows more time in the cycle to be dedicated to east-west transit and traffic. - The ability for eastbound left turns to proceed without a dedicated turn phase allows more time to be dedicated to westbound traffic resulting in overall better levels of service at intersections with eastbound left turns. - The dedicated Martin Goodman trail provides a safe and efficient facility for bicycles and pedestrians which is an improvement over today and better overall than on-street bike lanes. - Two-way traffic can be accommodated on Queens Quay at an acceptable level of service with only minor re-routings to Lake Shore Boulevard. - Adequate auto access can be provided to all lands south of Queens Quay with minor access modifications. - On-street loading and parking can be accommodated where space permits on the north curb of Queens Quay. Figure 14: Preferred Alternative - South Side Transit, Two-Way Traffic #### 6.2 Access Modifications This section describes in detail changes to access for the primary tenants of Queens Quay west from Lower Spadina Avenue to Yonge Street. Also included is a description of proposed changes to access at Redpath Sugar. **6.2.1 401** (Harbour Terrace) / **410** (Aqua) Queens Quay West, Shoppers Drug Mart The Harbour Terrace and Aqua condominiums located at 401 and 410 Queens Quay and the Shopper Drug Mart store within 390 Queens Quay all have primary vehicular access from the Queens Quay / TTC Loop intersection. This is a complex intersection with three separate "legs" on the north side of Queens Quay. No pedestrian crossings are currently provided and, due to the complexity of the intersection, are not proposed for the recommended alternative. 401 Queens Quay West (Harbour Terrace) is on the south side of Queens Quay between Spadina and the TTC Loop. Under existing conditions, access is provided at a single rightin/right-out driveway from Queens Quay. Westbound left turns in, and northbound left turns out, are physically restricted by a raised median. Under the recommended arrangement, access will be modified to westbound left turn in and northbound left and right turns out. The westbound left is fully protected of the TTC right-of-way. The northbound egress is an improvement over existing conditions because motorists can now go east or west instead of just east. 410 Queens Quay West (Aqua) is on the north side of Queens Quay between Spadina and the TTC Loop. Primary existing vehicular access is provided at a single driveway within the north leg of the intersection. Loading and servicing access is provided within the TTC Loop. There are three southbound movements from the north leg with two of them (Shoppers Drug Mart and Aqua) provided with dedicated southbound right-turn-only phases. This condition has been maintained under future conditions for Aqua, and the proposal also includes a raised median to guide exiting vehicles to the west. Access is not changed for Aqua. • **390 Queens Quay West (Shoppers Drug Mart)** is on the north side of Queens Quay just east of the TTC Loop. Under existing conditions, Shoppers has an eastbound left turn in, westbound right turn in and southbound right turn out. Southbound left turns out are restricted by a raised median. The recommended re-design of the intersection maintains the eastbound left turn in, westbound right turn in and southbound right turn out. Due to the split phasing proposed for this intersection, it is also possible to allow the southbound left turns out which were previously restricted. On balance, the access condition for properties adjacent to the Queens Quay TTC Loop has improved under the preferred alternative and is the most flexible alternative in terms of egress. Table 23 provides detailed traffic operations for the intersection. Harbour Terrace residents will experience some delay when entering and exiting the driveway during peak times. Side street and turn phases are set to minimum green and clearance times with levels of service D to E. The relatively high delay is because of the 120 second cycle length and large portion of time dedicated to east-west traffic and transit movements. Transit operations are particularly important at this location because of the close signal spacing between Lower Spadina Avenue and TTC Loop, and platforms. While there will be some delay, the volumes are low and there is sufficient capacity at the intersection to accommodate demand. Table 23: Queens Quay / TTC Loop Operations Summary | Queens Quay @ | Mori | ning Peak | Hour | After | noon Peak | Hour | |---|------|-----------|------|-------|-----------|------| | 4, 6 | V/C | Delay | LOS | V/C | Delay | LOS | | TTC Loop | 0.63 | 22 | С | 0.60 | 19 | В | | Eastbound Left | 0.06 | 5 | Α | 0.16 | 6 | Α | | Eastbound Through | 0.78 | 18 | В | 0.75 | 14 | В | | Westbound Left | 0.33 | 53 | D | 0.52 | 75 | Е | | Westbound Through/Right | 0.45 | 24 | С | 0.78 | 21 | С | | Northbound Shared | 0.25 | 64 | Е | 0.21 | 63 | Е | | Southbound Shared | 0.05 | 46 | D | 0.04 | 45 | D | #### 6.2.2 339 (EMS) and 350 / 370 / 390 (Maple Leaf Quay) Queens Quay West A new signalized intersection is proposed for at the Emergency Medical Services (EMS) / 350 Queens Quay / Beer Store driveways. The new signalized intersection is required to provide access to EMS and Toronto Fire Services south of the transit right-of-way and also provides a formal pedestrian crossing facility between Rees Street and Lower Spadina Avenue. 350 / 370 / 390 Queens Quay West (Maple Leaf Quay and The Beer Store) are located on the north side of Queens Quay across from HtO park between the TTC Loop and Rees Street. Existing access provided at a right-in/right-out driveway adjacent to 350. The driveway is aligned with the driveway across the street (for 339); however, due to turn restrictions prohibiting movements over the transit right of way, inbound (eastbound) and outbound (southbound) left turns are not permitted. A new signalized intersection is proposed at this location for the preferred design. The signal will allow for eastbound left turns into the site as well as southbound left and right turns out. Westbound right turns into the site will be maintained. • 339 Queens Quay West (Toronto EMS Station No. 36 and Toronto Fire Station No. 334) are located on the south side of Queens Quay adjacent to HtO Park between Peter Slip and Rees Slip. As noted above, left turns are not permitted at the intersection with Queens Quay and the driveway is right-in/right-out only; however, City Council passed a motion in December 2008 exempting emergency vehicles from the turn prohibitions. The new signal proposed will provide a formal westbound left turn in, as well as northbound left and right turns out. This is a change from existing where eastbound right turns in are permitted. Under the future arrangement, eastbound right turns would be prohibited; however, emergency vehicles could also be exempt from this prohibition through subsequent council decision (similar to the 2008 decision. The addition of the new signal provides better overall vehicular access and also allows for a pedestrian crossing at HtO Park. Table 24provides detailed traffic operations for the intersection. The turning movements at this driveway are low, especially in the case of the EMS driveway. Eastbound and westbound left turns are expected to operate well at LOS A. Site street delays are expected to be at LOS D, again due to the signal phasing strategy which allocates most of the time in the cycle to east-west traffic and transit. Table 24: Queens Quay / Beer Store / EMS Operations Summary | Queens Quay @ | Mori | ning Peak | Hour | After | noon Peak | Hour | |-------------------------|---------|-----------|------|---------|-----------|------| | | V/C | Delay | LOS | V/C | Delay | LOS | | Beer Store / EMS | 0.51 | 9 | Α | 0.54 | 15 | В | | Eastbound Left | No vol. | - | - | 0.02 | 1 | Α | | Eastbound Through | 0.64 | 11 | В | 0.61 | 10 | Α | | Westbound Left | No vol. | - | - | No vol. | - | - | | Westbound Through/Right | 0.39 | 5 | Α | 0.67 | 18 | В | | Northbound Shared | No vol. | - | - | No vol. | - | - | | Southbound Shared | 0.05 | 40 | D | 0.05 | 39 | D | #### 6.2.3 Rees Street / Robertson Crescent and Queens Quay West Queens Quay, just east of Rees Street is one of the narrowest sections of the street with a total width from building to building of less than 30 metres.
Robertson Crescent intersects with Queens Quay at Rees Street (Robertson Crescent West) and approximately 90 metres east of Rees Street (Robertson Crescent East). Key tenants of Robertson Crescent include the Radisson Hotel, Toronto Police Marine Unit, Pier Four Restaurant, Wallymagoo's Marine Bar and PawsWay. Under existing conditions, Robertson Crescent West (at Rees) can be access from all directions at the Rees Street fully signalized intersection. Robertson Crescent (East) is restricted to right-in/right-out only due to the streetcar median right-of-way, although some motorists turn left over the streetcar tracks illegally. Robertson Crescent is affected the most under the preferred design of Queens Quay. The recommended plan maintains the signalized intersection at Rees Street, but with the following changes: - Eastbound left turns are permitted, however the existing dedicated eastbound left turn lane is removed and now this movement must be made from a shared lane (left/through). - Eastbound right turns into Robertson Crescent are still permitted; however, this movement is proposed to take place from a dedicated eastbound right turn lane. The dedicated turn lane and fully protected turn phase are required to crossing the TTC streetcar right-of-way. - Access from the east is no longer possible from Queens Quay due to the elimination of the westbound left turn. Under the new configuration, there is not sufficient space available to provide a westbound left turn while still providing adequate width for transit platforms, sidewalks and the Martin Goodman Trail. Access from the east will require motorists to use Lake Shore Boulevard and make an eastbound left turn at Rees Street. - Northbound and southbound approaches to the intersection still provide full movements. Throughout the Environmental Assessment, the future configuration of Robertson Crescent East was the topic of much discussion. The recommended plan considered closing Robertson Crescent East as a measure to improve transit travel time and service reliability. The closure would require all traffic entering and exiting Robertson crescent to do so at the Rees Street / Robertson Crescent West / Queens Quay signalized intersection. The closure also required that a bus turnaround be constructed adjacent to, and partially cantilevered over, the Police Marine Unit slip. At executive committee on June 2 2009, a motion was passed recommending that the EA team explore alternative methods to keep Robertson Crescent open at least to allow bus traffic to exit so the bus turnaround facility was not required. The team explored five alternatives: - 1 Close eastern driveway of Robertson Crescent (with turnaround). - 2a Gated eastern driveway of Robertson Crescent (with turnaround) - 2b Gated eastern driveway of Robertson Crescent (with three point turn) - 3a Signalized eastern driveway of Robertson Crescent (no pedestrian crossing) - 3b Signalized eastern driveway of Robertson Crescent (with pedestrian crossing) Table 25 contains a detailed evaluation of the alternatives. The outcome of the evaluation was to recommend closing Robertson Crescent East due to the operational and safety concerns associated with the gate, and the potential delay to transit associated with the signal. At council on October 1 2009, a motion was passed recommending that Robertson Crescent East be open as egress only controlled by a transit pre-empted signal. The motion is as follows: "The Queens Quay Revitalization Environmental Assessment report and Environmental Study Report (ESR) provide for an additional egress only traffic control signal at the Robertson Crescent/Queens Quay West intersection under the following conditions: - the signal be limited to right turn (eastbound) egress only; - the signal will operate under complete transit pre-emptive control; - the signal will operate independent of, and not be coordinated with, any of the adjacent or nearby signals; - the intersection at this location will not provide north-south pedestrian crossing facilities; - an alternative location for loading and drop-off for adjacent landowners and businesses be confirmed: and - the proposed bus turning plaza be removed from the Environmental Assessment recommendations." The traffic operations analysis for the Rees Street / Robertson Crescent / Queens Quay intersection contained in this report assumes that all traffic volume in and out of Robertson Crescent are still assigned to the Rees Street signalized intersection. See Plate 9-3 in the ESR for an illustration of the final recommended arrangement at Robertson Crescent. Table 25: Robertson Crescent Operational Scenario Evaluation | Option | Scenario | Delay to Transit | Operations | Urban Design | Cost | |--------|--|---|---|--|---| | 1 | Close eastern driveway of
Robertson Crescent
(with turnaround) | No impact. | Limits egress and westbound access to Radisson Hotel and other businesses/residents on Robertson Crescent. Potential conflicts between pedestrians and vehicles on plaza at Pier 4/auto turnaround (cul-de-sac). Creates additional potential conflict point between buses/heavy trucks and pedestrians adjacent to 245 Queens Quay as a result of the turnaround. May impact boat operations; however turnaround would provide bus loading space. | Requires construction of
additional turn around over
police basin and at existing east
entrance. Provides on-street
parking/loading on Queens Quay. | Additional cost for 2
turnarounds approximately
\$5million. | | 2a | Gated eastern driveway of
Robertson Crescent
(with turnaround) | No significant impact. Requires buses to exit over TTC right of way. Risk that buses waiting on tracks for gap in traffic may conflict with TTC. | Improved egress. Limits westbound access to Radisson Hotel and other businesses/residents on Robertson Crescent. Potential conflicts between pedestrians and vehicles on plaza at Pier 4/auto turnaround (cul-de-sac). Creates additional potential conflict between buses/heavy trucks and pedestrians adjacent to 245 Queens Quay as a result of the turnaround. May impact boat operations; however turnaround would provide bus loading space. | Requires construction of additional turn around over police basin and at existing east entrance. Turnaround at eastern egress more complex/potential conflict between vehicles and pedestrians. Provides on-street parking/loading on Queens Quay. | Additional cost for 2
turnarounds approximately
\$5million. Additional cost for gate
hardware. | | 2b | Gated eastern driveway of
Robertson Crescent
(with three point turn) | No significant impact. Requires both buses and heavy trucks to exit over TTC right of way. Risk that vehicles waiting on tracks for gap in traffic may conflict with TTC. | Improved egress. Limits westbound access to Radisson Hotel and other businesses/residents on Robertson Crescent. Potential conflicts between pedestrians and vehicles on plaza at Pier 4/auto turnaround (cul-de-sac). Creates additional potential conflict point adjacent to 245 Queens Quay as a result of three point turn movement. Reversing vehicles in shared pedestrian area is a potential safety hazard. May have greater impact on boat operations due to limited capacity for bus loading due to three point turn. | Creates more typical road network. Turnaround at eastern egress more complex/potential conflict between vehicles and pedestrians. Provides on-street parking/loading on Queens Quay. | Additional cost for 1
turnaround (at egress). Additional cost for gate
hardware. | | 3a | Signalized eastern driveway of Robertson Crescent (no pedestrian crossing) | No impact. Signal is
adaptive and only
provides vehicle
phases when no
transit vehicles are
present. | Best access and egress to Robertson Crescent. Westbound left turn permitted. Increases number of signals on Queens Quay. Short block between Robertson E. and Rees Street potential queue spillback (WB) beyond Robertson East. | Creates most typical access condition. Turnarounds not required. Rabba loses on-street loading stalls. | Additional cost for signal
hardware approximately
\$150k. | | 3b | Signalized eastern driveway of
Robertson Crescent (with pedestrian crossing) | Approximately 30 second additional average delay to transit due to pedestrian calls and clearance intervals. | Best access and egress to Robertson Crescent. Westbound left turn permitted. Increases number of signals on Queens Quay. Short block between Robertson E. and Rees Street potential queue spillback (WB) beyond Robertson East. | Creates most typical access condition. Turnarounds not required. Rabba loses on-street loading stalls. | Additional cost for signal
hardware approximately
\$150k. | Table 26 provides a summary of traffic operations at the Rees Street signalized intersection. Overall operations for the intersection are typical downtown conditions with average delays at LOS C. The side street movements have higher delay at LOS D again due to the signal strategy which maximizes east-west green time for traffic and transit. The eastbound right turn into Robertson Crescent is shown at LOS F. Delays for this movement will be higher than average under future conditions because it is controlled by a short, 15 second fully protected phase which can be called only once per 120 second cycle. While delays could be in the order of 100 seconds, there is sufficient capacity to accommodate the demand (most trips are assumed to approach Robertson Crescent from the north via Rees Street). It would be possible to reduce the average delay for the eastbound right turn if the phase were equipped with extensions or if the minimum green time were extended. This would of course impact (albeit minor) the amount of green time for east-west transit, Martin Goodman Trail and sidewalk. The Robertson Crescent East transit pre-empted signal will operate well at LOS A. Side street demand is fairly low and there will be sufficient capacity to accommodate the movement; however, in order to maintain transit priority, delays will be somewhat higher at LOS E. | Table 26: Queens Quay / Rees Stre | et / Robertson Crescent Opera | ations Summary | |-----------------------------------|-------------------------------|----------------| | | Morning Peak Hour | Afternoon Po | | Queens Quay @ | Morr | ning Peak | Hour | After | noon Peak | Hour | |--|------|-----------|------|-------|-----------|------| | , 6 | V/C | Delay | LOS | V/C | Delay | LOS | | Rees Street | 0.60 | 20 | В | 0.76 | 31 | С | | Eastbound Through/Left | 0.67 | 9 | Α | 0.88 | 46 | С | | Eastbound Right | 0.68 | 99 | F | 0.52 | 46 | D | | Westbound Through/Right | 0.50 | 21 | С | 0.73 | 11 | В | | Northbound Left | 0.06 | 40 | D | 0.09 | 40 | D | | Northbound Through/Right | 0.11 | 40 | D | 0.15 | 41 | D | | Southbound Left | 0.31 | 43 | D | 0.30 | 43 | D | | Southbound Through/Right | 0.16 | 41 | D | 0.34 | 43 | D | | Robertson Crescent East | 0.51 | 3 | Α | 0.53 | 3 | Α | | Eastbound Through | 0.51 | 3 | Α | 0.52 | 2 | Α | | Westbound Through | 0.33 | 1 | Α | 0.53 | 2 | Α | | Northbound Right | 0.50 | 68 | Е | 0.55 | 66 | Е | # 6.2.4 250 / 260 / 270 Queens Quay West The condominium at 250 / 260 / 270 Queens Quay will only have minor changes to access. Key ground floor tenants of the building are Rabba Fine Foods and Swiss Chalet (among others). Under existing conditions, is provided at two driveways. One driveway is on Rees Street between Queens Quay and Lake Shore Boulevard, and the other on Queens Quay across from and slightly east of Robertson Crescent East. Due to the streetcar right-of-way, the Queens Quay driveway is right turns only. Under future conditions, no physical changes are proposed to either driveway; however, the south side transit arrangement with traffic north of the tracks will now make it possible to have full movements at the Queens Quay driveway. # 6.2.5 228 / 230 Queens Quay West (The Riviera) The Riviera at 228 / 230 Queens Quay West will also be largely unaffected by the changes to Queens Quay. Existing access is provided at a primary driveway on Lower Simcoe Street between Queens Quay and Lake Shore Boulevard. There is also a secondary oneway right-out exit only driveway onto Queens Quay across from Simcoe Slip. Under future conditions, no changes are proposed to the access condition for the Riviera; however, due to the south side transit configuration, vehicles exiting onto Queens Quay would be able to make a left or right turn. # **6.2.6** 235 Queens Quay West (Harbourfront Centre) Harbourfront Centre is located at 235 Queens Quay in the southwest quadrant of the Queens Quay / Lower Simcoe intersection. It is the focal point of activities on the waterfront and will need to have good access under any future arrangement of Queens Quay. Existing access is provided at a single right-in/right-out driveway mid-way between Lower Simcoe and the Queens Quay Terminal driveway. This driveway services an approximately 230 stall surface parking lot and loading bays for Harbourfront Centre and Enwave Theatre. Plans for Harbourfront Centre include the replacement of the existing surface lot with up to 500 stalls of underground parking in a single garage. Vehicular access to the garage is proposed at the south leg of Lower Simcoe Street creating a four-way intersection and direct north-south connections between Harbourfront Centre and Lower Simcoe Street. Under this arrangement, common for all future scenarios, the driveway mid-way between Lower Simcoe and the Queens Quay Terminal driveway would be closed. Space on top of the new underground parking garage is being planned for the new Canada Square retail village. Table 27 summarizes traffic operations at Lower Simcoe and Queens Quay assuming a fully signalized intersection and traffic associated with a new 500 stall parking garage. The only prohibited movement is eastbound right turns, which cannot be provided due to limited space for a dedicated turn lane. Motorists approaching from the west could do so via Lake Shore Boulevard. The intersection is expected to have reasonable delays in the LOS A to D range. Side street delays are somewhat higher at LOS D again due to the need to provide maximum east-west green time for traffic and transit. Table 27: Queens Quay / Lower Simcoe / Harbourfront Centre Operations Summary | Queens Quay @ | Morr | ning Peak | Hour | After | noon Peak | Hour | |--|---------|-----------|------|-------|-----------|------| | 4.00000 4.000 | V/C | Delay | LOS | V/C | Delay | LOS | | Lower Simcoe Street | 0.62 | 16 | В | 0.65 | 22 | С | | Eastbound Left | 0.23 | 6 | Α | 0.41 | 16 | В | | Eastbound Through | 0.68 | 11 | В | 0.61 | 17 | В | | Westbound Left | 0.60 | 52 | D | 0.53 | 51 | D | | Westbound Through/Right | 0.42 | 11 | В | 0.67 | 18 | В | | Northbound Left | No Vol. | - | - | 0.07 | 40 | D | | Northbound Through/Right | 0.02 | 39 | D | 0.28 | 42 | D | | Southbound Left | 0.47 | 45 | D | 0.57 | 48 | D | | Southbound Through/Right | 0.16 | 41 | D | 0.06 | 40 | D | # 6.2.7 York Street, 208 / 218 Queens Quay West (Waterclub) The Waterclub condominium is located in the northwest quadrant of the York Street and Queens Quay intersection. Under existing conditions, access is provided via three driveways: - Queens Quay between York Street and Lower Simcoe Street (right-in/right-out); - Lower Simcoe Street between Queens Quay and Lake Shore Boulevard (all moves); - Lake Shore Boulevard approximately 60 metres west of York Street (right-in/right-out). With all traffic north of the streetcar right-of-way in the recommended alternative, it is now possible to allow all movements at the Queens Quay driveway. # 6.2.8 207 / 211 Queens Quay West (Queens Quay Terminal) Queens Quay Terminal is another major attraction on the Toronto waterfront. In addition to major retail and services, the building also houses approximately 70 condominium units. Existing access is provided at a single driveway located on the south side of Queens Quay approximately mid-way between Lower Simcoe Street and York Street. The driveway is right-in/right-out only however some motorists do make left turns in and out of the driveway over the raised TTC streetcar median. The driveway serves short term parking, structured resident parking and commercial loading along the west side of the building. Also, in front of the building there is a taxi lay-by along the south curb of Queens Quay. The preferred alternative for Queens Quay would require minor modification to access. A fully signalized intersection is proposed at the existing driveway. Eastbound right turns in will be maintained, however will be provided with a fully protected phases to cross the streetcar tracks. Westbound left turns in will be prohibited over the tracks, similar to existing conditions. An improvement over the existing conditions is the exiting motorists will be able to turn left or right without illegally crossing the streetcar right-of-way. This is an improvement over existing conditions and provides more choice for motorists. The intersections operates will relatively low delay overall at LOS B. Similar to the intersections along the corridor, movements in an out of the driveway experience longer delays at LOS D to E due to the need to provide maximum east-west green time for traffic and transit. While delays are LOS D to E, there is more than sufficient capacity to accommodate the volume of traffic. This new signalized intersection will also be equipped with pedestrian crossings and transit platforms. The transit platforms will replace both the existing Lower Simcoe and York Street platforms at this consolidated location. Combining the stops improves geometric conditions at both Lower Simcoe and York Streets by freeing up space, and also creates a stop will be directly adjacent to the planned Canada Square. Table 28: Queens Quay / Queens Quay Terminal Operations Summary |
Queens Quay @ | Mor | ning Peak | Hour | Afternoon Peak Hour | | | |---------------------------------------|------|-----------|------|---------------------|-------|-----| | quoono qua, e | V/C | Delay | LOS | V/C | Delay | LOS | | Queens Quay Terminal | 0.49 | 13 | В | 0.55 | 12 | В | | Eastbound Through | 0.62 | 9 | Α | 0.55 | 9 | Α | | Eastbound Right | 0.32 | 71 | Е | 0.46 | 64 | Е | | Westbound Through | 0.60 | 14 | В | 0.69 | 12 | В | | Northbound Left | 0.02 | 39 | D | 0.03 | 40 | D | | Northbound Right | 0.01 | 39 | D | 0.04 | 40 | D | #### **6.2.9** 33 / 55 / 65 / 77 / 99 Harbour Square (Harbour Square) Harbour Square is the largest residential complex on the Toronto Waterfront with a total of five buildings and approximately 2,000 units. Existing access is provided at four driveways. The two main driveways are the south legs of both the York Street and Bay Street signalized intersections. Between York and Bay there are two additional driveways. At the existing mid block signal (opposite a surface parking lot) is a driveway which provides general access to the parking garage and residential / retail loading facilities. Just east of this driveway is the fourth driveway for access to the garbage loading and bus storage facilities. For the recommended alternative, Queens Quay will be split into an eastbound service lane south of the tracks, and a two way roadway north of the tracks. This arrangement has been developed in order to maintain access to the two Harbour Squared driveways between York Street and Bay Street. The existing signal between York Street and Bay Street will be removed and the two driveways on the eastbound service lane will have right turns only. At York Street, eastbound right turns from Queens Quay would be prohibited at York Street but maintained at Bay Street. There is not enough space at York Street to provide the dedicated turn lane and protected phase required to cross the TTC streetcar right-of-way. Westbound left turns will still be permitted as today, but will have a dedicated lane which is an improvement over existing conditions where westbound left turns are form a shared lane. All movements would still be permitted at Bay Street. Table 29 summarizes traffic operations for the Queens Quay / York Street and Queens Quay / Bay Street signalized intersections. Table 29: Queens Quay / York Street and Queens Quay / Bay Street Operations Summary | Queens Quay @ | Morr | ning Peak | Hour | After | noon Peak | Hour | |--|------|-----------|------|-------|-----------|------| | anome dany @ | V/C | Delay | LOS | V/C | Delay | LOS | | York Street | 0.64 | 19 | В | 0.62 | 16 | В | | Eastbound Left | 0.33 | 6 | Α | 0.26 | 6 | Α | | Eastbound Through | 0.66 | 11 | В | 0.67 | 12 | В | | Westbound Left | 0.52 | 63 | Е | 0.46 | 63 | Е | | Westbound Through | 0.40 | 10 | В | 0.59 | 12 | В | | Westbound Right | 0.17 | 8 | Α | 0.30 | 9 | Α | | Northbound Shared | 0.56 | 44 | D | 0.23 | 40 | D | | Southbound Left | 0.61 | 47 | D | 0.42 | 43 | D | | Southbound Through | 0.09 | 37 | D | 0.11 | 39 | D | | Southbound Right | 0.28 | 41 | D | 0.24 | 41 | D | | Bay Street | 0.81 | 31 | В | 0.80 | 26 | С | | Eastbound Left | 0.52 | 17 | В | 0.69 | 22 | С | | Eastbound Through/Right | 0.63 | 16 | В | 0.76 | 20 | В | | Westbound Left | 0.16 | 20 | В | 0.23 | 19 | В | | Westbound Through | 0.94 | 45 | D | 0.86 | 33 | С | | Westbound Right | 0.30 | 29 | С | 0.35 | 21 | С | | Northbound Left | 0.05 | 28 | С | 0.02 | 28 | С | | Northbound Through/Right | 0.31 | 31 | С | 0.11 | 29 | С | | Southbound Left | 0.52 | 35 | С | 0.61 | 39 | D | | Southbound Through/Right | 0.47 | 33 | С | 0.17 | 30 | С | At York Street, the main east-west through movements operate with relatively low delay at LOS B. The westbound left turn has higher delays at LOS E because the movement operates on a fully protected phase which can only be called once per cycle. This is again at typical condition for turns across the TTC streetcar right-of-way. At Bay Street, overall LOS is B to C. The streetcar is under ground at Bay Street so there is no need for the fully protected turn phases over the tracks, and the signal cycle length is also shorter at 103 seconds instead of 120 seconds. We see that there is a more equitable distribution of delay throughout the intersection. #### 6.2.10 Westin Harbour Castle Between the portal just west of Bay Street and the proposed portal between Yonge Street and Freeland Street, the streetcar would operate in a tunnel under the Queens Quay. In this case, access for the Westin Harbour Castle is maintained as in existing conditions. There are proposed changes to the street cross section in front of the Hotel, but all existing movements will still be permitted. The taxi staging area located on Queens Quay adjacent to the hotel would also be maintained. | Appendix A | |------------| |------------| Figures # A1 Traffic Control Queens Quay Revitalization Environmental Assessment # **A2 Transit Systems** Queens Quay Revitalization ## **A3 Existing Volumes** Figure A3- 1: AM Existing, Spadina to York Figure A3- 2: AM Existing, Bay to Cooper Figure A3- 3: PM Existing Spadina to York Figure A3- 4: PM Existing, Bay to Cooper ## **A4** Future Do Nothing / Centre Transit Volumes Figure A4- 1: AM Future Centre, Reassigned Existing, Spadina to Bay Figure A4- 2: AM Future Centre, Reassigned Existing, Bay to Cooper Figure A4- 3: AM Future Centre, Harbourfront Centre Traffic, Spadina to York Figure A4- 4: AM Future Centre, Harbourfront Centre Traffic, Bay to Cooper Figure A4- 5: AM Future Centre, Waterpark Place, Spadina to York Figure A4- 6: AM Future Centre, Waterpark Place, Bay to Cooper Figure A4-7: AM Future Centre, Pier 27, Spadina to Bay Figure A4- 8: AM Future Centre, Pier 27, Bay to Cooper Figure A4- 9: AM Future Centre, East Bayfront, Spadina to York Figure A4- 10: AM Future Centre, East Bayfront, Bay to Cooper Figure A4- 11: AM Future Centre, Railway Lands, Spadina to Bay Figure A4- 12: AM Future Centre, Railway Lands, Bay to Cooper Figure A4- 13: AM Future Centre, West Don Lands, Spadina to York Figure A4- 14: AM Future Centre, West Don Lands, Bay to Cooper Figure A4- 15: AM Future Centre, Total, Spadina to York Figure A4- 16: AM Future Centre, Total, Bay to Cooper Figure A4- 17: PM Future Centre, Reassigned Existing, Spadina to York Figure A4- 18: PM Future Centre, Reassigned Existing, Bay to Cooper Figure A4- 19: PM Future Centre, Harbourfront Centre, Spadina to York Figure A4- 20: PM Future Centre, Harbourfront Centre, Bay to Cooper Figure A4- 21: PM Future Centre, Waterpark Place, Spadina to York Figure A4- 22: PM Future Centre, Waterpark Place, Bay to Cooper Figure A4- 23: PM Future Centre, Pier 27, Spadina to Bay Figure A4- 24: PM Future Centre, Pier 27, Bay to Cooper Figure A4- 25: PM Future Centre, East Bayfront, Spadina to York Figure A4- 26: PM Future Centre, East Bayfront, Bay to Cooper Figure A4- 27: PM Future Centre, Railway Lands, Spadina to York Figure A4- 28: PM Future Centre, Railway Lands, Bay to Cooper Figure A4- 29: PM Future Centre, West Don Lands, Spadina to York Figure A4- 30: PM Future Centre, West Don Lands, Bay to Cooper Figure A4- 31: PM Future Centre, Total, Spadina to York Figure A4- 32: PM Future Centre, Total, Bay to Cooper ## **A5 Future South Side One-Way Volumes** Figure A5- 1: AM Future South Side One Way, Reassigned Existing, Spadina to York Figure A5- 2: AM Future South Side One Way, Reassigned Existing, Bay to Cooper Figure A5- 3: AM Future South Side One Way, Harbourfront Centre, Spadina to York Figure A5- 4: AM Future South Side One Way, Harbourfront Centre, Bay to Cooper Figure A5- 5: AM Future South Side One Way, Waterpark Place, Spadina to York Figure A5- 6: AM Future South Side One Way, Waterpark Place, Bay to Cooper Figure A5- 7: AM Future South Side One Way, Pier 27, Spadina to York Figure A5- 8: AM Future South Side One Way, Pier 27, Bay to Cooper Figure A5- 9: AM Future South Side One Way, East Bayfront, Spadina to York Figure A5- 10: AM Future South Side One Way, East Bayfront, Bay to Cooper Figure A5- 11: AM Future South Side One Way, Railway Lands, Spadina to York Figure A5- 12: AM Future South Side One Way, Railway Lands, Bay to Cooper Figure A5- 13: AM Future South Side One Way, West Don Lands, Spadina to York Figure A5- 14: AM Future South Side One Way, West Don Lands, Bay to Cooper Figure A5- 15: AM Future South Side One Way, Total, Spadina to York Figure A5- 17: PM Future South Side One Way, Reassigned Existing, Spadina to York Figure A5- 18: PM Future South Side One Way, Reassigned Existing, Bay to Cooper Figure A5- 19: PM Future South Side One Way, Harbourfront Centre, Spadina to York Figure A5- 20: PM Future South Side One Way, Harbourfront Centre, Bay to Cooper Figure A5- 21: PM Future South Side One Way, Waterpark Place, Spadina to York Figure A5- 22: PM Future South Side One Way, Waterpark Place, Bay to Cooper Figure A5- 23: PM Future South Side One Way, Pier 27, Spadina to York Figure A5- 24: PM Future South Side One Way, Pier 27, Bay to Cooper Figure A5- 25: PM Future South Side One Way, East Bayfront, Spadina to York Figure A5- 26: PM Future South Side One Way, East Bayfront, Bay to Cooper Figure A5- 27: PM Future South Side One Way, Railway Lands, Spadina to York Figure A5- 28: PM Future South Side One Way, Railway Lands, Bay to Cooper Figure A5- 29: PM Future South Side One Way, West Don Lands, Spadina to York Figure A5- 30: PM Future South Side One Way, West Don Lands, Bay to Cooper Figure A5- 31: PM Future South Side One Way, Total, Spadina to York Figure A5- 32: PM Future South Side One Way, Total, Bay to Cooper ## **A6 Future South Side Two-Way Volumes** Queens Quay Revitalization
Environmental Assessment Figure A6-1: AM Future South Side Two Way, Reassigned Existing, Spadina to York Figure A6- 2: AM Future South Side Two Way, Reassigned Existing, Bay to Cooper Figure A6- 3: AM Future South Side Two Way, Harbourfront Centre, Spadina to York Figure A6- 4: AM Future South Side Two Way, Harbourfront Centre, Bay to Cooper Figure A6- 5: AM Future South Side Two Way, Waterpark Place, Spadina to York Figure A6- 6: AM Future South Side Two Way, Waterpark Place, Bay to Cooper Figure A6- 7: AM Future South Side Two Way, Pier 27, Spadina to York Figure A6- 8: AM Future South Side Two Way, Pier 27, Bay to Cooper Figure A6- 9: AM Future South Side Two Way, East Bayfront, Spadina to York Figure A6- 10: AM Future South Side Two Way, East Bayfront, Bay to Cooper Figure A6- 11: AM Future South Side Two Way, Railway Lands, Spadina to York Figure A6- 12: AM Future South Side Two Way, Railway Lands, Bay to Cooper Figure A6- 13: AM Future South Side Two Way, West Don Lands, Spadina to York Figure A6- 14: AM Future South Side Two Way, West Don Lands, Bay to Cooper Figure A6- 15: AM Future South Side Two Way, Total, Spadina to York Figure A6- 16: AM Future South Side Two Way, Total, Bay to Cooper Figure A6- 17: PM Future South Side Two Way, Reassigned Existing, Spadina to York Figure A6- 18: PM Future South Side Two Way, Reassigned Existing, Bay to Cooper Figure A6- 19: PM Future South Side Two Way, Harbourfront Centre, Spadina to York Figure A6- 20: PM Future South Side Two Way, Harbourfront Centre, Bay to Cooper Figure A6- 21: PM Future South Side Two Way, Waterpark Place, Spadina to York Figure A6- 22: PM Future South Side Two Way, Waterpark Place, Bay to Cooper Figure A6- 23: PM Future South Side Two Way, Pier 27, Spadina to York Page 2 Figure A6- 24: PM Future South Side Two Way, Pier 27, Bay to Cooper WATERFRONT TRAFFIC VOLUME - QUEENS QUAY SOUTH SIDE TRANSIT OPTIONS FIGURE: Reroutred new traffic at Pier 27 TIME PERIOD: Weekday PM PROJECT No: 7085-01 Figure A6- 25: PM Future South Side Two Way, East Bayfront, Spadina to York Figure A6- 26: PM Future South Side Two Way, East Bayfront, Bay to Cooper Figure A6- 27: PM Future South Side Two Way, Railway Lands, Spadina to York Figure A6- 28: PM Future South Side Two Way, Railway Lands, Bay to Cooper Queens Quay Revitalization Environmental Assessment Figure A6- 29: PM Future South Side Two Way, West Don Lands, Spadina to York Figure A6- 30: PM Future South Side Two Way, West Don Lands, Bay to Cooper Queens Quay Revitalization Environmental Assessment Figure A6- 31: PM Future South Side Two Way, Total, Spadina to York Figure A6- 32: PM Future South Side Two Way, Total, Bay to Cooper ## Appendix B **Collision History Data** ## ARUP Note: 2007 figure interpolated from data gathered up to end of June based on previous monthly trends | | | Ye | ar | | Total | Average per | AADT | Vehicles per | Collisions
per Million | |--|------|------|------|------|-------|-------------|--------|--------------|---------------------------| | Location | 2004 | 2005 | 2006 | 2007 | Total | Year | AADT | year | Vehicles | | Harbour - Bay to Yonge | 6 | 2 | 3 | 8 | 19 | 5 | 21,351 | 7,793,297 | | | Harbour - Lower Simcoe to York | 2 | 2 | 0 | 0 | 4 | 1 | 14,922 | 5,446,704 | 0.18 | | Harbour - York to Bay | 3 | 2 | 8 | 6 | 19 | 5 | 22,373 | 8,166,145 | 0.58 | | Harbour & Bay | 11 | 15 | 19 | 9 | 54 | 14 | 38,781 | 14,155,173 | 0.95 | | Harbour & York | 12 | 9 | 8 | 2 | 31 | 8 | 31,831 | 11,618,245 | 0.67 | | Harbour & LakeShore / Yonge | 20 | 19 | 21 | 12 | 72 | 18 | 56,633 | 20,670,880 | 0.87 | | LakeShore & Bay | 47 | 40 | 24 | 24 | 135 | 34 | 38,033 | 13,882,029 | 2.43 | | LakeShore & Lower Simcoe | 5 | 6 | 10 | 3 | 24 | 6 | 30,315 | 11,064,794 | 0.54 | | LakeShore & Lower Spadina | 20 | 17 | 13 | 7 | 57 | 14 | 62,042 | 22,645,329 | 0.63 | | LakeShore & Rees | 23 | 7 | 15 | 18 | 63 | 16 | 49,867 | 18,201,360 | 0.87 | | LakeShore & York | 14 | 21 | 21 | 29 | 85 | 21 | 30,656 | 11,189,431 | 1.90 | | LakeShore EB - Lower Spadina to Rees | 2 | 4 | 1 | 1 | 8 | 2 | 26,142 | 9,541,830 | 0.21 | | LakeShore EB - Rees to Lower Simcoe | 4 | 0 | 2 | 0 | 6 | 2 | 20,765 | 7,579,244 | 0.20 | | LakeShore WB - Bay to York | 2 | 2 | 2 | 1 | 7 | 2 | 25,339 | 9,248,735 | 0.19 | | LakeShore WB - Lower Simcoe to Rees | 2 | 2 | 0 | 0 | 4 | 1 | 16,732 | 6,107,233 | 0.16 | | LakeShore WB - Rees to Spadina | 2 | 0 | 1 | 0 | 3 | 1 | 35,850 | 13,085,250 | 0.06 | | LakeShore WB - Yonge to Bay | 1 | 1 | 3 | 1 | 6 | 2 | 20,730 | 7,566,351 | 0.20 | | LakeShore WB - York to Lower Simcoe | 0 | 0 | 4 | 1 | 5 | 1 | 21,020 | 7,672,300 | 0.16 | | Queen's Quay - Bay Harbour Sq. to Yonge | 2 | 4 | 0 | 2 | 8 | 2 | 16,496 | 6,021,040 | 0.33 | | Queen's Quay - Lower Simcoe to York | 8 | 8 | 8 | 8 | 32 | 8 | 15,969 | 5,828,685 | 1.37 | | Queen's Quay - Lower Spadina to Rees | 9 | 10 | 9 | 16 | 44 | 11 | 11,742 | 4,285,830 | 2.57 | | Queen's Quay - Robertson (E) to Lower Simcoe | 5 | 0 | 2 | 2 | 9 | 2 | 11,845 | 4,323,425 | 0.52 | | Queen's Quay - York to Bay Harbour Sq. | 7 | 3 | 6 | 6 | 22 | 6 | 15,868 | 5,791,820 | 0.95 | | Queen's Quay & Bay Harbour Sq. | 4 | 8 | 4 | 2 | 18 | 5 | 19,689 | 7,186,363 | 0.63 | | Queen's Quay & Lower Simcoe | 3 | 4 | 8 | 4 | 19 | 5 | 12,519 | 4,569,403 | 1.04 | | Queen's Quay & Lower Spadina | 1 | 1 | 5 | 1 | 8 | 2 | 15,384 | 5,615,274 | 0.36 | | Queen's Quay & Rees - Robertson (W) | 5 | 1 | 2 | 2 | 10 | 3 | 15,215 | 5,553,618 | 0.45 | | Queen's Quay & Robertson (E) | 0 | 1 | 1 | 0 | 2 | 1 | 11,845 | 4,323,425 | 0.12 | | Queen's Quay & Yonge | 6 | 6 | 7 | 2 | 21 | 5 | 18,406 | 6,718,233 | 0.78 | | Queen's Quay & York | 5 | 9 | 10 | 8 | 32 | 8 | 18,125 | 6,615,473 | 1.21 | | Total | 231 | 204 | 217 | 175 | 827 | | | Average: | 0.72 | | Average per Intersection | 6 | 5 | 5 | 4 | 20 | | | 85th %ile | 1.15 | Note: 2007 figure interpolated from data gathered up to end of June based on previous monthly trends | Location of Collision sites over 85th %ile | Number of collisions (2004-2007) | Collisions per million vehicles | Class of Collision (%) | | | | | Direction of travel (%) | | | | Control Device (%) | | |--|----------------------------------|---------------------------------|------------------------|-----------|-------|----------|-------|-------------------------|------------|-----------|-----------|--------------------|---------------| | | | | Turning
Movement | Sideswipe | Angle | Rear End | Other | Northbound | Southbound | Eastbound | Westbound | Traffic
Signal | No
Control | | Lake Shore Boulevard& York Street | 85 | 1.90 | 28 | 13 | 21 | 32 | 6 | 27 | 18 | 7 | 37 | 76 | 24 | | Lake Shore Boulevard & Bay Street | 135 | 2.43 | 25 | 20 | 25 | 25 | 5 | 16 | 20 | 16 | 48 | 95 | 5 | | Queens Quay & York Street | 32 | 1.21 | 16 | 18 | 4 | 36 | 26 | 6 | 11 | 30 | 52 | 93 | 7 | | Queens Quay - Lower Simcoe to York Street | 32 | 1.37 | 50 | 18 | - | - | 32 | 2 | 2 | 30 | 66 | - | 100 | | Queens Quay - Lower Spadina to Rees Street | 44 | 2.57 | 60 | - | - | - | 40 | 5 | 5 | 58 | 32 | - | 100 | ## Appendix C Synchro Worksheets ## C1 Existing | | ۶ | → | ← | • | \ | 4 | | |----------------------------------|------|----------|----------|--------|------------|------------|--| | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | | Lane Configurations | * | † | † | 7 | ሻ | 7 | | | Volume (vph) | 70 | 535 | 190 | 120 | 120 | 60 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | | Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | Frpb, ped/bikes | 1.00 | 1.00 | 1.00 | 0.75 | 1.00 | 0.87 | | | Flpb, ped/bikes | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | Frt | 1.00 | 1.00 | 1.00 | 0.85 | 1.00 | 0.85 | | | Flt Protected | 0.95 | 1.00 | 1.00 | 1.00 | 0.95 | 1.00 | | | Satd. Flow (prot) | 1530 | 1626 | 1610 | 1050 | 1487 | 1208 | | | FIt Permitted | 0.95 | 1.00 | 1.00 | 1.00 | 0.95 | 1.00 | | | Satd. Flow (perm) | 1530 | 1626 | 1610 | 1050 | 1487 | 1208 | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | Adj. Flow (vph) | 78 | 594 | 211 | 133 | 133 | 67 | | | RTOR Reduction (vph) | 0 | 0 | 0 | 101 | 0 | 51 | | | Lane Group Flow (vph) | 78 | 594 | 211 | 32 | 133 | 16 | | | Confl. Peds. (#/hr) | 190 | | | 190 | 130 | 50 | | | Heavy Vehicles (%) | 5% | 4% | 5% | 3% | 8% | 4% | | | Turn Type | Prot | | | custom | | Perm | | | Protected Phases | 5 | 2 5 23 | 6 23 | | 4 | | | | Permitted Phases | | | | 6 | | 4 | | | Actuated Green, G (s) | 14.1 | 83.3 | 62.2 | 36.4 | 35.4 | 35.4 | | | Effective Green, g (s) | 14.1 | 83.3 | 62.2 | 36.4 | 35.4 | 35.4 | | | Actuated g/C Ratio | 0.09 | 0.55 | 0.41 | 0.24 | 0.23 | 0.23 | | | Clearance Time (s) | 7.0 | | | 7.0 | 7.0 | 7.0 | | | Vehicle Extension (s) | 3.0 | | | 3.0 | 3.0 | 3.0 | | | Lane Grp Cap (vph) | 142 | 893 | 660 | 252 | 347 | 282 | | | v/s Ratio Prot | 0.05 | c0.37 | 0.13 | | c0.09 | | | | v/s Ratio Perm | | | | 0.03 | | 0.01 | | | v/c Ratio | 0.55 | 0.67 | 0.32 | 0.13 | 0.38 | 0.06 | | | Uniform Delay, d1 | 65.8 | 24.3 | 30.4 | 45.2 | 49.0 | 45.2 | | | Progression Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | Incremental Delay, d2 | 4.3 | 1.9 | 0.3 | 1.0 | 3.2 | 0.4 | | | Delay (s) | 70.1 | 26.2 | 30.7 | 46.2 | 52.1 | 45.5 | | | Level of Service | Е | С | С | D | D | D | | | Approach Delay (s) | | 31.3 | 36.7 | | 49.9 | | | | Approach LOS | | С | D | | D | | | | Intersection Summary | | | | | | | | | HCM Average Control Delay | | | 35.9 | H | CM Level | of Service | | | HCM Volume to Capacity ratio | | | 0.58 | | | | | | Actuated Cycle Length (s) | | | 151.7 | | ım of lost | | | | Intersection Capacity Utilizatio | n | | 83.3% | IC | U Level c | of Service | | | Analysis Period (min) | | | 15 | | | | | | c Critical Lane Group | | | | | | | | | | • | - | • | • | - | 4 | | |----------------------------------
------|----------|------------|------|------------|------------|------| | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | | Lane Configurations | * | † | ∱ ↑ | | | 7 | | | Volume (vph) | 25 | 625 | 245 | 5 | 0 | 45 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | 7.0 | 7.0 | 7.0 | | | 6.0 | | | Lane Util. Factor | 1.00 | 1.00 | 0.95 | | | 1.00 | | | Frt | 1.00 | 1.00 | 1.00 | | | 0.86 | | | Flt Protected | 0.95 | 1.00 | 1.00 | | | 1.00 | | | Satd. Flow (prot) | 1606 | 1610 | 3082 | | | 1463 | | | Flt Permitted | 0.95 | 1.00 | 1.00 | | | 1.00 | | | Satd. Flow (perm) | 1606 | 1610 | 3082 | | | 1463 | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | Adj. Flow (vph) | 28 | 694 | 272 | 6 | 0 | 50 | | | RTOR Reduction (vph) | 0 | 0 | 1 | 0 | 0 | 31 | | | Lane Group Flow (vph) | 28 | 694 | 277 | 0 | 0 | 19 | | | Heavy Vehicles (%) | 0% | 5% | 4% | 0% | 0% | 0% | | | Turn Type | Prot | | | | | custom | | | Protected Phases | 9 | 2 7 9 10 | 6 | | | 7 9 10 | | | Permitted Phases | | | | | | | | | Actuated Green, G (s) | 9.9 | 108.6 | 46.5 | | | 49.1 | | | Effective Green, g (s) | 9.9 | 96.6 | 46.5 | | | 42.1 | | | Actuated g/C Ratio | 0.09 | 0.89 | 0.43 | | | 0.39 | | | Clearance Time (s) | 7.0 | | 7.0 | | | | | | Vehicle Extension (s) | 3.0 | | 3.0 | | | | | | Lane Grp Cap (vph) | 146 | 1432 | 1320 | | | 567 | | | v/s Ratio Prot | 0.02 | c0.43 | 0.09 | | | 0.01 | | | v/s Ratio Perm | | | | | | | | | v/c Ratio | 0.19 | 0.48 | 0.21 | | | 0.03 | | | Uniform Delay, d1 | 45.6 | 1.2 | 19.5 | | | 20.6 | | | Progression Factor | 1.00 | 1.00 | 1.00 | | | 1.00 | | | Incremental Delay, d2 | 0.6 | 0.3 | 0.4 | | | 0.0 | | | Delay (s) | 46.3 | 1.4 | 19.9 | | | 20.7 | | | Level of Service | D | Α | В | | | С | | | Approach Delay (s) | | 3.2 | 19.9 | | 20.7 | | | | Approach LOS | | Α | В | | С | | | | Intersection Summary | | | | | | | | | HCM Average Control Delay | | | 8.4 | Н | CM Level | of Service | А | | HCM Volume to Capacity ratio |) | | 0.49 | | | | | | Actuated Cycle Length (s) | | | 108.6 | Sı | um of lost | time (s) | 14.0 | | Intersection Capacity Utilizatio | n | | 42.4% | IC | U Level c | of Service | А | | Analysis Period (min) | | | 15 | | | | | c Critical Lane Group | | • | → | • | • | ← | • | 4 | † | / | > | ļ | 4 | |-------------------------------|-------------|------------|---------|------|-------------|------------|------|----------|----------|-------------|-------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | ∱ ∱ | | | 414 | | | 44 | | | र्स | 7 | | Volume (vph) | 85 | 540 | 15 | 20 | 215 | 75 | 10 | 15 | 10 | 45 | 10 | 50 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 7.0 | 7.0 | | | 7.0 | | | 7.0 | | | 7.0 | 7.0 | | Lane Util. Factor | 1.00 | 0.95 | | | 0.95 | | | 1.00 | | | 1.00 | 1.00 | | Frpb, ped/bikes | 1.00 | 1.00 | | | 0.96 | | | 0.98 | | | 1.00 | 0.96 | | Flpb, ped/bikes | 0.90 | 1.00 | | | 1.00 | | | 0.99 | | | 0.95 | 1.00 | | Frt | 1.00 | 1.00 | | | 0.96 | | | 0.96 | | | 1.00 | 0.85 | | Flt Protected | 0.95 | 1.00 | | | 1.00 | | | 0.99 | | | 0.96 | 1.00 | | Satd. Flow (prot) | 1433 | 3040 | | | 2784 | | | 1412 | | | 1321 | 1375 | | Flt Permitted | 0.55 | 1.00 | | | 0.89 | | | 0.92 | | | 0.74 | 1.00 | | Satd. Flow (perm) | 822 | 3040 | | | 2495 | | | 1313 | | | 1015 | 1375 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 94 | 600 | 17 | 22 | 239 | 83 | 11 | 17 | 11 | 50 | 11 | 56 | | RTOR Reduction (vph) | 0 | 2 | 0 | 0 | 25 | 0 | 0 | 9 | 0 | 0 | 0 | 44 | | Lane Group Flow (vph) | 94 | 615 | 0 | 0 | 319 | 0 | 0 | 30 | 0 | 0 | 61 | 12 | | Confl. Peds. (#/hr) | 110 | | 50 | 50 | | 110 | 35 | | 75 | 75 | | 35 | | Heavy Vehicles (%) | 1% | 5% | 0% | 10% | 5% | 8% | 15% | 7% | 10% | 20% | 0% | 0% | | Turn Type | Perm | | | Perm | | | Perm | | | Perm | | Perm | | Protected Phases | | 2 | | | 6 | | | 8 | | | 4 | | | Permitted Phases | 2 | | | 6 | | | 8 | | | 4 | | 4 | | Actuated Green, G (s) | 35.3 | 35.3 | | | 35.3 | | | 17.0 | | | 17.0 | 17.0 | | Effective Green, g (s) | 35.3 | 35.3 | | | 35.3 | | | 17.0 | | | 17.0 | 17.0 | | Actuated g/C Ratio | 0.43 | 0.43 | | | 0.43 | | | 0.21 | | | 0.21 | 0.21 | | Clearance Time (s) | 7.0 | 7.0 | | | 7.0 | | | 7.0 | | | 7.0 | 7.0 | | Vehicle Extension (s) | 3.0 | 3.0 | | | 3.0 | | | 3.0 | | | 3.0 | 3.0 | | Lane Grp Cap (vph) | 353 | 1304 | | | 1070 | | | 271 | | | 210 | 284 | | v/s Ratio Prot | | c0.20 | | | | | | | | | | | | v/s Ratio Perm | 0.11 | | | | 0.13 | | | 0.02 | | | c0.06 | 0.01 | | v/c Ratio | 0.27 | 0.47 | | | 0.30 | | | 0.11 | | | 0.29 | 0.04 | | Uniform Delay, d1 | 15.2 | 16.8 | | | 15.4 | | | 26.5 | | | 27.6 | 26.1 | | Progression Factor | 1.00 | 1.00 | | | 1.00 | | | 0.67 | | | 1.00 | 1.00 | | Incremental Delay, d2 | 1.8 | 1.2 | | | 0.7 | | | 0.2 | | | 0.8 | 0.1 | | Delay (s) | 17.0 | 18.1 | | | 16.1 | | | 18.0 | | | 28.3 | 26.2 | | Level of Service | В | В | | | В | | | В | | | C | C | | Approach Delay (s) | _ | 17.9 | | | 16.1 | | | 18.0 | | | 27.3 | | | Approach LOS | | В | | | В | | | В | | | C | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 18.3 | Н | CM Level | of Service | e | | В | | | | | HCM Volume to Capacity ra | itio | | 0.41 | | | | | | | | | | | Actuated Cycle Length (s) | | | 82.3 | | um of lost | | | | 30.0 | | | | | Intersection Capacity Utiliza | ition | | 71.1% | IC | CU Level of | of Service | | | С | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | Description: Queen's Quay | / Rees / Ra | disson W | est est | | | | | | | | | | | o Critical Lano Group | | | | | | | | | | | | | | | ۶ | → | F | ← | • | > | 4 | | | |----------------------------------|----------|------------|-----------|------------|--------------|-------------|------|------|--| | Movement | EBL | EBT | WBU | WBT | WBR | SBL | SBR | | | | Lane Configurations | ሻ | ^ | Ð | ↑ ↑ | | ሻ | 7 | | | | Volume (vph) | 40 | 535 | 60 | 295 | 25 | 50 | 25 | | | | deal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | Total Lost time (s) | 7.0 | 7.0 | 7.0 | 7.0 | | 7.0 | 7.0 | | | | Lane Util. Factor | 1.00 | 0.95 | 1.00 | 0.95 | | 1.00 | 1.00 | | | | Frpb, ped/bikes | 1.00 | 1.00 | 1.00 | 0.99 | | 1.00 | 0.96 | | | | Flpb, ped/bikes | 0.92 | 1.00 | 1.00 | 1.00 | | 1.00 | 1.00 | | | | -rt | 1.00 | 1.00 | 1.00 | 0.99 | | 1.00 | 0.85 | | | | It Protected | 0.95 | 1.00 | 0.95 | 1.00 | | 0.95 | 1.00 | | | | Satd. Flow (prot) | 1423 | 3060 | 1530 | 2892 | | 1575 | 1379 | | | | It Permitted | 0.54 | 1.00 | 0.38 | 1.00 | | 0.95 | 1.00 | | | | Satd. Flow (perm) | 807 | 3060 | 615 | 2892 | | 1575 | 1379 | | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | | Adj. Flow (vph) | 44 | 594 | 67 | 328 | 28 | 56 | 28 | | | | RTOR Reduction (vph) | 0 | 0 | 0 | 5 | 0 | 0 | 22 | | | | ane Group Flow (vph) | 44 | 594 | 67 | 351 | 0 | 56 | 6 | | | | Confl. Peds. (#/hr) | 140 | | | | 140 | 100 | 30 | | | | leavy Vehicles (%) | 4% | 5% | 5% | 9% | 4% | 2% | 0% | | | | urn Type | Perm | | Perm | | | | Perm | | | | Protected Phases | | 2 | | 6 | | 4 | | | | | Permitted Phases | 2 | | 6 | | | | 4 | | | | Actuated Green, G (s) | 41.0 | 41.0 | 41.0 | 41.0 | | 21.5 | 21.5 | | | | Effective Green, g (s) | 41.0 | 41.0 | 41.0 | 41.0 | | 21.5 | 21.5 | | | | Actuated g/C Ratio | 0.43 | 0.43 | 0.43 | 0.43 | | 0.23 | 0.23 | | | | Clearance Time (s) | 7.0 | 7.0 | 7.0 | 7.0 | | 7.0 | 7.0 | | | | ehicle Extension (s) | 3.0 | 3.0 | 3.0 | 3.0 | | 3.0 | 3.0 | | | | ane Grp Cap (vph) | 348 | 1319 | 265 | 1247 | | 356 | 312 | | | | /s Ratio Prot | | c0.19 | | 0.12 | | c0.04 | | | | | /s Ratio Perm | 0.05 | | 0.11 | | | | 0.00 | | | | /c Ratio | 0.13 | 0.45 | 0.25 | 0.28 | | 0.16 | 0.02 | | | | Jniform Delay, d1 | 16.3 | 19.1 | 17.3 | 17.5 | | 29.5 | 28.6 | | | | Progression Factor | 1.00 | 1.00 | 1.00 | 1.00 | | 1.00 | 1.00 | | | | ncremental Delay, d2 | 0.7 | 1.1 | 2.3 | 0.6 | | 0.2 | 0.0 | | | | Delay (s) | 17.0 | 20.2 | 19.6 | 18.1 | | 29.7 | 28.6 | | | | evel of Service | В | С | В | В | | С | С | | | | Approach Delay (s) | | 20.0 | | 18.3 | | 29.4 | | | | | Approach LOS | | В | | В | | С | | | | | ntersection Summary | | | | | | | | | | | HCM Average Control Delay | | | 20.1 | H | CM Level | of Service | | С | | | HCM Volume to Capacity ratio | | | 0.35 | | , , , | | | | | | Actuated Cycle Length (s) | | | 95.1 | Sı | um of lost | time (s) | | 32.6 | | | Intersection Capacity Utilizatio | n | | 91.2% | | U Level c | | | F | | | Analysis Period (min) | | | 15 | | | | | | | | Description: Queen's Quay / Lo | ower Sin | ncoe / Har | bourfront | East | | | | | | c Critical Lane Group | | ۶ | → | • | • | • | 4 | 1 | † | ~ | > | ↓ | 4 | |--------------------------------------|--------------|--------------|------------|--------|--------------|------------|------------|--------------|---------|--------------|--------------|-------------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | ∱ ∱ | | | 414 | | | 4 | | ሻ | ↑ | 7 | | Volume (vph) | 110 | 480 | 20 | 15 | 350 | 140 | 20 | 40 | 10 | 110 | 10 | 90 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 5.0 | 7.0 | | | 7.0 | | | 7.0 | | 7.0 | 7.0 | 7.0 | | Lane Util. Factor | 1.00 | 0.95 | | | 0.95 | | | 1.00 | | 1.00 | 1.00 | 1.00 | | Frpb, ped/bikes | 1.00 | 0.99 | | | 0.91 | | | 0.99 | | 1.00 | 1.00 | 0.61 | | Flpb, ped/bikes | 0.98 | 1.00 | | | 1.00 | | | 0.89 | | 0.92 | 1.00 | 1.00 | | Frt | 1.00 | 0.99 | | | 0.96 | | | 0.98 | | 1.00 | 1.00 | 0.85 | | Flt Protected |
0.95
1464 | 1.00
2943 | | | 1.00
2648 | | | 0.99
1437 | | 0.95
1415 | 1.00 | 1.00
871 | | Satd. Flow (prot) | | 1.00 | | | 0.92 | | | 0.93 | | 0.71 | 1691
1.00 | 1.00 | | Flt Permitted | 0.27
422 | 2943 | | | 2450 | | | 1352 | | 1053 | 1691 | 871 | | Satd. Flow (perm) | | | 0.00 | 0.00 | | 0.00 | 0.00 | | 0.00 | | | | | Peak-hour factor, PHF | 0.90
122 | 0.90 | 0.90
22 | 0.90 | 0.90
389 | 0.90 | 0.90
22 | 0.90 | 0.90 | 0.90
122 | 0.90
11 | 0.90 | | Adj. Flow (vph) RTOR Reduction (vph) | 0 | 533
2 | 0 | 17 | 33 | 156 | 0 | 44
5 | 11
0 | 0 | 0 | 100
72 | | Lane Group Flow (vph) | 122 | 553 | 0 | 0 | 529 | 0 | 0 | 72 | 0 | 122 | 11 | 28 | | Confl. Peds. (#/hr) | 150 | 555 | 170 | 170 | 529 | 150 | 655 | 12 | 85 | 85 | 11 | 655 | | Heavy Vehicles (%) | 7% | 7% | 6% | 0% | 6% | 4% | 033 | 0% | 0% | 4% | 0% | 1% | | Turn Type | | 1 /0 | 0 /0 | Perm | 0 /0 | 4 /0 | Perm | 0 70 | 0 /0 | Perm | 0 /0 | Perm | | Protected Phases | pm+pt
5 | 2 | | reiiii | 6 | | reiiii | 8 | | reiiii | 4 | reiiii | | Permitted Phases | 2 | 2 | | 6 | U | | 8 | U | | 4 | 4 | 4 | | Actuated Green, G (s) | 40.8 | 40.8 | | U | 28.1 | | 0 | 28.6 | | 28.6 | 28.6 | 28.6 | | Effective Green, g (s) | 40.8 | 40.8 | | | 28.1 | | | 28.6 | | 28.6 | 28.6 | 28.6 | | Actuated g/C Ratio | 0.40 | 0.40 | | | 0.27 | | | 0.28 | | 0.28 | 0.28 | 0.28 | | Clearance Time (s) | 5.0 | 7.0 | | | 7.0 | | | 7.0 | | 7.0 | 7.0 | 7.0 | | Vehicle Extension (s) | 3.0 | 3.0 | | | 3.0 | | | 3.0 | | 3.0 | 3.0 | 3.0 | | Lane Grp Cap (vph) | 247 | 1175 | | | 674 | | | 378 | | 295 | 473 | 244 | | v/s Ratio Prot | 0.04 | c0.19 | | | . | | | 0.0 | | | 0.01 | | | v/s Ratio Perm | 0.16 | | | | c0.22 | | | 0.05 | | c0.12 | | 0.03 | | v/c Ratio | 0.49 | 0.47 | | | 0.78 | | | 0.19 | | 0.41 | 0.02 | 0.11 | | Uniform Delay, d1 | 21.1 | 22.7 | | | 34.2 | | | 28.0 | | 30.0 | 26.7 | 27.4 | | Progression Factor | 1.00 | 1.00 | | | 1.00 | | | 1.00 | | 1.00 | 1.00 | 1.00 | | Incremental Delay, d2 | 1.6 | 1.4 | | | 8.9 | | | 1.1 | | 4.2 | 0.1 | 1.0 | | Delay (s) | 22.6 | 24.1 | | | 43.1 | | | 29.1 | | 34.2 | 26.8 | 28.3 | | Level of Service | С | С | | | D | | | С | | С | С | С | | Approach Delay (s) | | 23.8 | | | 43.1 | | | 29.1 | | | 31.3 | | | Approach LOS | | С | | | D | | | С | | | С | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 32.2 | Н | CM Level | of Service | e | | С | | | | | HCM Volume to Capacity ra | ıtio | | 0.62 | | | | | | | | | | | Actuated Cycle Length (s) | | | 102.2 | | um of lost | | | | 39.8 | | | | | Intersection Capacity Utiliza | tion | | 85.0% | IC | CU Level of | of Service | | | Е | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | • | • | ← | 4 | 1 | † | / | / | † | 1 | |-----------------------------------|------|----------|-------|------|-------------|------------|------|----------|------|----------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 414 | | | र्सी | | | 4 | | | 4 | | | Volume (vph) | 20 | 570 | 10 | 15 | 455 | 75 | 45 | 0 | 30 | 0 | 0 | 10 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | 7.0 | | | 7.0 | | | 7.0 | | | 7.0 | | | Lane Util. Factor | | 0.95 | | | 0.95 | | | 1.00 | | | 1.00 | | | Frpb, ped/bikes | | 1.00 | | | 0.98 | | | 0.99 | | | 0.98 | | | Flpb, ped/bikes | | 1.00 | | | 1.00 | | | 0.99 | | | 1.00 | | | Frt | | 1.00 | | | 0.98 | | | 0.95 | | | 0.86 | | | Flt Protected | | 1.00 | | | 1.00 | | | 0.97 | | | 1.00 | | | Satd. Flow (prot) | | 3008 | | | 2918 | | | 1507 | | | 1429 | | | Flt Permitted | | 0.92 | | | 0.93 | | | 0.81 | | | 1.00 | | | Satd. Flow (perm) | | 2773 | | | 2706 | | | 1256 | | | 1429 | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 22 | 633 | 11 | 17 | 506 | 83 | 50 | 0 | 33 | 0 | 0 | 11 | | RTOR Reduction (vph) | 0 | 1 | 0 | 0 | 9 | 0 | 0 | 23 | 0 | 0 | 10 | 0 | | Lane Group Flow (vph) | 0 | 665 | 0 | 0 | 597 | 0 | 0 | 60 | 0 | 0 | 1 | 0 | | Confl. Peds. (#/hr) | 85 | | 185 | 185 | | 85 | 10 | | 15 | 15 | | 10 | | Heavy Vehicles (%) | 0% | 6% | 0% | 13% | 6% | 0% | 2% | 0% | 0% | 0% | 0% | 0% | | Turn Type | Perm | | | Perm | | | Perm | | | Perm | | | | Protected Phases | | 2 | | | 6 | | | 8 | | | 4 | | | Permitted Phases | 2 | | | 6 | | | 8 | | | 4 | | | | Actuated Green, G (s) | | 50.3 | | | 50.3 | | | 9.3 | | | 9.3 | | | Effective Green, g (s) | | 50.3 | | | 50.3 | | | 9.3 | | | 9.3 | | | Actuated g/C Ratio | | 0.50 | | | 0.50 | | | 0.09 | | | 0.09 | | | Clearance Time (s) | | 7.0 | | | 7.0 | | | 7.0 | | | 7.0 | | | Vehicle Extension (s) | | 3.0 | | | 3.0 | | | 3.0 | | | 3.0 | | | Lane Grp Cap (vph) | | 1373 | | | 1340 | | | 115 | | | 131 | | | v/s Ratio Prot | | | | | | | | | | | 0.00 | | | v/s Ratio Perm | | c0.24 | | | 0.22 | | | c0.05 | | | | | | v/c Ratio | | 0.48 | | | 0.45 | | | 0.52 | | | 0.01 | | | Uniform Delay, d1 | | 17.0 | | | 16.6 | | | 44.0 | | | 42.0 | | | Progression Factor | | 1.00 | | | 1.00 | | | 1.00 | | | 1.00 | | | Incremental Delay, d2 | | 1.2 | | | 1.1 | | | 4.3 | | | 0.0 | | | Delay (s) | | 18.3 | | | 17.7 | | | 48.3 | | | 42.0 | | | Level of Service | | В | | | В | | | D | | | D | | | Approach Delay (s) | | 18.3 | | | 17.7 | | | 48.3 | | | 42.0 | | | Approach LOS | | В | | | В | | | D | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 20.0 | Н | CM Level | of Service | Э | | С | | | | | HCM Volume to Capacity ratio | | | 0.49 | | | | | | | | | | | Actuated Cycle Length (s) | | | 101.6 | | um of lost | | | | 42.0 | | | | | Intersection Capacity Utilization | 1 | | 62.0% | IC | CU Level of | of Service | | | В | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | • | • | ← | • | • | † | / | > | ↓ | 4 | |--------------------------------|--------------|--------------|-------|--------------|--------------|------------|------|--------------|----------|-------------|--------------|--------------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | ∱ ⊅ | | ሻ | ∱ ⊅ | | | 4 | | | 4 | 7 | | Volume (vph) | 105 | 475 | 20 | 50 | 490 | 120 | 5 | 65 | 50 | 90 | 10 | 175 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 5.0 | 7.0 | | 7.0 | 7.0 | | | 7.0 | | | 7.0 | 7.0 | | Lane Util. Factor | 1.00 | 0.95 | | 1.00 | 0.95 | | | 1.00 | | | 1.00 | 1.00 | | Frpb, ped/bikes | 1.00 | 0.99 | | 1.00 | 0.97 | | | 0.90 | | | 1.00 | 0.82 | | Flpb, ped/bikes | 0.99 | 1.00 | | 0.89 | 1.00 | | | 0.99 | | | 0.83 | 1.00 | | Frt
Flt Protected | 1.00
0.95 | 0.99
1.00 | | 1.00
0.95 | 0.97
1.00 | | | 0.94
1.00 | | | 1.00
0.96 | 0.85
1.00 | | Satd. Flow (prot) | 1554 | 2961 | | 1423 | 2854 | | | 1426 | | | 1301 | 1174 | | Flt Permitted | 0.30 | 1.00 | | 0.45 | 1.00 | | | 0.99 | | | 0.70 | 1.00 | | Satd. Flow (perm) | 485 | 2961 | | 668 | 2854 | | | 1410 | | | 958 | 1174 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 117 | 528 | 22 | 56 | 544 | 133 | 6 | 72 | 56 | 100 | 11 | 194 | | RTOR Reduction (vph) | 0 | 3 | 0 | 0 | 21 | 0 | 0 | 33 | 0 | 0 | 0 | 144 | | Lane Group Flow (vph) | 117 | 547 | 0 | 56 | 656 | 0 | 0 | 101 | 0 | 0 | 111 | 50 | | Confl. Peds. (#/hr) | 180 | 011 | 165 | 165 | 000 | 180 | 200 | 101 | 275 | 275 | | 200 | | Heavy Vehicles (%) | 2% | 7% | 0% | 0% | 6% | 4% | 0% | 0% | 0% | 4% | 0% | 1% | | Turn Type | pm+pt | | | Perm | | | Perm | | | Perm | | Perm | | Protected Phases | 5 | 2 | | | 6 | | | 8 | | | 4 | | | Permitted Phases | 2 | | | 6 | | | 8 | | | 4 | | 4 | | Actuated Green, G (s) | 45.7 | 45.7 | | 33.6 | 33.6 | | | 20.7 | | | 20.7 | 20.7 | | Effective Green, g (s) | 45.7 | 45.7 | | 33.6 | 33.6 | | | 20.7 | | | 20.7 | 20.7 | | Actuated g/C Ratio | 0.57 | 0.57 | | 0.42 | 0.42 | | | 0.26 | | | 0.26 | 0.26 | | Clearance Time (s) | 5.0 | 7.0 | | 7.0 | 7.0 | | | 7.0 | | | 7.0 | 7.0 | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | | | 3.0 | | | 3.0 | 3.0 | | Lane Grp Cap (vph) | 370 | 1683 | | 279 | 1193 | | | 363 | | | 247 | 302 | | v/s Ratio Prot | 0.03 | c0.18 | | | c0.23 | | | | | | | | | v/s Ratio Perm | 0.15 | | | 0.08 | | | | 0.07 | | | c0.12 | 0.04 | | v/c Ratio | 0.32 | 0.33 | | 0.20 | 0.55 | | | 0.28 | | | 0.45 | 0.17 | | Uniform Delay, d1 | 8.8 | 9.2 | | 14.9 | 17.7 | | | 23.9 | | | 25.1 | 23.2 | | Progression Factor | 1.00 | 1.00 | | 1.00 | 1.00 | | | 1.00 | | | 1.00 | 1.00 | | Incremental Delay, d2 | 0.5 | 0.5 | | 1.6 | 1.8 | | | 0.4 | | | 1.3 | 0.3 | | Delay (s)
Level of Service | 9.3 | 9.7
A | | 16.5
B | 19.5 | | | 24.3
C | | | 26.4
C | 23.4
C | | Approach Delay (s) | Α | 9.6 | | D | B
19.3 | | | 24.3 | | | 24.5 | U | | Approach LOS | | 9.0
A | | | В | | | 24.3
C | | | 24.3
C | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 17.0 | H | CM Level | of Service | Э | | В | | | | | HCM Volume to Capacity ra | tio | | 0.52 | | | | | | | | | | | Actuated Cycle Length (s) | | | 80.4 | | um of lost | | | | 21.0 | | | | | Intersection Capacity Utilizat | tion | | 88.3% | IC | CU Level of | of Service | | | Е | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | ← | • | - | 4 | | | |-------------------------------|-------|----------|-------|------|------------|------------|------|--| | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | | | Lane Configurations | * | ^ | ħβ | | * | #
 | | | Volume (vph) | 90 | 475 | 515 | 70 | 165 | 185 | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | Total Lost time (s) | 6.0 | 6.0 | 6.0 | | 6.0 | 6.0 | | | | Lane Util. Factor | 1.00 | 0.95 | 0.95 | | 1.00 | 1.00 | | | | Frpb, ped/bikes | 1.00 | 1.00 | 0.99 | | 1.00 | 0.94 | | | | Flpb, ped/bikes | 0.98 | 1.00 | 1.00 | | 1.00 | 1.00 | | | | -rt | 1.00 | 1.00 | 0.98 | | 1.00 | 0.85 | | | | It Protected | 0.95 | 1.00 | 1.00 | | 0.95 | 1.00 | | | | Satd. Flow (prot) | 1515 | 3031 | 2935 | | 1545 | 1312 | | | | It Permitted | 0.37 | 1.00 | 1.00 | | 0.95 | 1.00 | | | | Satd. Flow (perm) | 596 | 3031 | 2935 | | 1545 | 1312 | | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | | Adj. Flow (vph) | 100 | 528 | 572 | 78 | 183 | 206 | | | | RTOR Reduction (vph) | 0 | 0 | 13 | 0 | 0 | 108 | | | | Lane Group Flow (vph) | 100 | 528 | 637 | 0 | 183 | 98 | | | | Confl. Peds. (#/hr) | 85 | | | 85 | 60 | 55 | | | | Heavy Vehicles (%) | 4% | 6% | 6% | 12% | 4% | 3% | | | | urn Type | Perm | | | | | Perm | | | | Protected Phases | | 2 | 6 | | 4 | | | | | Permitted Phases | 2 | | | | | 4 | | | | Actuated Green, G (s) | 41.0 | 41.0 | 41.0 | | 27.0 | 27.0 | | | | Effective Green, g (s) | 41.0 | 41.0 | 41.0 | | 27.0 | 27.0 | | | | Actuated g/C Ratio | 0.51 | 0.51 | 0.51 | | 0.34 | 0.34 | | | | Clearance Time (s) | 6.0 | 6.0 | 6.0 | | 6.0 | 6.0 | | | | Lane Grp Cap (vph) | 305 | 1553 | 1504 | | 521 | 443 | | | | v/s Ratio Prot | | 0.17 | c0.22 | | c0.12 | | | | | v/s Ratio Perm | 0.17 | | | | | 0.07 | | | | v/c Ratio | 0.33 | 0.34 | 0.42 | | 0.35 | 0.22 | | | | Jniform Delay, d1 | 11.4 | 11.5 | 12.1 | | 19.9 | 19.0 | | | | Progression Factor | 1.00 | 1.00 | 1.00 | | 1.00 | 1.00 | | | | ncremental Delay, d2 | 2.9 | 0.6 | 0.9 | | 1.9 | 1.2 | | | | Delay (s) | 14.3 | 12.1 | 13.0 | | 21.8 | 20.1 | | | | _evel of Service | В | В | В | | С | С | | | | Approach Delay (s) | | 12.5 | 13.0 | | 20.9 | | | | | pproach LOS | | В | В | | С | | | | | ntersection Summary | | | | | | | | | | HCM Average Control Delay | у | | 14.6 | Н | CM Level | of Service | В | | | ICM Volume to Capacity ra | atio | | 0.39 | | | | | | | Actuated Cycle Length (s) | | | 80.0 | | um of lost | | 12.0 | | | Intersection Capacity Utiliza | ntion | | 80.0% | IC | U Level o | of Service | D | | | Analysis Period (min) | | | 15 | | | | | | | Critical Lane Group | | | | | | | | | | | • | → | + | • | \ | 4 | | |-----------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--| | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | | Lane Configurations | ሻ | ↑ | † | 7 | ሻ | 7 | | | Volume (vph) | 70 | 420 | 420 | 160 | 100 | 95 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | | Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | Frpb, ped/bikes | 1.00 | 1.00 | 1.00 | 0.69 | 1.00 | 0.92 | | | Flpb, ped/bikes | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | Frt
Flt Protected | 1.00
0.95 | 1.00
1.00 | 1.00
1.00 | 0.85
1.00 | 1.00
0.95 | 0.85
1.00 | | | Satd. Flow (prot) | 1606 | 1642 | 1674 | 985 | 1545 | 1300 | | | Flt Permitted | 0.95 | 1.00 | 1.00 | 1.00 | 0.95 | 1.00 | | | Satd. Flow (perm) | 1606 | 1642 | 1674 | 985 | 1545 | 1300 | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | | Adj. Flow (vph) | 74 | 442 | 442 | 168 | 105 | 100 | | | RTOR Reduction (vph) | 0 | 0 | 0 | 88 | 0 | 77 | | | Lane Group Flow (vph) | 74 | 442 | 442 | 80 | 105 | 23 | | | Confl. Peds. (#/hr) | 243 | | | 243 | 38 | 27 | | | Heavy Vehicles (%) | 0% | 3% | 1% | 1% | 4% | 2% | | | Turn Type | Prot | | | Perm | | Perm | | | Protected Phases | 5 | 2 5 23 | 6 23 | | 4 | | | | Permitted Phases | | | | 6 23 | | 4 | | | Actuated Green, G (s) | 14.1 | 84.6 | 63.5 | 63.5 | 35.3 | 35.3 | | | Effective Green, g (s) | 14.1 | 84.6 | 63.5 | 63.5 | 35.3 | 35.3 | | | Actuated g/C Ratio | 0.09 | 0.55 | 0.42 | 0.42 | 0.23 | 0.23 | | | Clearance Time (s) | 7.0 | | | | 7.0 | 7.0 | | | Vehicle Extension (s) | 3.0 | | | 400 | 3.0 | 3.0 | | | Lane Grp Cap (vph) | 148 | 909 | 695 | 409 | 357 | 300 | | | v/s Ratio Prot | 0.05 | c0.27 | c0.26 | 0.00 | c0.07 | 0.02 | | | v/s Ratio Perm
v/c Ratio | 0.50 | 0.49 | 0.64 | 0.08
0.19 | 0.29 | 0.02
0.08 | | | Uniform Delay, d1 | 66.0 | 20.9 | 35.5 | 28.4 | 48.5 | 46.0 | | | Progression Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | Incremental Delay, d2 | 2.6 | 0.4 | 1.9 | 0.2 | 2.1 | 0.5 | | | Delay (s) | 68.7 | 21.3 | 37.4 | 28.7 | 50.6 | 46.5 | | | Level of Service | E | C | D | C | D | D | | | Approach Delay (s) | | 28.1 | 35.0 | | 48.6 | | | | Approach LOS | | С | D | | D | | | | Intersection Summary | | | | | | | | | HCM Average Control Delay | | | 34.4 | H | CM Level | of Service | | | HCM Volume to Capacity ratio | ס | | 0.53 | | | | | | Actuated Cycle Length (s) | | | 152.9 | | um of lost | | | | Intersection Capacity Utilization | on | | 82.5% | IC | U Level c | of Service | | | Analysis Period (min) | | | 15 | | | | | | c Critical Lane Group | | | | | | | | | | ۶ | - | • | • | - | 4 | | | |--------------------------------|-----------|----------|--------------|------|-----------|--------------|------|--| | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | | | ane Configurations | ች | † | ħβ | | | 7 | | | | olume (vph) | 45 | 475 | 540 | 25 | 0 | 35 | | | | eal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | al Lost time (s) | 7.0 | 7.0 | 7.0 | | | 6.0 | | | | ne Util. Factor | 1.00 | 1.00 | 0.95 | | | 1.00 | | | | | 1.00 | 1.00 | 0.99 | | | 0.86 | | | | Protected | 0.95 | 1.00 | 1.00 | | | 1.00 | | | | d. Flow (prot) | 1606 | 1642 | 3132 | | | 1463 | | | | Permitted | 0.95 | 1.00 | 1.00 | | | 1.00 | | | | d. Flow (perm) | 1606 | 1642 | 3132 | | | 1463 | | | | ık-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | | | . Flow (vph) | 47 | 500 | 568 | 26 | 0.00 | 37 | | | | OR Reduction (vph) | 0 | 0 | 3 | 0 | 0 | 25 | | | | e Group Flow (vph) | 47 | 500 | 591 | 0 | 0 | 12 | | | | avy Vehicles (%) | 0% | 3% | 2% | 0% | 0% | 0% | | | | n Type | Prot | 0,0 | | 370 | | custom | | | | tected Phases | | 2 7 9 10 | 6 | | | 7 9 10 | | | | nitted Phases | J / | _ 7 3 10 | J | | | 7 3 10 | | | | lated Green, G (s) | 9.2 | 100.8 | 46.8 | | | 41.0 | | | | ctive Green, g (s) | 9.2 | 88.8 | 46.8 | | | 34.0 | | | | ated g/C Ratio | 0.09 | 0.88 | 0.46 | | | 0.34 | | | | arance Time (s) | 7.0 | 0.00 | 7.0 | | | 0.07 | | | | nicle Extension (s) | 3.0 | | 3.0 | | | | | | | e Grp Cap (vph) | 147 | 1447 | 1454 | | | 493 | | | | Ratio Prot | 0.03 | c0.30 | c0.19 | | | 0.01 | | | | Ratio Perm | 0.03 | 60.50 | 60.13 | | | 0.01 | | | | Ratio | 0.32 | 0.35 | 0.41 | | | 0.03 | | | | form Delay, d1 | 42.9 | 1.0 | 17.8 | | | 22.3 | | | | gression Factor | 1.00 | 1.00 | 1.00 | | | 1.00 | | | | remental Delay, d2 | 1.00 | 0.1 | 0.8 | | | 0.0 | | | | ay (s) | 44.1 | 1.2 | 18.7 | | | 22.3 | | | | rel of Service | 44.1
D | 1.Z
A | 10.7
B | | | 22.3
C | | | | proach Delay (s) | U | 4.9 | 18.7 | | 22.3 | U | | | | | | 4.9
A | 10. <i>1</i> | | 22.3
C | | | | | oroach LOS | | A | D | | U | | | | | ersection Summary | | | | | | | | | | M Average Control Delay | | | 12.4 | H | CM Level | l of Service | В | | | M Volume to Capacity ratio | | | 0.37 | | | | | | | uated Cycle Length (s) | | | 100.8 | | | t time (s) | 14.0 | | | ersection Capacity Utilization | 1 | | 35.0% | IC | U Level | of Service | A | | | alysis Period (min) | | | 15 | | | | | | | Critical Lane Group | | | | | | | | | | | ۶ | → | • | • | • | 4 | 1 | † | ~ | / | ↓ | -√ | |---------------------------------|--------------|---|--------|------|--------------|-------------|----------------|--------------|------|----------|--------------|--------------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | ∱ ⊅ | | | सीक | | | ₩ | | | 4 | 7 | | Volume (vph) | 110 | 350 | 10 | 30 | 455 | 65 | 15 | 25 | 15 | 50 | 15 | 105 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 7.0 | 7.0 | | | 7.0 | | | 7.0 | | | 7.0 | 7.0 | | Lane Util. Factor | 1.00 | 0.95 | | | 0.95 | | | 1.00 | | | 1.00 | 1.00 | | Frpb, ped/bikes | 1.00 | 1.00 | | | 0.97 | | | 0.97 | | | 1.00 | 0.92 | | Flpb, ped/bikes
Frt | 0.89
1.00 | 1.00
1.00 | | | 1.00
0.98 | | | 0.98
0.96 | | | 0.94
1.00 | 1.00
0.85 | | FIt Protected | 0.95 | 1.00 | | | 1.00 | | | 0.90 | | | 0.96 | 1.00 | | Satd. Flow (prot) | 1420 | 3013 | | | 2991 | | | 1533 | | | 1437 | 1318 | | Flt Permitted | 0.40 | 1.00 | | | 0.91 | | | 0.91 | | | 0.74 | 1.00 | | Satd. Flow (perm) | 598 | 3013 | | | 2734 | | | 1413 | | | 1101 | 1318 | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 116 | 368 | 11 | 32 | 479 | 68 | 16 | 26 | 16 | 53 | 16 | 111 | | RTOR Reduction (vph) | 0 | 2 | 0 | 0 | 9 | 0 | 0 | 13 | 0 | 0 | 0 | 87 | | Lane Group Flow (vph) | 116 | 377 | 0 | 0 | 570 | 0 | 0 | 45 | 0 | 0 | 69 | 24 | | Confl. Peds. (#/hr) | 184 | • | 40 | 40 | 0.0 | 184 | 82 | | 101 | 101 | | 82 | | Heavy Vehicles (%) | 1% | 6% | 0% | 0% | 2% | 0% | 0% | 0% | 0% | 8% | 0% | 0% | | Turn Type | Perm | | | Perm | | | Perm | | | Perm | | Perm | | Protected Phases | | 2 | | | 6 | | | 8 | | | 4 | | | Permitted Phases | 2 | | | 6 | | | 8 | | | 4 | | 4 | | Actuated Green, G (s) | 32.8 | 32.8 | | | 32.8 | | | 16.9 | | | 16.9 | 16.9 | | Effective Green, g (s) | 32.8 | 32.8 | | | 32.8 | | | 16.9 | | | 16.9 | 16.9 | | Actuated g/C Ratio | 0.41 | 0.41 | | | 0.41 | | | 0.21 | | | 0.21 | 0.21 | | Clearance Time (s) | 7.0 | 7.0 | | | 7.0 | | | 7.0 | | | 7.0 | 7.0 | |
Vehicle Extension (s) | 3.0 | 3.0 | | | 3.0 | | | 3.0 | | | 3.0 | 3.0 | | Lane Grp Cap (vph) | 246 | 1240 | | | 1125 | | | 300 | | | 233 | 279 | | v/s Ratio Prot | | 0.13 | | | | | | | | | | | | v/s Ratio Perm | 0.19 | | | | c0.21 | | | 0.03 | | | c0.06 | 0.02 | | v/c Ratio | 0.47 | 0.30 | | | 0.51 | | | 0.15 | | | 0.30 | 0.08 | | Uniform Delay, d1 | 17.1 | 15.8 | | | 17.4 | | | 25.6 | | | 26.4 | 25.2 | | Progression Factor | 1.00 | 1.00 | | | 1.00 | | | 0.92 | | | 1.00 | 1.00 | | Incremental Delay, d2 | 6.4 | 0.6 | | | 1.6 | | | 0.2 | | | 0.7 | 0.1 | | Delay (s) | 23.5 | 16.4 | | | 19.1 | | | 23.8 | | | 27.1 | 25.3 | | Level of Service | С | B
18.1 | | | B
19.1 | | | C
23.8 | | | C
26.0 | С | | Approach Delay (s) Approach LOS | | 10.1
B | | | 19.1
B | | | 23.0
C | | | 20.0
C | | | Intersection Summary | | _ | | | _ | | | | | | | | | HCM Average Control Delay | | | 19.9 | Ц | CM Level | of Sorvice | 20 | | В | | | | | HCM Volume to Capacity rat | | | 0.43 | П | OIVI LEVEI | OI SEIVIC | , c | | D | | | | | Actuated Cycle Length (s) | 10 | | 79.7 | Si | um of lost | time (s) | | | 30.0 | | | | | Intersection Capacity Utilizati | ion | | 79.5% | | CU Level | | | | D | | | | | Analysis Period (min) | | | 15.576 | iC | 20101 | J. 561 VI66 | | | D | | | | | Description: Queen's Quay / | Rees / Rad | disson W | | | | | | | | | | | | _ 130p.ici Quodii o Quay / | | | | | | | | | | | | | | | ၨ | → | F | ← | • | > | 4 | | | | |---|----------|------------|---------|------------|------------|-------------|-------|---|-----|--| | Movement | EBL | EBT | WBU | WBT | WBR | SBL | SBR | | | | | _ane Configurations | * | ^ | Ð | ↑ ↑ | | ሻ | 7 | | | | | Volume (vph) | 40 | 390 | 50 | 525 | 70 | 55 | 30 | | | | | deal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | | Total Lost time (s) | 7.0 | 7.0 | 7.0 | 7.0 | | 7.0 | 7.0 | | | | | ane Util. Factor | 1.00 | 0.95 | 1.00 | 0.95 | | 1.00 | 1.00 | | | | | Frpb, ped/bikes | 1.00 | 1.00 | 1.00 | 0.99 | | 1.00 | 0.96 | | | | | -lpb, ped/bikes | 0.96 | 1.00 | 1.00 | 1.00 | | 1.00 | 1.00 | | | | | Frt | 1.00 | 1.00 | 1.00 | 0.98 | | 1.00 | 0.85 | | | | | Flt Protected | 0.95 | 1.00 | 0.95 | 1.00 | | 0.95 | 1.00 | | | | | Satd. Flow (prot) | 1494 | 3060 | 1606 | 3057 | | 1530 | 1346 | | | | | Flt Permitted | 0.40 | 1.00 | 0.51 | 1.00 | | 0.95 | 1.00 | | | | | Satd. Flow (perm) | 624 | 3060 | 864 | 3057 | | 1530 | 1346 | | | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | | | | Adj. Flow (vph) | 42 | 411 | 53 | 553 | 74 | 58 | 32 | | | | | RTOR Reduction (vph) | 0 | 0 | 0 | 7 | 0 | 0 | 29 | | | | | _ane Group Flow (vph) | 42 | 411 | 53 | 620 | 0 | 58 | 3 | | | | | Confl. Peds. (#/hr) | 138 | | 00 | 020 | 138 | 101 | 30 | | | | | Heavy Vehicles (%) | 3% | 5% | 0% | 2% | 1% | 5% | 3% | | | | | Turn Type | Perm | 0,0 | Perm | 270 | 170 | 070 | Perm | | | | | Protected Phases | | 2 | . 0 | 6 | | 4 | | | | | | Permitted Phases | 2 | _ | 6 | | | • | 4 | | | | | Actuated Green, G (s) | 38.4 | 38.4 | 38.4 | 38.4 | | 8.2 | 8.2 | | | | | Effective Green, g (s) | 38.4 | 38.4 | 38.4 | 38.4 | | 8.2 | 8.2 | | | | | Actuated g/C Ratio | 0.50 | 0.50 | 0.50 | 0.50 | | 0.11 | 0.11 | | | | | Clearance Time (s) | 7.0 | 7.0 | 7.0 | 7.0 | | 7.0 | 7.0 | | | | | Vehicle Extension (s) | 3.0 | 3.0 | 3.0 | 3.0 | | 3.0 | 3.0 | | | | | _ane Grp Cap (vph) | 312 | 1530 | 432 | 1529 | | 163 | 144 | | | | | //s Ratio Prot | · · - | 0.13 | | c0.20 | | c0.04 | | | | | | //s Ratio Perm | 0.07 | 00 | 0.06 | 00.20 | | | 0.00 | | | | | //c Ratio | 0.13 | 0.27 | 0.12 | 0.41 | | 0.36 | 0.02 | | | | | Jniform Delay, d1 | 10.3 | 11.1 | 10.2 | 12.0 | | 31.8 | 30.7 | | | | | Progression Factor | 1.00 | 1.00 | 1.00 | 1.00 | | 1.00 | 1.00 | | | | | ncremental Delay, d2 | 0.9 | 0.4 | 0.6 | 0.8 | | 1.3 | 0.1 | | | | | Delay (s) | 11.2 | 11.5 | 10.8 | 12.8 | | 33.2 | 30.8 | | | | | _evel of Service | В | В | В | В | | C | C | | | | | Approach Delay (s) | | 11.5 | | 12.7 | | 32.3 | | | | | | Approach LOS | | В | | В | | C | | | | | | • • | | | | | | | | | | | | ntersection Summary | | | 10.7 | J 1. | OM Lavet | of Comile | | | D | | | HCM Volume to Conscituration | | | 13.7 | H | ow Level | of Service | ;
 | | В | | | HCM Volume to Capacity ratio | | | 0.40 | ٥. | ım of loca | time (a) | | 2 | 0.2 | | | Actuated Cycle Length (s) | | | 76.8 | | um of lost | ٠, | | 3 | 0.2 | | | ntersection Capacity Utilization | I | | 70.0% | IC | U Level C | of Service | | | С | | | Analysis Period (min)
Description: Queen's Quay / Lo | wor Circ | 2000 / Ha | 15 | - East | | | | | | | | Jeschblion, Queen's Quay / Lo | wei Sim | icue / Hai | DOULLOU | l ⊏asi | | | | | | | | | ۶ | → | • | • | ← | 4 | 4 | † | / | / | Ţ | 4 | |---------------------------------------|--------------|--------------|-------|------|------------|------------|------|--------------|----------|--------------|--------------|--------------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | ∱ ∱ | | | €î₽ | | | 4 | | ሻ | ↑ | 7 | | Volume (vph) | 75 | 425 | 15 | 5 | 570 | 170 | 10 | 15 | 15 | 60 | 20 | 100 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 5.0 | 7.0 | | | 7.0 | | | 7.0 | | 7.0 | 7.0 | 7.0 | | Lane Util. Factor | 1.00 | 0.95 | | | 0.95 | | | 1.00 | | 1.00 | 1.00 | 1.00 | | Frpb, ped/bikes | 1.00 | 0.98 | | | 0.92 | | | 0.96 | | 1.00 | 1.00 | 0.63 | | Flpb, ped/bikes | 0.99 | 1.00 | | | 1.00 | | | 0.91 | | 0.91 | 1.00 | 1.00 | | Frt | 1.00 | 0.99 | | | 0.97 | | | 0.95 | | 1.00 | 1.00 | 0.85 | | Flt Protected | 0.95 | 1.00 | | | 1.00 | | | 0.99 | | 0.95 | 1.00 | 1.00 | | Satd. Flow (prot) | 1593 | 2991 | | | 2817 | | | 1386 | | 1420 | 1691 | 908 | | Flt Permitted | 0.16 | 1.00 | | | 0.95 | | | 0.94 | | 0.73 | 1.00 | 1.00 | | Satd. Flow (perm) | 274 | 2991 | | | 2681 | | | 1326 | | 1090 | 1691 | 908 | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 79 | 447 | 16 | 5 | 600 | 179 | 11 | 16 | 16 | 63 | 21 | 105 | | RTOR Reduction (vph) | 0 | 2 | 0 | 0 | 22 | 0 | 0 | 12 | 0 | 0 | 0 | 76 | | Lane Group Flow (vph) | 79 | 461 | 0 | 0 | 762 | 0 | 0 | 31 | 0 | 63 | 21 | 29 | | Confl. Peds. (#/hr) | 170 | 5 0/ | 333 | 333 | 40/ | 170 | 559 | 00/ | 86 | 86 | 00/ | 559 | | Heavy Vehicles (%) | 0% | 5% | 0% | 0% | 1% | 0% | 0% | 0% | 0% | 3% | 0% | 0% | | Turn Type | pm+pt | 0 | | Perm | • | | Perm | • | | Perm | | Perm | | Protected Phases | 5 | 2 | | ^ | 6 | | 0 | 8 | | | 4 | 4 | | Permitted Phases | 2 | 44.0 | | 6 | 31.1 | | 8 | 20.6 | | 4
28.6 | 20.6 | 20.6 | | Actuated Green, G (s) | 41.9 | 41.9
41.9 | | | 31.1 | | | 28.6
28.6 | | | 28.6 | 28.6 | | Effective Green, g (s) | 41.9
0.41 | 0.41 | | | 0.30 | | | 0.28 | | 28.6
0.28 | 28.6
0.28 | 28.6
0.28 | | Actuated g/C Ratio Clearance Time (s) | 5.0 | 7.0 | | | 7.0 | | | 7.0 | | 7.0 | 7.0 | 7.0 | | Vehicle Extension (s) | 3.0 | 3.0 | | | 3.0 | | | 3.0 | | 3.0 | 3.0 | 3.0 | | | 185 | 1213 | | | 807 | | | 367 | | 302 | 468 | 251 | | Lane Grp Cap (vph) v/s Ratio Prot | 0.02 | c0.15 | | | 007 | | | 307 | | 302 | 0.01 | 251 | | v/s Ratio Prot
v/s Ratio Perm | 0.02 | CU. 15 | | | c0.28 | | | 0.02 | | c0.06 | 0.01 | 0.03 | | v/c Ratio | 0.13 | 0.38 | | | 0.94 | | | 0.02 | | 0.21 | 0.04 | 0.03 | | Uniform Delay, d1 | 21.3 | 21.6 | | | 35.2 | | | 27.7 | | 28.7 | 27.3 | 27.9 | | Progression Factor | 1.00 | 1.00 | | | 1.00 | | | 1.00 | | 1.00 | 1.00 | 1.00 | | Incremental Delay, d2 | 1.6 | 0.9 | | | 20.6 | | | 0.5 | | 1.6 | 0.2 | 0.9 | | Delay (s) | 22.9 | 22.5 | | | 55.9 | | | 28.1 | | 30.2 | 27.5 | 28.8 | | Level of Service | ZZ.3 | ZZ.5 | | | 55.5
E | | | 20.1
C | | 00.2
C | 27.5
C | 20.0
C | | Approach Delay (s) | | 22.5 | | | 55.9 | | | 28.1 | | J | 29.2 | J | | Approach LOS | | C | | | E | | | C | | | C | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 40.3 | H | CM Level | of Service | Э | | D | | | | | HCM Volume to Capacity ra | itio | | 0.61 | | | | | | | | | | | Actuated Cycle Length (s) | | | 103.3 | | um of lost | | | | 39.8 | | | | | Intersection Capacity Utiliza | ition | | 89.6% | IC | CU Level o | of Service | | | Е | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | - | • | • | — | • | • | † | ~ | \ | ↓ | ✓ | |-----------------------------------|------|------|-------|------|------------|------------|------|------|------|----------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 414 | | | र्सी के | | | 4 | | | 4 | | | Volume (vph) | 5 | 475 | 20 | 20 | 675 | 5 | 10 | 0 | 20 | 40 | 0 | 45 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | 7.0 | | | 7.0 | | | 7.0 | | | 7.0 | | | Lane Util. Factor | | 0.95 | | | 0.95 | | | 1.00 | | | 1.00 | | | Frpb, ped/bikes | | 0.99 | | | 1.00 | | | 0.98 | | | 0.98 | | | Flpb, ped/bikes | | 1.00 | | | 1.00 | | | 0.99 | | | 0.99 | | | Frt | | 0.99 | | | 1.00 | | | 0.91 | | | 0.93 | | | Flt Protected | | 1.00 | | | 1.00 | | | 0.98 | | | 0.98 | | | Satd. Flow (prot) | | 2996 | | | 3163 | | | 1474 | | | 1490 | | | Flt Permitted | | 0.95 | | | 0.93 | | | 0.90 | | | 0.84 | | | Satd. Flow (perm) | | 2843 | | | 2941 | | | 1344 | | | 1278 | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 5 | 500 | 21 | 21 | 711 | 5 | 11 | 0 | 21 | 42 | 0 | 47 | | RTOR Reduction (vph) | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 17 | 0 | 0 | 35 | 0 | | Lane Group Flow (vph)
 0 | 524 | 0 | 0 | 737 | 0 | 0 | 15 | 0 | 0 | 54 | 0 | | Confl. Peds. (#/hr) | 143 | | 109 | 109 | | 143 | 24 | | 14 | 14 | | 24 | | Heavy Vehicles (%) | 0% | 6% | 0% | 0% | 1% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | | Turn Type | Perm | | | Perm | | | Perm | | | Perm | | | | Protected Phases | | 2 | | | 6 | | | 8 | | | 4 | | | Permitted Phases | 2 | | | 6 | | | 8 | | | 4 | | | | Actuated Green, G (s) | | 55.9 | | | 55.9 | | | 20.6 | | | 20.6 | | | Effective Green, g (s) | | 55.9 | | | 55.9 | | | 20.6 | | | 20.6 | | | Actuated g/C Ratio | | 0.51 | | | 0.51 | | | 0.19 | | | 0.19 | | | Clearance Time (s) | | 7.0 | | | 7.0 | | | 7.0 | | | 7.0 | | | Vehicle Extension (s) | | 3.0 | | | 3.0 | | | 3.0 | | | 3.0 | | | Lane Grp Cap (vph) | | 1457 | | | 1507 | | | 254 | | | 241 | | | v/s Ratio Prot | | | | | | | | | | | | | | v/s Ratio Perm | | 0.18 | | | c0.25 | | | 0.01 | | | c0.04 | | | v/c Ratio | | 0.36 | | | 0.49 | | | 0.06 | | | 0.22 | | | Uniform Delay, d1 | | 15.9 | | | 17.3 | | | 36.3 | | | 37.5 | | | Progression Factor | | 1.00 | | | 1.00 | | | 1.00 | | | 1.00 | | | Incremental Delay, d2 | | 0.7 | | | 1.1 | | | 0.1 | | | 0.5 | | | Delay (s) | | 16.6 | | | 18.4 | | | 36.4 | | | 38.0 | | | Level of Service | | В | | | В | | | D | | | D | | | Approach Delay (s) | | 16.6 | | | 18.4 | | | 36.4 | | | 38.0 | | | Approach LOS | | В | | | В | | | D | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 19.4 | H | CM Level | of Service |) | | В | | | | | HCM Volume to Capacity ratio | | | 0.42 | | | | | | | | | | | Actuated Cycle Length (s) | | | 109.1 | | um of lost | | | | 32.6 | | | | | Intersection Capacity Utilization | | | 65.4% | IC | U Level o | of Service | | | С | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | • | • | ← | 4 | 1 | † | / | / | ↓ | 4 | |---------------------------------|--------------|--------------|-------|--------------|--------------|------------|------|--------------|----------|----------|--------------|--------------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | ∱ ∱ | | Ť | ∱ ∱ | | | 4 | | | र्स | 7 | | Volume (vph) | 105 | 480 | 0 | 50 | 530 | 115 | 5 | 20 | 30 | 115 | 30 | 105 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 5.0 | 7.0 | | 7.0 | 7.0 | | | 7.0 | | | 7.0 | 7.0 | | Lane Util. Factor | 1.00 | 0.95 | | 1.00 | 0.95 | | | 1.00 | | | 1.00 | 1.00 | | Frpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 0.98 | | | 0.92 | | | 1.00 | 0.81 | | Flpb, ped/bikes | 0.99 | 1.00 | | 0.90 | 1.00 | | | 0.99 | | | 0.91 | 1.00 | | Frt | 1.00 | 1.00 | | 1.00 | 0.97 | | | 0.93 | | | 1.00 | 0.85 | | Fit Protected | 0.95
1578 | 1.00
3060 | | 0.95
1443 | 1.00
3016 | | | 1.00
1421 | | | 0.96
1428 | 1.00
1167 | | Satd. Flow (prot) Flt Permitted | 0.27 | 1.00 | | 0.47 | 1.00 | | | 0.98 | | | 0.73 | 1.00 | | Satd. Flow (perm) | 450 | 3060 | | 708 | 3016 | | | 1395 | | | 1087 | 1167 | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 111 | 505 | 0.95 | 53 | 558 | 121 | 5 | 21 | 32 | 121 | 32 | 111 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 20 | 0 | 0 | 21 | 0 | 0 | 0 | 74 | | Lane Group Flow (vph) | 111 | 505 | 0 | 53 | 659 | 0 | 0 | 37 | 0 | 0 | 153 | 37 | | Confl. Peds. (#/hr) | 118 | 000 | 126 | 126 | 003 | 118 | 197 | 01 | 142 | 142 | 100 | 197 | | Heavy Vehicles (%) | 1% | 5% | 0% | 0% | 1% | 3% | 0% | 0% | 0% | 4% | 0% | 0% | | Turn Type | pm+pt | | | Perm | .,, | | Perm | 7,7 | | Perm | | Perm | | Protected Phases | 5 | 2 | | | 6 | | | 8 | | | 4 | | | Permitted Phases | 2 | | | 6 | - | | 8 | | | 4 | | 4 | | Actuated Green, G (s) | 45.0 | 45.0 | | 32.6 | 32.6 | | | 29.0 | | | 29.0 | 29.0 | | Effective Green, g (s) | 45.0 | 45.0 | | 32.6 | 32.6 | | | 29.0 | | | 29.0 | 29.0 | | Actuated g/C Ratio | 0.51 | 0.51 | | 0.37 | 0.37 | | | 0.33 | | | 0.33 | 0.33 | | Clearance Time (s) | 5.0 | 7.0 | | 7.0 | 7.0 | | | 7.0 | | | 7.0 | 7.0 | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | | | 3.0 | | | 3.0 | 3.0 | | Lane Grp Cap (vph) | 325 | 1565 | | 262 | 1117 | | | 460 | | | 358 | 385 | | v/s Ratio Prot | 0.03 | c0.17 | | | c0.22 | | | | | | | | | v/s Ratio Perm | 0.15 | | | 0.07 | | | | 0.03 | | | c0.14 | 0.03 | | v/c Ratio | 0.34 | 0.32 | | 0.20 | 0.59 | | | 0.08 | | | 0.43 | 0.10 | | Uniform Delay, d1 | 12.2 | 12.6 | | 18.9 | 22.3 | | | 20.3 | | | 23.0 | 20.4 | | Progression Factor | 1.00 | 1.00 | | 1.00 | 1.00 | | | 1.00 | | | 1.00 | 1.00 | | Incremental Delay, d2 | 0.6 | 0.5 | | 1.7 | 2.3 | | | 0.3 | | | 3.7 | 0.5 | | Delay (s) | 12.9 | 13.1 | | 20.6 | 24.6 | | | 20.6 | | | 26.7 | 20.9 | | Level of Service | В | B | | С | C | | | C | | | C | С | | Approach Delay (s) Approach LOS | | 13.1
B | | | 24.3
C | | | 20.6
C | | | 24.3
C | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Dela | y | | 20.0 | Н | CM Level | of Service |) | | С | | | | | HCM Volume to Capacity ra | atio | | 0.52 | | | | | | | | | | | Actuated Cycle Length (s) | | | 88.0 | S | um of lost | time (s) | | | 21.0 | | | | | Intersection Capacity Utiliza | ation | | 88.3% | | | of Service | | | Е | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | • | → | ← | • | \ | 4 | | | |---------------------------------|------|----------|------------|------|------------|------------|-----|---| | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | | | Lane Configurations | ሻ | ^ | ↑ ↑ | | ሻ | 7 | | | | Volume (vph) | 90 | 500 | 455 | 145 | 145 | 275 | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | Total Lost time (s) | 6.0 | 6.0 | 6.0 | | 6.0 | 6.0 | | | | ane Util. Factor | 1.00 | 0.95 | 0.95 | | 1.00 | 1.00 | | | | rpb, ped/bikes | 1.00 | 1.00 | 0.98 | | 1.00 | 0.95 | | | | -lpb, ped/bikes | 0.98 | 1.00 | 1.00 | | 1.00 | 1.00 | | | | Frt | 1.00 | 1.00 | 0.96 | | 1.00 | 0.85 | | | | It Protected | 0.95 | 1.00 | 1.00 | | 0.95 | 1.00 | | | | Satd. Flow (prot) | 1521 | 3031 | 2961 | | 1516 | 1359 | | | | It Permitted | 0.38 | 1.00 | 1.00 | | 0.95 | 1.00 | | | | Satd. Flow (perm) | 614 | 3031 | 2961 | | 1516 | 1359 | | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | | | Adj. Flow (vph) | 95 | 526 | 479 | 153 | 153 | 289 | | | | RTOR Reduction (vph) | 0 | 0 | 38 | 0 | 0 | 123 | | | | Lane Group Flow (vph) | 95 | 526 | 594 | 0 | 153 | 166 | | | | Confl. Peds. (#/hr) | 106 | | | 106 | 42 | 49 | | | | Heavy Vehicles (%) | 3% | 6% | 2% | 5% | 6% | 0% | | | | Turn Type | Perm | | | | | Perm | | | | Protected Phases | | 2 | 6 | | 4 | | | | | Permitted Phases | 2 | | | | | 4 | | | | Actuated Green, G (s) | 41.0 | 41.0 | 41.0 | | 27.0 | 27.0 | | | | Effective Green, g (s) | 41.0 | 41.0 | 41.0 | | 27.0 | 27.0 | | | | Actuated g/C Ratio | 0.51 | 0.51 | 0.51 | | 0.34 | 0.34 | | | | Clearance Time (s) | 6.0 | 6.0 | 6.0 | | 6.0 | 6.0 | | | | Lane Grp Cap (vph) | 315 | 1553 | 1518 | | 512 | 459 | | | | //s Ratio Prot | | 0.17 | c0.20 | | 0.10 | | | | | v/s Ratio Perm | 0.15 | | | | | c0.12 | | | | ı/c Ratio | 0.30 | 0.34 | 0.39 | | 0.30 | 0.36 | | | | Uniform Delay, d1 | 11.2 | 11.5 | 11.9 | | 19.5 | 20.0 | | | | Progression Factor | 1.00 | 1.00 | 1.00 | | 1.00 | 1.00 | | | | Incremental Delay, d2 | 2.4 | 0.6 | 0.8 | | 1.5 | 2.2 | | | | Delay (s) | 13.7 | 12.1 | 12.7 | | 21.0 | 22.2 | | | | Level of Service | В | В | В | | С | С | | | | Approach Delay (s) | | 12.3 | 12.7 | | 21.8 | | | | | Approach LOS | | В | В | | С | | | | | ntersection Summary | | | | | | | | | | ICM Average Control Delay | | | 14.9 | Н | CM Level | of Service | | В | | ICM Volume to Capacity rati | 0 | | 0.38 | | | | | | | Actuated Cycle Length (s) | | | 80.0 | Sı | ım of lost | time (s) | 12. | 0 | | Intersection Capacity Utilizati | on | | 105.8% | IC | U Level o | of Service | | G | | nalysis Period (min) | | | 15 | | | | | | c Critical Lane Group | | ۶ | → | • | • | — | • | 1 | † | / | / | + | ✓ | |-----------------------------------|-------|------------|--------|------|------------|------------|------|------------|------|----------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | 14.54 | ↑ ↑ | | | | | | ∱ ∱ | | ሻ | ^ | | | Volume (vph) | 1460 | 2460 | 65 | 0 | 0 | 0 | 0 | 125 | 35 | 165 | 55 | 0 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 7.0 | 7.0 | | | | | | 7.0 | | 6.0 | 7.0 | | | Lane Util. Factor | 0.97 | 0.91 | | | | | | 0.95 | | 1.00 | 0.95 | | | Frpb, ped/bikes | 1.00 | 1.00 | | | | | | 1.00 | | 1.00 | 1.00 | | | Flpb, ped/bikes | 1.00 | 1.00 | | | | | | 1.00 | | 1.00 | 1.00 | | | Frt | 1.00 | 1.00 | | | | | | 0.97 | | 1.00 | 1.00 | | | FIt Protected | 0.95 | 1.00 | | | | | | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (prot) | 3395 | 4911 | | | | | | 3257 | | 1767 | 3433 | | | FIt Permitted | 0.95 | 1.00 | | | | | | 1.00 | | 0.47 | 1.00 | | | Satd. Flow (perm) | 3395 | 4911 | | | | | | 3257 | | 879 | 3433 | | | Peak-hour factor, PHF | 0.97 | 0.97 | 0.97 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 1505 | 2536 | 67 | 0 | 0 | 0 | 0 | 139 | 39 | 183 | 61 | 0 | | RTOR Reduction (vph) | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | 0 | | Lane Group Flow (vph) | 1505 | 2601 | 0 | 0 | 0 | 0 | 0 | 160 | 0 | 183 | 61 | 0 | | Confl. Peds. (#/hr) | | | 20 | | | | | | | | | | | Heavy Vehicles (%) | 2% | 4% | 3% | 0% | 0% | 0% | 0% | 6% | 6% | 1% | 4% | 0% | | Turn Type | Split | | | | | | | | | pm+pt | | | | Protected Phases | 2 | 2 | | | | | | 8 | | 7 | 4 |
| | Permitted Phases | | | | | | | | | | 4 | | | | Actuated Green, G (s) | 92.5 | 92.5 | | | | | | 17.0 | | 37.5 | 37.5 | | | Effective Green, g (s) | 92.5 | 92.5 | | | | | | 17.0 | | 37.5 | 37.5 | | | Actuated g/C Ratio | 0.64 | 0.64 | | | | | | 0.12 | | 0.26 | 0.26 | | | Clearance Time (s) | 7.0 | 7.0 | | | | | | 7.0 | | 6.0 | 7.0 | | | Vehicle Extension (s) | 3.0 | 3.0 | | | | | | 3.0 | | 3.0 | 3.0 | | | Lane Grp Cap (vph) | 2181 | 3155 | | | | | | 385 | | 318 | 894 | | | v/s Ratio Prot | 0.44 | c0.53 | | | | | | 0.05 | | c0.06 | 0.02 | | | v/s Ratio Perm | | | | | | | | | | c0.09 | | | | v/c Ratio | 0.69 | 0.82 | | | | | | 0.42 | | 0.58 | 0.07 | | | Uniform Delay, d1 | 16.5 | 19.6 | | | | | | 58.9 | | 44.1 | 40.1 | | | Progression Factor | 1.00 | 1.00 | | | | | | 1.00 | | 1.00 | 1.00 | | | Incremental Delay, d2 | 1.8 | 2.6 | | | | | | 0.7 | | 2.5 | 0.0 | | | Delay (s) | 18.4 | 22.2 | | | | | | 59.6 | | 46.6 | 40.1 | | | Level of Service | В | С | | | | | | E | | D | D | | | Approach Delay (s) | | 20.8 | | | 0.0 | | | 59.6 | | | 45.0 | | | Approach LOS | | С | | | Α | | | E | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 23.6 | H | CM Level | of Service |) | | С | | | | | HCM Volume to Capacity ration |) | | 0.74 | | | | | | | | | | | Actuated Cycle Length (s) | | | 144.0 | | um of lost | | | | 13.0 | | | | | Intersection Capacity Utilization | on | | 120.2% | IC | U Level o | of Service | | | Н | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | * | • | *_ | 4 | ሻ | † | ~ | / | + | M | |---|-----------|-----------------|---------|---------|------------|------------|------|------------|---------|----------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBR | WBR2 | NBL | NBT | NBR | SBL | SBT | SBR2 | | Lane Configurations | ሻሻ | ተተ _ጉ | | ሻ | 777 | | | ∱ ⊅ | | | 4₽ | 7 | | Volume (vph) | 470 | 2185 | 15 | 10 | 620 | 135 | 10 | 65 | 100 | 190 | 30 | 10 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 6.0 | 6.0 | | 6.0 | 6.0 | | | 8.0 | | | 8.0 | 8.0 | | Lane Util. Factor | 0.97 | 0.91 | | 1.00 | 0.76 | | | 0.95 | | | 0.95 | 1.00 | | Frpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 0.97 | | | 0.94 | | | 1.00 | 1.00 | | Flpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 1.00 | | | 1.00 | | | 0.93 | 1.00 | | Frt | 1.00 | 1.00 | | 1.00 | 0.85 | | | 0.91 | | | 1.00 | 0.85 | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | | 1.00 | | | 0.96 | 1.00 | | Satd. Flow (prot) | 3330 | 4970 | | 1785 | 3476 | | | 2975 | | | 3126 | 1566 | | Flt Permitted | 0.95 | 1.00 | | 0.95 | 1.00 | | | 0.93 | | | 0.66 | 1.00 | | Satd. Flow (perm) | 3330 | 4970 | 0.07 | 1785 | 3476 | 0.04 | 0.00 | 2765 | 0.00 | 0.00 | 2154 | 1566 | | Peak-hour factor, PHF | 0.97 | 0.97 | 0.97 | 0.91 | 0.91 | 0.91 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 485 | 2253 | 15 | 11 | 681 | 148 | 11 | 72 | 111 | 211 | 33 | 11 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0
11 | 24 | 0 | 0 | 84 | 0 | 0 | 0 | 8 | | Lane Group Flow (vph) | 485
5 | 2268 | 0
40 | 40 | 805 | 0
5 | U | 110 | 0
80 | 0
80 | 244 | 3 | | Confl. Peds. (#/hr)
Heavy Vehicles (%) | 4% | 3% | 13% | 0% | 2% | 2% | 2% | 5% | 1% | 2% | 4% | 2% | | | | 370 | 13% | | | Z 70 | | 3% | 1 70 | | 4 70 | | | Turn Type Protected Phases | Prot
5 | 2 | | 1 | custom | | Perm | 8 | | Perm | 4 | Perm | | Permitted Phases | ິນ | 2 | | I | 6 | | 8 | 0 | | 4 | 4 | 4 | | Actuated Green, G (s) | 26.8 | 60.6 | | 4.4 | 38.2 | | O | 27.0 | | 4 | 27.0 | 27.0 | | Effective Green, g (s) | 26.8 | 60.6 | | 4.4 | 38.2 | | | 27.0 | | | 27.0 | 27.0 | | Actuated g/C Ratio | 0.24 | 0.54 | | 0.04 | 0.34 | | | 0.24 | | | 0.24 | 0.24 | | Clearance Time (s) | 6.0 | 6.0 | | 6.0 | 6.0 | | | 8.0 | | | 8.0 | 8.0 | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | | | 3.0 | | | 3.0 | 3.0 | | Lane Grp Cap (vph) | 797 | 2689 | | 70 | 1186 | | | 667 | | | 519 | 378 | | v/s Ratio Prot | c0.15 | c0.46 | | 0.01 | 1100 | | | 001 | | | 010 | 070 | | v/s Ratio Perm | 00.10 | 00.10 | | 0.01 | 0.23 | | | 0.04 | | | c0.11 | 0.00 | | v/c Ratio | 0.61 | 0.84 | | 0.16 | 0.68 | | | 0.16 | | | 0.47 | 0.01 | | Uniform Delay, d1 | 37.9 | 21.7 | | 52.0 | 31.6 | | | 33.6 | | | 36.4 | 32.3 | | Progression Factor | 1.00 | 1.00 | | 1.15 | 0.30 | | | 1.00 | | | 1.00 | 1.00 | | Incremental Delay, d2 | 1.3 | 3.4 | | 1.0 | 2.9 | | | 0.1 | | | 0.7 | 0.0 | | Delay (s) | 39.3 | 25.1 | | 61.0 | 12.5 | | | 33.7 | | | 37.1 | 32.3 | | Level of Service | D | С | | Е | В | | | С | | | D | С | | Approach Delay (s) | | 27.6 | | | | | | 33.7 | | | 36.8 | | | Approach LOS | | С | | | | | | С | | | D | | | Intersection Summary | | | _ | | | | | | _ | | | | | HCM Average Control Delay | | | 25.5 | F | ICM Leve | of Service | е | | С | | | | | HCM Volume to Capacity rat | tio | | 0.69 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | Sum of los | | | | 14.0 | | | | | Intersection Capacity Utilizat | tion | | 107.1% | | CU Level | of Service | | | G | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | • | 1 | † | / | / | ↓ | 4 | </th <th>t</th> <th></th> | t | | |-----------------------------------|------|------------|-------|------|-----------|------------|----------|----------|------|---------------------------|------|--| | Movement | EBL2 | EBT | EBR | NBL | NBT | NBR2 | SBL | SBT | SBR | SWR | SWR2 | | | Lane Configurations | ħ | ∱ ⊅ | | ሻ | † | | Ť | ₽ | | 772 | | | | Volume (vph) | 60 | 1090 | 60 | 35 | 45 | 20 | 5 | 5 | 5 | 730 | 75 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | 6.0 | 6.0 | | 7.0 | 7.0 | | 7.0 | 7.0 | | 6.0 | | | | Lane Util. Factor | 1.00 | 0.95 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 0.76 | | | | Frpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 0.99 | | 1.00 | 0.95 | | 0.97 | | | | Flpb, ped/bikes | 1.00 | 1.00 | | 0.92 | 1.00 | | 0.97 | 1.00 | | 1.00 | | | | Frt | 1.00 | 0.99 | | 1.00 | 0.95 | | 1.00 | 0.93 | | 1.00 | | | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | | 1.00 | | | | Satd. Flow (prot) | 1653 | 3406 | | 1590 | 1710 | | 1734 | 1299 | | 3950 | | | | Flt Permitted | 0.95 | 1.00 | | 0.75 | 1.00 | | 0.71 | 1.00 | | 1.00 | | | | Satd. Flow (perm) | 1653 | 3406 | | 1255 | 1710 | | 1296 | 1299 | | 3950 | | | | Peak-hour factor, PHF | 0.94 | 0.94 | 0.94 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.91 | 0.91 | | | Adj. Flow (vph) | 64 | 1160 | 64 | 39 | 50 | 22 | 6 | 6 | 6 | 802 | 82 | | | RTOR Reduction (vph) | 0 | 4 | 0 | 0 | 14 | 0 | 0 | 4 | 0 | 9 | 0 | | | Lane Group Flow (vph) | 64 | 1220 | 0 | 39 | 58 | 0 | 6 | 8 | 0 | 875 | 0 | | | Confl. Peds. (#/hr) | 5 | | 10 | 80 | | 30 | 30 | | 80 | | 5 | | | Heavy Vehicles (%) | 8% | 4% | 2% | 3% | 5% | 0% | 0% | 15% | 40% | 6% | 3% | | | Turn Type | Prot | | | Perm | | | Perm | | | custom | | | | Protected Phases | 5 | 2 | | | 8 | | | 4 | | | | | | Permitted Phases | | | | 8 | | | 4 | | | 6 | | | | Actuated Green, G (s) | 5.6 | 67.0 | | 32.0 | 32.0 | | 32.0 | 32.0 | | 55.4 | | | | Effective Green, g (s) | 5.6 | 67.0 | | 32.0 | 32.0 | | 32.0 | 32.0 | | 55.4 | | | | Actuated g/C Ratio | 0.05 | 0.60 | | 0.29 | 0.29 | | 0.29 | 0.29 | | 0.49 | | | | Clearance Time (s) | 6.0 | 6.0 | | 7.0 | 7.0 | | 7.0 | 7.0 | | 6.0 | | | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | | | | Lane Grp Cap (vph) | 83 | 2038 | | 359 | 489 | | 370 | 371 | | 1954 | | | | v/s Ratio Prot | 0.04 | c0.36 | | | c0.03 | | | 0.01 | | | | | | v/s Ratio Perm | | | | 0.03 | | | 0.00 | | | 0.22 | | | | v/c Ratio | 0.77 | 0.60 | | 0.11 | 0.12 | | 0.02 | 0.02 | | 0.45 | | | | Uniform Delay, d1 | 52.6 | 14.1 | | 29.5 | 29.6 | | 28.7 | 28.7 | | 18.4 | | | | Progression Factor | 0.78 | 1.20 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 0.22 | | | | Incremental Delay, d2 | 25.7 | 0.9 | | 0.1 | 0.1 | | 0.0 | 0.0 | | 0.6 | | | | Delay (s) | 66.8 | 17.8 | | 29.6 | 29.7 | | 28.7 | 28.8 | | 4.7 | | | | Level of Service | E | В | | С | С | | С | С | | Α | | | | Approach Delay (s) | | 20.3 | | | 29.7 | | | 28.8 | | | | | | Approach LOS | | С | | | С | | | С | | | | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 14.8 | H | CM Leve | of Servic | е | | В | | | | | HCM Volume to Capacity ratio |) | | 0.44 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | um of los | | | | 13.0 | | | | | Intersection Capacity Utilization | n | | 99.2% | IC | U Level | of Service | | | F | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | • | * | ← | • | * | † | ţ | 4 | | | | |-----------------------------------|---------|----------|-------------|---|------------|---|-----------------------|------|------|--|--| | Movement | WBL2 | WBL | WBT | WBR | NBL2 | NBT | SBT | SBR2 | | | | | Lane Configurations | | ሽኘኘ | ↑ ↑ | | | ^ | ħβ | | | | | | Volume (vph) | 45 | 785 | 495 | 440 | 90 | 775 | 235 | 570 | | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | | Total Lost time (s) | | 6.0 | 6.0 | | | 8.0 | 8.0 | | | | | | Lane Util. Factor | | 0.94 | 0.95 | | | 0.95 | 0.95 | | | | | | Frpb, ped/bikes | | 1.00 | 0.97 | | | 1.00 | 1.00 | | | | | | Flpb, ped/bikes | | 0.89 | 1.00 | | | 1.00 | 1.00 | | | | | | Frt | | 1.00 | 0.93 | | | 1.00 | 0.89 | | | | | | Flt Protected | | 0.95 | 1.00 | | | 0.99 | 1.00 | | | | | | Satd. Flow (prot) | | 4214 | 3125 | | | 3354 | 3042 | | | | | | FIt Permitted | | 0.95 | 1.00 | | | 0.64 | 1.00 | | | | | | Satd. Flow (perm) | | 4214 | 3125 | | | 2173 |
3042 | | | | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.90 | 0.90 | 0.90 | 0.90 | | | | | Adj. Flow (vph) | 47 | 826 | 521 | 463 | 100 | 861 | 261 | 633 | | | | | RTOR Reduction (vph) | 0 | 0 | 88 | 0 | 0 | 0 | 163 | 0 | | | | | Lane Group Flow (vph) | 0 | 873 | 896 | 0 | 0 | 961 | 731 | 0 | | | | | Confl. Peds. (#/hr) | 70 | 0.0 | 000 | 45 | | 001 | 101 | · · | | | | | Heavy Vehicles (%) | 14% | 6% | 4% | 3% | 5% | 6% | 7% | 4% | | | | | Turn Type | Perm | Split | .,, | • | pm+pt | • | . 70 | .,, | | | | | Protected Phases | 1 01111 | 6 | 6 | | 3 | 8 | 4 | | | | | | Permitted Phases | 6 | | J | | 8 | • | • | | | | | | Actuated Green, G (s) | | 40.0 | 40.0 | | , i | 58.0 | 58.0 | | | | | | Effective Green, g (s) | | 40.0 | 40.0 | | | 58.0 | 58.0 | | | | | | Actuated g/C Ratio | | 0.36 | 0.36 | | | 0.52 | 0.52 | | | | | | Clearance Time (s) | | 6.0 | 6.0 | | | 8.0 | 8.0 | | | | | | Vehicle Extension (s) | | 3.0 | 3.0 | | | 3.0 | 3.0 | | | | | | Lane Grp Cap (vph) | | 1505 | 1116 | | | 1125 | 1575 | | | | | | v/s Ratio Prot | | 1000 | c0.29 | | | 1120 | 0.24 | | | | | | v/s Ratio Perm | | 0.21 | 00.23 | | | c0.44 | 0.24 | | | | | | v/c Ratio | | 0.58 | 0.80 | | | 0.85 | 0.46 | | | | | | Uniform Delay, d1 | | 29.2 | 32.4 | | | 23.3 | 17.1 | | | | | | Progression Factor | | 0.24 | 0.14 | | | 0.54 | 1.00 | | | | | | Incremental Delay, d2 | | 1.1 | 4.1 | | | 4.8 | 0.2 | | | | | | Delay (s) | | 8.0 | 8.7 | | | 17.4 | 17.4 | | | | | | Level of Service | | 0.0
A | 0. <i>1</i> | | | 17.4
B | 17. 4
B | | | | | | Approach Delay (s) | | Α | 8.4 | | | 17.4 | 17.4 | | | | | | Approach LOS | | | Α | | | 17. 4
B | В | | | | | | Intersection Summary | | | | | | | | | | | | | HCM Average Control Delay | | | 12.9 | Н | CM Level | of Service | | | В | | | | HCM Volume to Capacity ratio | | | 0.83 | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | S | um of lost | time (s) | | | 14.0 | | | | Intersection Capacity Utilization | n | | 97.3% | | CU Level o | | | | F | | | | Analysis Period (min) | | | 15 | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | ۶ | → | • | • | ← | • | 1 | † | <i>></i> | / | ļ | 4 | |-----------------------------------|------|----------|-------|------|--------------|------------|--------------|--------------|-------------|----------|----------|--------------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | | | | नीकि | | ሻ | ^ | | | + | 77 | | Volume (vph) | 0 | 0 | 0 | 60 | 1410 | 115 | 95 | 655 | 0 | 0 | 165 | 235 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | | | | 7.0 | | 7.0 | 7.0 | | | 7.0 | 7.0 | | Lane Util. Factor | | | | | 0.86 | | 1.00 | 0.95 | | | 1.00 | 0.88 | | Frpb, ped/bikes | | | | | 0.99 | | 1.00 | 1.00 | | | 1.00 | 1.00 | | Flpb, ped/bikes
Frt | | | | | 1.00
0.99 | | 0.61
1.00 | 1.00
1.00 | | | 1.00 | 1.00
0.85 | | FIt Protected | | | | | 1.00 | | 0.95 | 1.00 | | | 1.00 | 1.00 | | Satd. Flow (prot) | | | | | 6058 | | 1022 | 3400 | | | 1634 | 2703 | | Flt Permitted | | | | | 1.00 | | 0.61 | 1.00 | | | 1.00 | 1.00 | | Satd. Flow (perm) | | | | | 6058 | | 658 | 3400 | | | 1634 | 2703 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.95 | 0.95 | 0.95 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 0.30 | 0.30 | 0.50 | 63 | 1484 | 121 | 106 | 728 | 0.30 | 0.30 | 183 | 261 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 189 | | Lane Group Flow (vph) | 0 | 0 | 0 | 0 | 1657 | 0 | 106 | 728 | 0 | 0 | 183 | 72 | | Confl. Peds. (#/hr) | J | • | • | 35 | 1001 | 125 | 1405 | 120 | • | • | 100 | 1405 | | Heavy Vehicles (%) | 0% | 0% | 0% | 12% | 4% | 3% | 6% | 5% | 0% | 0% | 15% | 4% | | Turn Type | | | | Perm | | | Perm | | | | | custom | | Protected Phases | | | | | 6 | | | 8 | | | 4 | 3 | | Permitted Phases | | | | 6 | | | 8 | | | | | | | Actuated Green, G (s) | | | | | 36.0 | | 62.0 | 62.0 | | | 24.0 | 31.0 | | Effective Green, g (s) | | | | | 36.0 | | 62.0 | 62.0 | | | 24.0 | 31.0 | | Actuated g/C Ratio | | | | | 0.32 | | 0.55 | 0.55 | | | 0.21 | 0.28 | | Clearance Time (s) | | | | | 7.0 | | 7.0 | 7.0 | | | 7.0 | 7.0 | | Vehicle Extension (s) | | | | | 3.0 | | 3.0 | 3.0 | | | 3.0 | 3.0 | | Lane Grp Cap (vph) | | | | | 1947 | | 364 | 1882 | | | 350 | 748 | | v/s Ratio Prot | | | | | | | | c0.21 | | | c0.11 | 0.03 | | v/s Ratio Perm | | | | | 0.27 | | 0.16 | | | | | | | v/c Ratio | | | | | 0.85 | | 0.29 | 0.39 | | | 0.52 | 0.10 | | Uniform Delay, d1 | | | | | 35.5 | | 13.3 | 14.2 | | | 38.9 | 30.1 | | Progression Factor | | | | | 0.43 | | 0.42 | 0.41 | | | 1.00 | 1.00 | | Incremental Delay, d2 | | | | | 3.1 | | 0.4 | 0.1 | | | 1.4 | 0.3 | | Delay (s) | | | | | 18.5 | | 6.0 | 6.0 | | | 40.3 | 30.4 | | Level of Service | | 0.0 | | | B | | Α | A | | | D | С | | Approach Delay (s) | | 0.0 | | | 18.5 | | | 6.0 | | | 34.5 | | | Approach LOS | | Α | | | В | | | Α | | | С | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 17.4 | H | ICM Level | of Service | е | | В | | | | | HCM Volume to Capacity ratio | | | 0.57 | | | | | | 440 | | | | | Actuated Cycle Length (s) | | | 112.0 | | um of lost | | | | 14.0 | | | | | Intersection Capacity Utilization | | | 81.7% | 10 | CU Level o | of Service | | | D | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | • | • | ← | • | 4 | † | / | / | ţ | 4 | |--------------------------------------|------|----------|--------|--------|--------------|------------|--------------|--------------|----------|----------|--------------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | | | | 41 ∱} | | Ť | ^ | | | ∱ ∱ | | | Volume (vph) | 0 | 0 | 0 | 100 | 1345 | 220 | 50 | 1125 | 0 | 0 | 130 | 210 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | | | | 7.0 | | 4.0 | 7.0 | | | 7.0 | | | Lane Util. Factor | | | | | 0.91 | | 1.00 | 0.95 | | | 0.95 | | | Frpb, ped/bikes | | | | | 0.98 | | 1.00 | 1.00 | | | 0.80 | | | Flpb, ped/bikes | | | | | 0.99 | | 0.93 | 1.00 | | | 1.00 | | | Frt
Flt Protected | | | | | 0.98 | | 1.00 | 1.00 | | | 0.91 | | | | | | | | 1.00
4723 | | 0.95
1559 | 1.00
3433 | | | 1.00
2386 | | | Satd. Flow (prot) Flt Permitted | | | | | 1.00 | | 0.46 | 1.00 | | | 1.00 | | | Satd. Flow (perm) | | | | | 4723 | | 755 | 3433 | | | 2386 | | | | 0.00 | 0.00 | 0.00 | 0.05 | | 0.05 | | | 0.00 | 0.00 | | 0.00 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.95 | 0.95
1416 | 0.95 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) RTOR Reduction (vph) | 0 | 0 | 0 | 105 | 1416 | 232 | 56
0 | 1250
0 | 0 | 0 | 144
59 | 233 | | Lane Group Flow (vph) | 0 | 0 | 0 | 0 | 1751 | 0 | 56 | 1250 | 0 | 0 | 318 | 0 | | Confl. Peds. (#/hr) | U | U | U | 130 | 1751 | 165 | 435 | 1230 | 290 | 290 | 310 | 435 | | Heavy Vehicles (%) | 0% | 0% | 0% | 2% | 4% | 3% | 6% | 4% | 0% | 0% | 11% | 8% | | Turn Type | U /0 | 0 70 | 0 70 | Perm | 4 /0 | J /0 | | 4 /0 | 0 /0 | 0 70 | 11/0 | 0 70 | | Protected Phases | | | | reiiii | 6 | | pm+pt
3 | 8 | | | 4 | | | Permitted Phases | | | | 6 | U | | 8 | U | | | 4 | | | Actuated Green, G (s) | | | | U | 48.2 | | 49.8 | 49.8 | | | 41.0 | | | Effective Green, g (s) | | | | | 48.2 | | 49.8 | 49.8 | | | 41.0 | | | Actuated g/C Ratio | | | | | 0.43 | | 0.44 | 0.44 | | | 0.37 | | | Clearance Time (s) | | | | | 7.0 | | 4.0 | 7.0 | | | 7.0 | | | Vehicle Extension (s) | | | | | 3.0 | | 3.0 | 3.0 | | | 3.0 | | | Lane Grp Cap (vph) | | | | | 2033 | | 370 | 1526 | | | 873 | | | v/s Ratio Prot | | | | | | | 0.01 | c0.36 | | | 0.13 | | | v/s Ratio Perm | | | | | 0.37 | | 0.06 | | | | | | | v/c Ratio | | | | | 0.86 | | 0.15 | 0.82 | | | 0.36 | | | Uniform Delay, d1 | | | | | 28.9 | | 18.1 | 27.2 | | | 26.0 | | | Progression Factor | | | | | 1.00 | | 0.42 | 0.41 | | | 1.00 | | | Incremental Delay, d2 | | | | | 5.1 | | 0.1 | 2.8 | | | 0.3 | | | Delay (s) | | | | | 33.9 | | 7.8 | 14.0 | | | 26.2 | | | Level of Service | | | | | С | | Α | В | | | С | | | Approach Delay (s) | | 0.0 | | | 33.9 | | | 13.7 | | | 26.2 | | | Approach LOS | | Α | | | С | | | В | | | С | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 25.4 | Н | CM Level | of Service | e | | С | | | | | HCM Volume to Capacity ratio | | | 0.84 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | um of lost | | | | 14.0 | | | | | Intersection Capacity Utilization | 1 | | 148.4% | IC | CU Level of | of Service | | | Н | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | • | • | ← | • | • | † | / | / | ļ | 4 | |-----------------------------------|------------|---------------|------------|-----------|------------|------------|------|----------|----------|----------|--------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | ተተኈ | | | | | | ^ | | | 4₽ | | | Volume (vph) | 0 | 1075 | 35 | 0 | 0 | 0 | 0 | 860 | 0 | 130 | 180 | 0 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.6 | 3.5 | 3.5 | 3.5 | 3.5 | | Total Lost time (s) | | 6.0 | | | | | | 8.0 | | | 8.0 | | | Lane Util. Factor | | 0.91 | | | | | | 0.95 | | | 0.95 | | | Frpb, ped/bikes | | 1.00 | | | | | | 1.00 | | | 1.00 | | | Flpb, ped/bikes | | 1.00 | | | | | | 1.00 | | | 1.00 | | |
Frt | | 1.00 | | | | | | 1.00 | | | 1.00 | | | Flt Protected | | 1.00 | | | | | | 1.00 | | | 0.98 | | | Satd. Flow (prot) | | 4852 | | | | | | 3610 | | | 3243 | | | Flt Permitted | | 1.00 | | | | | | 1.00 | | | 0.53 | | | Satd. Flow (perm) | | 4852 | | | | | | 3610 | | | 1745 | | | Peak-hour factor, PHF | 0.94 | 0.94 | 0.94 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 0 | 1144 | 37 | 0 | 0 | 0 | 0 | 956 | 0 | 144 | 200 | 0 | | RTOR Reduction (vph) | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Lane Group Flow (vph) | 0 | 1178 | 0 | 0 | 0 | 0 | 0 | 956 | 0 | 0 | 344 | 0 | | Confl. Peds. (#/hr) | 30 | | 30 | - | - | - | | | - | 55 | | | | Heavy Vehicles (%) | 17% | 5% | 8% | 2% | 2% | 2% | 0% | 0% | 0% | 8% | 7% | 0% | | Turn Type | ,, | | | | | | | | | pm+pt | - 14 | 7.0 | | Protected Phases | | 2 | | | | | | 8 | | 7 | 4 | | | Permitted Phases | | | | | | | | | | 4 | ' | | | Actuated Green, G (s) | | 54.9 | | | | | | 43.1 | | • | 43.1 | | | Effective Green, g (s) | | 54.9 | | | | | | 43.1 | | | 43.1 | | | Actuated g/C Ratio | | 0.49 | | | | | | 0.38 | | | 0.38 | | | Clearance Time (s) | | 6.0 | | | | | | 8.0 | | | 8.0 | | | Vehicle Extension (s) | | 3.0 | | | | | | 3.0 | | | 3.0 | | | Lane Grp Cap (vph) | | 2378 | | | | | | 1389 | | | 672 | | | v/s Ratio Prot | | c0.24 | | | | | | c0.26 | | | 012 | | | v/s Ratio Perm | | 00.Z-t | | | | | | 00.20 | | | 0.20 | | | v/c Ratio | | 0.50 | | | | | | 0.69 | | | 1.29dl | | | Uniform Delay, d1 | | 19.2 | | | | | | 28.8 | | | 26.4 | | | Progression Factor | | 0.27 | | | | | | 1.00 | | | 0.80 | | | Incremental Delay, d2 | | 0.6 | | | | | | 1.4 | | | 0.6 | | | Delay (s) | | 5.9 | | | | | | 30.3 | | | 21.6 | | | Level of Service | | A | | | | | | C | | | C C | | | Approach Delay (s) | | 5.9 | | | 0.0 | | | 30.3 | | | 21.6 | | | Approach LOS | | A | | | A | | | C | | | C C | | | • | | ,, | | | , , | | | | | | | | | Intersection Summary | | | 17.5 | 1.1. | CM L avel | of Comile | | | D | | | | | HCM Average Control Delay | | | 17.5 | H | Civi Level | of Service | ; | | В | | | | | HCM Volume to Capacity ratio | | | 0.58 | | £! ' | time = () | | | 44.0 | | | | | Actuated Cycle Length (s) | | | 112.0 | | um of lost | | | | 14.0 | | | | | Intersection Capacity Utilization | | | 83.4% | IC | U Level o | of Service | | | E | | | | | Analysis Period (min) | الم علانين | ا بایدین مطلا | 15 | Alas- | | | | | | | | | | dl Defacto Left Lane. Recode | with 1 | mougn la | ne as a le | ert lane. | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ၨ | → | † | / | > | ↓ | / | 4 | | | | |-----------------------------------|-----------|----------|----------|----------------|-------------|------------|----------|--------|-----------|--|--| | Movement | EBL | EBT | NBT | NBR | SBL | SBT | NER | NER2 | | | | | Lane Configurations | | 414 | ተተኈ | | ች | ^ | 7 | 7 | | | | | Volume (vph) | 725 | 880 | 250 | 15 | 75 | 175 | 560 | 125 | | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | | Total Lost time (s) | 7.0 | 7.0 | 7.0 | | 7.0 | 7.0 | 7.0 | 7.0 | | | | | Lane Util. Factor | 0.91 | 0.91 | 0.91 | | 1.00 | 0.95 | 1.00 | 1.00 | | | | | Frpb, ped/bikes | 1.00 | 1.00 | 0.98 | | 1.00 | 1.00 | 1.00 | 1.00 | | | | | Flpb, ped/bikes | 1.00 | 1.00 | 1.00 | | 0.82 | 1.00 | 1.00 | 1.00 | | | | | Frt | 1.00 | 1.00 | 0.99 | | 1.00 | 1.00 | 0.85 | 0.85 | | | | | Flt Protected | 0.95 | 0.99 | 1.00 | | 0.95 | 1.00 | 1.00 | 1.00 | | | | | Satd. Flow (prot) | 1557 | 3206 | 4780 | | 1372 | 3159 | 1566 | 1566 | | | | | FIt Permitted | 0.95 | 0.99 | 1.00 | | 0.56 | 1.00 | 1.00 | 1.00 | | | | | Satd. Flow (perm) | 1557 | 3206 | 4780 | | 815 | 3159 | 1566 | 1566 | | | | | Peak-hour factor, PHF | 0.94 | 0.94 | 0.90 | 0.90 | 0.90 | 0.90 | 0.94 | 0.94 | | | | | Adj. Flow (vph) | 771 | 936 | 278 | 17 | 83 | 194 | 596 | 133 | | | | | RTOR Reduction (vph) | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 79 | | | | | Lane Group Flow (vph) | 555 | 1152 | 289 | 0 | 83 | 194 | 596 | 54 | | | | | Confl. Peds. (#/hr) | 5 | | | 310 | 310 | | | | | | | | Heavy Vehicles (%) | 4% | 6% | 5% | 0% | 7% | 13% | 2% | 2% | | | | | Turn Type | Perm | | | | Perm | | custom | | | | | | Protected Phases | . 0 | 2 | 8! | | | 4! | Guotom | ouotom | | | | | Permitted Phases | 2 | _ | 0. | | 4 | •• | 8! | 8 | | | | | Actuated Green, G (s) | 59.0 | 59.0 | 39.0 | | 39.0 | 39.0 | 39.0 | 39.0 | | | | | Effective Green, g (s) | 59.0 | 59.0 | 39.0 | | 39.0 | 39.0 | 39.0 | 39.0 | | | | | Actuated g/C Ratio | 0.53 | 0.53 | 0.35 | | 0.35 | 0.35 | 0.35 | 0.35 | | | | | Clearance Time (s) | 7.0 | 7.0 | 7.0 | | 7.0 | 7.0 | 7.0 | 7.0 | | | | | Vehicle Extension (s) | 3.0 | 3.0 | 3.0 | | 3.0 | 3.0 | 3.0 | 3.0 | | | | | Lane Grp Cap (vph) | 820 | 1689 | 1664 | | 284 | 1100 | 545 | 545 | | | | | v/s Ratio Prot | 020 | 1000 | 0.06 | | 201 | 0.06 | 010 | 010 | | | | | v/s Ratio Perm | 0.36 | 0.36 | 0.00 | | 0.10 | 0.00 | c0.38 | 0.03 | | | | | v/c Ratio | 0.68 | 0.68 | 0.17 | | 0.29 | 0.18 | 1.09 | 0.10 | | | | | Uniform Delay, d1 | 19.5 | 19.6 | 25.3 | | 26.5 | 25.3 | 36.5 | 24.6 | | | | | Progression Factor | 0.36 | 0.36 | 1.00 | | 1.42 | 1.43 | 1.00 | 1.00 | | | | | Incremental Delay, d2 | 4.2 | 2.1 | 0.1 | | 0.5 | 0.1 | 66.5 | 0.1 | | | | | Delay (s) | 11.2 | 9.2 | 25.4 | | 38.2 | 36.2 | 103.0 | 24.7 | | | | | Level of Service | В | A | C | | D | D | F | C | | | | | Approach Delay (s) | | 9.8 | 25.4 | | | 36.8 | | | | | | | Approach LOS | | A | C | | | D | | | | | | | Intersection Summary | | | | | | | | | | | | | HCM Average Control Delay | | | 33.0 | Щ | CM Level | of Service | 20 | | С | | | | HCM Volume to Capacity ratio | | | 0.85 | 111 | CIVI LEVEI | OI OGIVII | | | U | | | | Actuated Cycle Length (s) | | | 112.0 | Q ₁ | um of lost | time (s) | | | 14.0 | | | | Intersection Capacity Utilization | n | | 129.1% | | U Level c | | <u> </u> | | 14.0
H | | | | Analysis Period (min) | | | 129.176 | 10 | O LEVEL C | I OCI VICE | • | | - 11 | | | | ! Phase conflict between land | aroune | | 10 | | | | | | | | | | . I have confine between and | s groups. | • | | | | | | | | | | | | | † | * | 4 | † | لِر | * | × | 4 | 4 | × | t | |---|------|--------------|--------|------|--------------|------------|--------------|--------------|------|------|------|------| | Movement | NBL | NBT | NBR | SBL | SBT | SBR | NEL | NET | NER | SWL | SWT | SWR | | Lane Configurations | | ∱ ⊅ | | | ^ | | 7 | 4₽ | | | | | | Volume (vph) | 0 | 140 | 120 | 0 | 230 | 0 | 1045 | 460 | 0 | 0 | 0 | 0 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | 7.0 | | | 7.0 | | 7.0 | 7.0 | | | | | | Lane Util. Factor | | 0.95 | | | 0.95 | | 0.91 | 0.91 | | | | | | Frpb, ped/bikes | | 0.99 | | | 1.00 | | 1.00 | 1.00 | | | | | | Flpb, ped/bikes | | 1.00 | | | 1.00 | | 1.00 | 1.00 | | | | | | Frt
Flt Protected | | 0.93 | | | 1.00 | | 1.00 | 1.00 | | | | | | | | 1.00
2997 | | | 1.00 | | 0.95
1562 | 0.97
3146 | | | | | | Satd. Flow (prot) Flt Permitted | | 1.00 | | | 3336
1.00 | | 0.95 | 0.97 | | | | | | Satd. Flow (perm) | | 2997 | | | 3336 | | 1562 | 3146 | | | | | | | 0.00 | | 0.00 | 0.00 | | 0.00 | | | 0.04 | 0.00 | 0.00 | 0.00 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90
256 | 0.90 | 0.94 | 0.94 | 0.94 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 0 | 156
82 | 133 | 0 | 250 | 0 | 1112
0 | 489
0 | 0 | 0 | 0 | 0 | | RTOR Reduction (vph) | 0 | 207 | 0 | 0 | 256 | 0 | 556 | 1045 | 0 | 0 | 0 | 0 | | Lane Group Flow (vph) Confl. Peds. (#/hr) | U | 207 | 15 | U | 200 | U | 550 | 1045 | U | U | U | U | | Heavy Vehicles (%) | 0% | 12% | 7% | 0% | 7% | 0% | 4% | 8% | 0% | 0% | 0% | 0% | | Turn Type | 0 /0 | 12/0 | 1 /0 | 0 /0 | 1 /0 | 0 /0 | Perm | 0 /0 | 0 70 | 0 /0 | 0 /0 | 0 70 | | Protected Phases | | 8 | | | 4 | | reiiii | 2 | | | | | | Permitted Phases | | 0 | | | 4 | | 2 | 2 | | | | | | Actuated Green, G (s) | | 43.0 | | | 43.0 | | 55.0 | 55.0 | | | | | | Effective Green, g (s) | | 43.0 | | | 43.0 | | 55.0 | 55.0 | | | | | | Actuated g/C Ratio | | 0.38 | | | 0.38 | | 0.49 | 0.49 | | | | | | Clearance Time (s) | | 7.0 | | | 7.0 | | 7.0 | 7.0 | | | | | | Vehicle Extension (s) | | 3.0 | | | 3.0 | | 3.0 | 3.0 | | | | | | Lane Grp Cap (vph) | | 1151 | | | 1281 | | 767 | 1545 | | | | | | v/s Ratio Prot | | 0.07 | | | c0.08 | | 701 | 10-10 | | | | | | v/s Ratio Perm | | 0.01 | | | 00.00 | | c0.36 | 0.33 | | | | | | v/c Ratio | | 0.18 | | | 0.20 | | 0.72 | 0.68 | | | | | | Uniform Delay, d1 | | 22.8 | | | 23.0 | | 22.5 | 21.7 | | | | | | Progression Factor | | 1.00 | | | 0.97 | | 0.86 | 0.85 | | | | | | Incremental Delay, d2 | | 0.1 | | | 0.1 | | 3.6 | 1.5 | | | | | | Delay (s) | | 22.9 | | | 22.4 | | 23.1 | 20.0 | | | | | | Level of Service | | С | | | С | | С | В | | | | | | Approach Delay (s) | | 22.9 | | | 22.4 | | | 21.1 | | | 0.0 | | | Approach LOS | | С | | | С | | | С | | | Α | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 21.5 | H | CM Level | of Service | е | | С | | | | | HCM Volume to Capacity ratio | | | 0.49 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | um of lost | | | | 14.0 | | | | | Intersection Capacity Utilization | | | 148.4% | IC | U Level o | of Service | | | Н | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | * | • | — | • | 1 | † | / | / | + | ✓ | |---|-----------|-------------|--------|------|------------|------------|------|-------------|------|-------------|-----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻሻ | ተተኈ | | | | | | ተኈ | | ሻ | ^ | | | Volume (vph) | 765 | 1845 | 155 | 0 | 0 |
0 | 0 | 205 | 25 | 280 | 40 | 0 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 7.0 | 7.0 | | | | | | 7.0 | | 6.0 | 7.0 | | | Lane Util. Factor | 0.97 | 0.91 | | | | | | 0.95 | | 1.00 | 0.95 | | | Frpb, ped/bikes | 1.00 | 0.99 | | | | | | 1.00 | | 1.00 | 1.00 | | | Flpb, ped/bikes | 1.00 | 1.00 | | | | | | 1.00 | | 1.00 | 1.00 | | | Frt | 1.00 | 0.99 | | | | | | 0.98 | | 1.00 | 1.00 | | | Flt Protected | 0.95 | 1.00 | | | | | | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (prot) | 3395 | 4936 | | | | | | 3349 | | 1750 | 3400 | | | Flt Permitted | 0.95 | 1.00 | | | | | | 1.00 | | 0.44 | 1.00 | | | Satd. Flow (perm) | 3395 | 4936 | | | | | | 3349 | | 808 | 3400 | | | Peak-hour factor, PHF | 0.93 | 0.93 | 0.93 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 823 | 1984 | 167 | 0 | 0 | 0 | 0 | 216 | 26 | 295 | 42 | 0 | | RTOR Reduction (vph) | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | | Lane Group Flow (vph) | 823 | 2142 | 0 | 0 | 0 | 0 | 0 | 234 | 0 | 295 | 42 | 0 | | Confl. Peds. (#/hr) | 1 | 201 | 60 | 60 | 00/ | 1 | 15 | 5 0/ | 407 | 00/ | =0/ | 15 | | Heavy Vehicles (%) | 2% | 2% | 3% | 0% | 0% | 0% | 0% | 5% | 4% | 2% | 5% | 2% | | Turn Type | Split | | | | | | | _ | | pm+pt | | | | Protected Phases | 2 | 2 | | | | | | 8 | | 7 | 4 | | | Permitted Phases | | | | | | | | 47.0 | | 4 | 40.5 | | | Actuated Green, G (s) | 57.5 | 57.5 | | | | | | 17.0 | | 40.5 | 40.5 | | | Effective Green, g (s) | 57.5 | 57.5 | | | | | | 17.0 | | 40.5 | 40.5 | | | Actuated g/C Ratio | 0.51 | 0.51 | | | | | | 0.15 | | 0.36 | 0.36 | | | Clearance Time (s) | 7.0 | 7.0 | | | | | | 7.0
3.0 | | 6.0 | 7.0 | | | Vehicle Extension (s) | 3.0 | 3.0 | | | | | | | | 3.0 | 3.0 | | | Lane Grp Cap (vph) | 1743 | 2534 | | | | | | 508 | | 439 | 1229 | | | v/s Ratio Prot | 0.24 | c0.43 | | | | | | 0.07 | | c0.10 | 0.01 | | | v/s Ratio Perm | 0.47 | 0.05 | | | | | | 0.40 | | c0.14 | 0.00 | | | v/c Ratio | 0.47 | 0.85 | | | | | | 0.46 | | 0.67 | 0.03 | | | Uniform Delay, d1 | 17.5 | 23.4 | | | | | | 43.3 | | 27.7 | 23.1 | | | Progression Factor
Incremental Delay, d2 | 1.00 | 1.00
3.7 | | | | | | 1.00
0.7 | | 1.00
4.0 | 1.00 | | | Delay (s) | 18.4 | 27.1 | | | | | | 44.0 | | 31.7 | 23.1 | | | Level of Service | 10.4
B | 27.1
C | | | | | | 44.0
D | | 31.7
C | 23.1
C | | | Approach Delay (s) | Ь | 24.7 | | | 0.0 | | | 44.0 | | C | 30.6 | | | Approach LOS | | C C | | | Α | | | D | | | C | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 26.6 | H | CM Level | of Service |) | | С | | | | | HCM Volume to Capacity ratio | | | 0.75 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | Sı | um of lost | time (s) | | | 13.0 | | | | | Intersection Capacity Utilizatio | n | | 141.2% | | | of Service | | | Н | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | * | • | *_ | 4 | ኘ | † | ~ | / | Ţ | ₩ J | |---|--------------|--------------|--------|-----------|--------------|--------------|------|--------------|------|--------------|--------------|--------------| | Movement | EBL | EBT | EBR | WBL | WBR | WBR2 | NBL | NBT | NBR | SBL | SBT | SBR2 | | Lane Configurations | ሻሻ | ተተኈ | | | 775 | | | ተኈ | | ሻ | • | 7 | | Volume (vph) | 255 | 1865 | 30 | 25 | 1585 | 135 | 25 | 65 | 110 | 460 | 115 | 30 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 6.0 | 6.0 | | 6.0 | 6.0 | | | 8.0 | | 5.0 | 8.0 | 8.0 | | Lane Util. Factor | 0.97 | 0.91 | | 1.00 | *0.91 | | | 0.95 | | 1.00 | 1.00 | 1.00 | | Frpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 0.97 | | | 0.94 | | 1.00 | 1.00 | 0.82 | | Flpb, ped/bikes
Frt | 1.00
1.00 | 1.00
1.00 | | 1.00 | 1.00
1.00 | | | 0.98
0.92 | | 0.96
1.00 | 1.00
1.00 | 1.00
0.85 | | FIt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | | 0.92 | | 0.95 | 1.00 | 1.00 | | Satd. Flow (prot) | 3429 | 5015 | | 1653 | 4868 | | | 2978 | | 1687 | 1756 | 1277 | | Flt Permitted | 0.95 | 1.00 | | 0.95 | 1.00 | | | 0.90 | | 0.52 | 1.00 | 1.00 | | Satd. Flow (perm) | 3429 | 5015 | | 1653 | 4868 | | | 2699 | | 929 | 1756 | 1277 | | Peak-hour factor, PHF | 0.93 | 0.93 | 0.93 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 274 | 2005 | 32 | 26 | 1668 | 142 | 26 | 68 | 116 | 484 | 121 | 32 | | RTOR Reduction (vph) | 0 | 1 | 0 | 0 | 9 | 0 | 0 | 88 | 0 | 0 | 0 | 19 | | Lane Group Flow (vph) | 274 | 2036 | 0 | 26 | 1801 | 0 | 0 | 122 | 0 | 484 | 121 | 13 | | Confl. Peds. (#/hr) | 5 | | 25 | 25 | | 5 | 135 | | 85 | 85 | | 135 | | Heavy Vehicles (%) | 1% | 2% | 0% | 8% | 2% | 5% | 4% | 0% | 0% | 2% | 7% | 3% | | Turn Type | Prot | | | Prot | custom | | Perm | | | pm+pt | | Perm | | Protected Phases | 5 | 2 | | 1 | | | | 8 | | 7 | 4 | | | Permitted Phases | | | | | 6 | | 8 | | | 4 | | 4 | | Actuated Green, G (s) | 11.4 | 42.4 | | 3.6 | 34.6 | | | 27.0 | | 46.0 | 46.0 | 46.0 | | Effective Green, g (s) | 11.4 | 42.4 | | 3.6 | 34.6 | | | 27.0 | | 46.0 | 46.0 | 46.0 | | Actuated g/C Ratio | 0.10 | 0.38 | | 0.03 | 0.31 | | | 0.24 | | 0.41 | 0.41 | 0.41 | | Clearance Time (s) | 6.0 | 6.0 | | 6.0 | 6.0 | | | 8.0 | | 5.0 | 8.0 | 8.0 | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | | | 3.0 | | 3.0 | 3.0 | 3.0 | | Lane Grp Cap (vph) | 349 | 1899 | | 53 | 1504 | | | 651 | | 476 | 721 | 524 | | v/s Ratio Prot | c0.08 | c0.41 | | 0.02 | 0.07 | | | | | c0.13 | 0.07 | 0.04 | | v/s Ratio Perm | 0.70 | 4.07 | | 0.40 | c0.37 | | | 0.05 | | c0.29 | 0.47 | 0.01 | | v/c Ratio | 0.79 | 1.07 | | 0.49 | 1.20 | | | 0.19 | | 1.02 | 0.17 | 0.03 | | Uniform Delay, d1 | 49.1 | 34.8 | | 53.3 | 38.7
1.43 | | | 33.8 | | 31.2 | 20.9 | 19.6 | | Progression Factor
Incremental Delay, d2 | 1.06
6.3 | 1.31
38.9 | | 0.98 | 92.2 | | | 1.00
0.1 | | 1.00
45.5 | 1.00
0.1 | 1.00 | | Delay (s) | 58.6 | 84.5 | | 55.5 | 147.7 | | | 33.9 | | 76.7 | 21.0 | 19.7 | | Level of Service | 50.0
E | 04.5
F | | 55.5
E | 147.7
F | | | 33.9
C | | 70.7
E | Z1.0 | 13.7
B | | Approach Delay (s) | | 81.5 | | | ' | | | 33.9 | | | 63.3 | | | Approach LOS | | F | | | | | | C | | | E | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Dela | у | | 101.0 | H | ICM Leve | l of Service |) | | F | | | | | HCM Volume to Capacity ra | atio | | 0.95 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | Sum of los | | | | 11.0 | | | | | Intersection Capacity Utiliza | ation | | 118.7% | l | CU Level | of Service | | | Н | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | • | • | † | <i>></i> | / | | 4 | 4 | t | | |----------------------------------|------|------------|-------|-------|----------|-------------|----------|---------|------|--------|------|--| | Movement | EBL2 | EBT | EBR | NBL | NBT | NBR2 | SBL | SBT | SBR | SWR | SWR2 | | | Lane Configurations | , N | ↑ ↑ | | ¥ | † | | , J | f) | | 776 | | | | Volume (vph) | 45 | 865 | 45 | 70 | 40 | 30 | 45 | 40 | 15 | 1660 | 70 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | 6.0 | 6.0 | | 7.0 | 7.0 | | 7.0 | 7.0 | | 6.0 | | | | Lane Util. Factor | 1.00 | 0.95 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 0.76 | | | | Frpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 0.98 | | 1.00 | 0.95 | | 0.96 | | | | Flpb, ped/bikes | 1.00 | 1.00 | | 0.84 | 1.00 | | 0.98 | 1.00 | | 1.00 | | | | Frt | 1.00 | 0.99 | | 1.00 | 0.94 | | 1.00 | 0.96 | | 1.00 | | | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | | 1.00 | | | | Satd. Flow (prot) | 1750 | 3437 | | 1491 | 1690 | | 1660 | 1573 | | 4026 | | | | FIt Permitted | 0.95 | 1.00 | | 0.72 | 1.00 | | 0.71 | 1.00 | | 1.00 | | | | Satd. Flow (perm) | 1750 | 3437 | | 1129 | 1690 | | 1238 | 1573 | | 4026 | | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | | Adj. Flow (vph) | 47 | 911 | 47 | 74 | 42 | 32 | 47 | 42 | 16 | 1747 | 74 | | | RTOR Reduction (vph) | 0 | 3 | 0 | 0 | 23 | 0 | 0 | 11 | 0 | 3 | 0 | | | Lane Group Flow (vph) | 47 | 955 | 0 | 74 | 51 | 0 | 47 | 47 | 0 | 1818 | 0 | | | Confl. Peds. (#/hr) | 20 | | 15 | 170 | | 25 | 25 | | 170 | | 20 | | | Heavy Vehicles (%) | 2% | 3% | 3% | 0% | 4% | 0% | 5% | 5% | 18% | 2% | 5% | | | Turn Type | Prot | | | Perm | | | Perm | | | custom | | | | Protected Phases | 5 | 2 | | | 8 | | | 4 | | | | | | Permitted Phases | | | | 8 | | | 4 | | | 6 | | | | Actuated Green, G (s) | 5.6 | 67.0 | | 32.0 | 32.0 | | 32.0 | 32.0 | | 55.4 | | | | Effective Green, g (s) | 5.6 | 67.0 | | 32.0 | 32.0 | | 32.0 | 32.0 | | 55.4 | | | | Actuated g/C Ratio | 0.05 | 0.60 | | 0.29 | 0.29 | | 0.29 | 0.29 | | 0.49 | | | | Clearance Time (s) | 6.0 | 6.0 | | 7.0 | 7.0 | | 7.0 | 7.0 | | 6.0 | | | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | | | | Lane Grp Cap (vph) | 88 | 2056 | | 323 | 483 | | 354 | 449 | | 1991 | | | | v/s Ratio Prot | 0.03 | c0.28 | | | 0.03 | | | 0.03 | | | | | | v/s Ratio Perm | | | | c0.07 | | | 0.04 | | | c0.45 | | | | v/c Ratio | 0.53 | 0.46 | | 0.23 | 0.11 | | 0.13 | 0.10 | | 0.91 | | | | Uniform Delay, d1 | 51.9 | 12.5 | | 30.6 | 29.5 | | 29.7 | 29.4 | | 26.1 | | | | Progression Factor | 1.04 | 0.97 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 0.42 | | | | Incremental Delay, d2 | 1.7 | 0.2 | | 0.4 | 0.1 | | 0.2 | 0.1 | | 3.2 | | | | Delay (s) | 55.5 | 12.4 | | 30.9 | 29.6 | | 29.9 | 29.5 | | 14.1 | | | | Level of Service | Ε | В | | С | С | | С | С | | В | | | | Approach Delay (s) | | 14.4 | | | 30.2 | | | 29.7 | | | | | | Approach LOS | | В | | | С | | | С | | | | | | Intersection Summary | | | | | | |
 | | | | | | HCM Average Control Delay | | | 15.5 | H | CM Leve | of Servic | е | | В | | | | | HCM Volume to Capacity ratio | | | 0.67 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | | t time (s) | | | 19.0 | | | | | Intersection Capacity Utilizatio | n | | 99.2% | IC | U Level | of Service | | | F | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | • | _ | ← | • | M | † | ↓ | 4 | | | | |-----------------------------------|------|----------|------------|------|------------|------------|----------|-------|------|--|--| | Movement | WBL2 | WBL | WBT | WBR | NBL2 | NBT | SBT | SBR2 | | | | | Lane Configurations | | ሽኘኘ | ∱ } | | ሻ | † | † | 7 | | | | | Volume (vph) | 40 | 1600 | 585 | 75 | 130 | 540 | 455 | 695 | | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | | Total Lost time (s) | | 6.0 | 6.0 | | 8.0 | 8.0 | 8.0 | 8.0 | | | | | Lane Util. Factor | | 0.94 | 0.95 | | 1.00 | 1.00 | 1.00 | 1.00 | | | | | Frpb, ped/bikes | | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | 1.00 | | | | | Flpb, ped/bikes | | 0.90 | 1.00 | | 1.00 | 1.00 | 1.00 | 1.00 | | | | | Frt | | 1.00 | 0.98 | | 1.00 | 1.00 | 1.00 | 0.85 | | | | | Flt Protected | | 0.95 | 1.00 | | 0.95 | 1.00 | 1.00 | 1.00 | | | | | Satd. Flow (prot) | | 4448 | 3385 | | 1750 | 1807 | 1824 | 1536 | | | | | Flt Permitted | | 0.95 | 1.00 | | 0.34 | 1.00 | 1.00 | 1.00 | | | | | Satd. Flow (perm) | | 4448 | 3385 | | 629 | 1807 | 1824 | 1536 | | | | | Peak-hour factor, PHF | 0.93 | 0.93 | 0.93 | 0.93 | 0.95 | 0.95 | 0.95 | 0.95 | | | | | Adj. Flow (vph) | 43 | 1720 | 629 | 81 | 137 | 568 | 479 | 732 | | | | | RTOR Reduction (vph) | 0 | 0 | 9 | 0 | 0 | 0 | 0 | 93 | | | | | Lane Group Flow (vph) | 0 | 1763 | 701 | 0 | 137 | 568 | 479 | 639 | | | | | Confl. Peds. (#/hr) | 45 | | | | | | | | | | | | Heavy Vehicles (%) | 13% | 1% | 4% | 1% | 2% | 4% | 3% | 4% | | | | | Turn Type | Perm | Split | | | Perm | | | Perm | | | | | Protected Phases | | 6 | 6 | | | 8 | 4 | | | | | | Permitted Phases | 6 | | | | 8 | | | 4 | | | | | Actuated Green, G (s) | | 49.0 | 49.0 | | 49.0 | 49.0 | 49.0 | 49.0 | | | | | Effective Green, g (s) | | 49.0 | 49.0 | | 49.0 | 49.0 | 49.0 | 49.0 | | | | | Actuated g/C Ratio | | 0.44 | 0.44 | | 0.44 | 0.44 | 0.44 | 0.44 | | | | | Clearance Time (s) | | 6.0 | 6.0 | | 8.0 | 8.0 | 8.0 | 8.0 | | | | | Vehicle Extension (s) | | 3.0 | 3.0 | | 3.0 | 3.0 | 3.0 | 3.0 | | | | | Lane Grp Cap (vph) | | 1946 | 1481 | | 275 | 791 | 798 | 672 | | | | | v/s Ratio Prot | | | 0.21 | | | 0.31 | 0.26 | | | | | | v/s Ratio Perm | | 0.40 | • | | 0.22 | | | c0.42 | | | | | v/c Ratio | | 0.91 | 0.47 | | 0.50 | 0.72 | 0.60 | 0.95 | | | | | Uniform Delay, d1 | | 29.4 | 22.3 | | 22.7 | 25.8 | 24.0 | 30.3 | | | | | Progression Factor | | 0.34 | 0.22 | | 0.42 | 0.72 | 1.00 | 1.00 | | | | | Incremental Delay, d2 | | 5.0 | 0.7 | | 1.1 | 2.4 | 1.3 | 23.3 | | | | | Delay (s) | | 14.9 | 5.6 | | 10.6 | 20.8 | 25.3 | 53.6 | | | | | Level of Service | | В | Α | | В | С | С | D | | | | | Approach Delay (s) | | | 12.2 | | | 18.8 | 42.4 | | | | | | Approach LOS | | | В | | | В | D | | | | | | Intersection Summary | | | | | | | | | | | | | HCM Average Control Delay | | | 21.6 | Н | CM Level | of Service |) | | С | | | | HCM Volume to Capacity ratio | | | 0.93 | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | S | um of lost | time (s) | | | 14.0 | | | | Intersection Capacity Utilization | n | | 81.8% | | CU Level c | | | | D | | | | Analysis Period (min) | | | 15 | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | ۶ | → | • | • | ← | • | • | † | / | / | ļ | 4 | |-----------------------------------|------|----------|-------|------|-------------|------------|------------|-------------|----------|----------|-------------|------------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | | | | नाा | | 7 | ^ | | | ^ | 77 | | Volume (vph) | 0 | 0 | 0 | 30 | 1800 | 100 | 75 | 445 | 0 | 0 | 295 | 430 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | | | | 7.0 | | 7.0 | 7.0 | | | 7.0 | 7.0 | | Lane Util. Factor | | | | | 0.86 | | 1.00 | 0.95 | | | 1.00 | 0.88 | | Frpb, ped/bikes | | | | | 0.99 | | 1.00 | 1.00 | | | 1.00 | 1.00 | | Flpb, ped/bikes | | | | | 1.00 | | 0.73 | 1.00 | | | 1.00 | 1.00 | | Frt | | | | | 0.99 | | 1.00 | 1.00 | | | 1.00 | 0.85 | | Flt Protected | | | | | 1.00 | | 0.95 | 1.00 | | | 1.00 | 1.00 | | Satd. Flow (prot) | | | | | 6137 | | 1290 | 3336 | | | 1773 | 2729 | | Flt Permitted | | | | | 1.00 | | 0.45 | 1.00 | | | 1.00 | 1.00 | | Satd. Flow (perm) | | | | | 6137 | | 614 | 3336 | | | 1773 | 2729 | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.93 | 0.93 | 0.93 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 0 | 0 | 0 | 32 | 1935 | 108 | 79 | 468 | 0 | 0 | 311 | 453 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 371 | | Lane Group Flow (vph) | 0 | 0 | 0 | 0 | 2068 | 0 | 79 | 468 | 0 | 0 | 311 | 82 | | Confl. Peds. (#/hr) | 00/ | 00/ | 00/ | 30 | 00/ | 135 | 1370 | 70/ | 445 | 00/ | 00/ | 1370 | | Heavy Vehicles (%) | 0% | 0% | 0% | 4% | 3% | 5% | 1% | 7% | 0% | 0% | 6% | 3% | | Turn Type | | | | Perm | • | | Perm | • | | | | custom | | Protected Phases | | | | • | 6 | | _ | 8 | | | 4 | 3 | | Permitted Phases | | | | 6 | 45.0 | | 8 | 50.0 | | | 05.7 | 00.0 | | Actuated Green, G (s) | | | | | 45.0 | | 53.0 | 53.0 | | | 25.7 | 20.3 | | Effective Green, g (s) | | | | | 45.0 | | 53.0 | 53.0 | | | 25.7 | 20.3 | | Actuated g/C Ratio | | | | | 0.40 | | 0.47 | 0.47
7.0 | | | 0.23
7.0 | 0.18 | | Clearance Time (s) | | | | | 7.0
3.0 | | 7.0
3.0 | 3.0 | | | 3.0 | 7.0
3.0 | | Vehicle Extension (s) | | | | | | | | | | | 407 | | | Lane Grp Cap (vph) | | | | | 2466 | | 291 | 1579 | | | | 495 | | v/s Ratio Prot | | | | | 0.34 | | 0.13 | c0.14 | | | c0.18 | 0.03 | | v/s Ratio Perm
v/c Ratio | | | | | 0.34 | | 0.13 | 0.30 | | | 0.76 | 0.17 | | Uniform Delay, d1 | | | | | 30.2 | | 17.8 | 18.1 | | | 40.3 | 38.7 | | Progression Factor | | | | | 0.83 | | 0.47 | 0.46 | | | 1.00 | 1.00 | | Incremental Delay, d2 | | | | | 2.6 | | 0.47 | 0.40 | | | 8.3 | 0.7 | | Delay (s) | | | | | 27.7 | | 8.8 | 8.5 | | | 48.6 | 39.4 | | Level of Service | | | | | C C | | Α | Α | | | 40.0
D | 00.4
D | | Approach Delay (s) | | 0.0 | | | 27.7 | | | 8.5 | | | 43.2 | | | Approach LOS | | Α | | | C | | | A | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 28.1 | Н | ICM Level | of Servic | е | | С | | | | | HCM Volume to Capacity ratio | | | 0.65 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | um of lost | | | | 14.0 | | | | | Intersection Capacity Utilization | | | 83.2% | 10 | CU Level of | of Service | | | E | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | • | • | ← | • | 1 | † | / | / | ↓ | 4 | |-----------------------------------|---------|------------|----------|------------|---------------|------------|-------|----------|----------|----------|------------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | | | | 4 † \$ | | ň | ^ | | | ∱ ∱ | | | Volume (vph) | 0 | 0 | 0 | 95 | 1460 | 60 | 120 | 655 | 0 | 0 | 180 | 360 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | | | | 7.0 | | 4.0 | 7.0 | | | 7.0 | | | Lane Util. Factor | | | | | 0.91 | | 1.00 | 0.95 | | | 0.95 | | | Frpb, ped/bikes | | | | | 0.99 | | 1.00 | 1.00 | | | 0.75 | | | Flpb, ped/bikes | | | | | 0.99 | | 0.97 | 1.00 | | | 1.00 | | | Frt | | | | | 0.99 | | 1.00 | 1.00 | | | 0.90 | | | Flt Protected | | | | | 1.00 | | 0.95 | 1.00 | | | 1.00 | | | Satd. Flow (prot) | | | | | 4926 | | 1662 | 3433 | | | 2238 | | | Flt Permitted | | | | | 1.00 | | 0.29 | 1.00 | | | 1.00 | | | Satd. Flow (perm) | | | | | 4926 | | 503 | 3433 | | | 2238 | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.93 | 0.93 | 0.93 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 0 | 0 | 0 | 102 | 1570 | 65 | 126 | 689 | 0 | 0 | 189 | 379 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 37 | 0 | | Lane Group Flow (vph) | 0 | 0 | 0 | 0 | 1734 | 0 | 126 | 689 | 0 | 0 | 531 | 0 | | Confl. Peds. (#/hr) | 90 | | 65 | 65 | | 90 | 490 | | 290 | 290 | | 490 | | Heavy Vehicles (%) | 0% | 0% | 0% | 0% | 2% | 7% | 4% | 4% | 0% | 0% | 11% | 5% | | Turn Type | | | | Perm | | | pm+pt | | | | | | | Protected Phases | | | | | 6 | | 3 | 8 | | | 4 | | | Permitted Phases | | | | 6 | | | 8 | | | | | | | Actuated Green, G (s) | | | | | 55.0 | | 43.0 | 43.0 | | | 33.0 | | | Effective Green, g (s) | | | | | 55.0 | | 43.0 | 43.0 | | | 33.0 | | | Actuated g/C Ratio | | | | | 0.49 | | 0.38 | 0.38 | | | 0.29 | | | Clearance Time (s) | | | | | 7.0 | | 4.0 | 7.0 | | | 7.0 | | | Vehicle Extension (s) | | | | | 3.0 | | 3.0 | 3.0 | | | 3.0 | | | Lane Grp Cap (vph) | | | | | 2419 | | 255 | 1318 | | | 659 | | | v/s Ratio Prot | | | | | | | 0.03 | c0.20 | | | c0.24 | | | v/s Ratio Perm | | | | | 0.35 | | 0.16 | | | | | | | v/c Ratio | | | | | 0.72 | | 0.49 | 0.52 | | | 1.00dr | | | Uniform Delay, d1 | | | | | 22.4 | | 23.9 | 26.6 | | | 36.5 | | | Progression Factor | | | | | 1.00 | | 0.80 | 0.88 | | | 1.00 | | | Incremental Delay, d2 | | | | | 1.9 | | 1.3 | 0.3 | | | 7.1 | | | Delay (s) | | | | | 24.2 | | 20.4 | 23.9 | | | 43.6 | | | Level of Service | | | | | С | | С | С | | | D | | | Approach Delay (s) | | 0.0 | | | 24.2 | | | 23.3 | | | 43.6 | | | Approach LOS | | Α | | | С | | | С | | | D | | |
Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 27.5 | Н | CM Level | of Service | e | | С | | | | | HCM Volume to Capacity ratio | | | 0.77 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | S | um of lost | time (s) | | | 21.0 | | | | | Intersection Capacity Utilization | | | 113.9% | IC | CU Level o | of Service | ! | | Н | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | dr Defacto Right Lane. Reco | de with | 1 though I | ane as a | right lane | €. | | | | | | | | c Critical Lane Group | | ۶ | → | • | • | ← | • | 1 | † | / | / | + | √ | |--------------------------------------|------|------------|-------|------|------------|------------|------|-----------|----------|----------|-----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | ↑ ↑ | | | | | | ^ | | 7 | † | | | Volume (vph) | 0 | 940 | 25 | 0 | 0 | 0 | 0 | 665 | 0 | 340 | 155 | 0 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.6 | 3.5 | 3.5 | 3.5 | 3.5 | | Total Lost time (s) | | 6.0 | | | | | | 8.0 | | 4.0 | 8.0 | | | Lane Util. Factor | | 0.91 | | | | | | 0.95 | | 1.00 | 1.00 | | | Frpb, ped/bikes | | 1.00 | | | | | | 1.00 | | 1.00 | 1.00 | | | Flpb, ped/bikes | | 1.00 | | | | | | 1.00 | | 1.00 | 1.00 | | | Frt | | 1.00 | | | | | | 1.00 | | 1.00 | 1.00 | | | Flt Protected | | 1.00 | | | | | | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (prot) | | 4909 | | | | | | 3471 | | 1711 | 1756 | | | Flt Permitted | | 1.00 | | | | | | 1.00 | | 0.22 | 1.00 | | | Satd. Flow (perm) | | 4909 | | | | | | 3471 | | 401 | 1756 | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 0 | 989 | 26 | 0 | 0 | 0 | 0 | 700 | 0 | 358 | 163 | 0.00 | | RTOR Reduction (vph) | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Lane Group Flow (vph) | 0 | 1012 | 0 | 0 | 0 | 0 | 0 | 700 | 0 | 358 | 163 | 0 | | Confl. Peds. (#/hr) | 35 | 1012 | 15 | 15 | | 35 | 835 | 700 | 55 | 55 | 100 | 835 | | Heavy Vehicles (%) | 0% | 4% | 5% | 0% | 0% | 0% | 0% | 4% | 4% | 4% | 7% | 0% | | Turn Type | 0 70 | 170 | 070 | 070 | 070 | 070 | 070 | 170 | 170 | pm+pt | 1 70 | 070 | | Protected Phases | | 2 | | | | | | 8 | | 7 | 4 | | | Permitted Phases | | | | | | | | - U | | 4 | | | | Actuated Green, G (s) | | 39.2 | | | | | | 34.0 | | 58.8 | 58.8 | | | Effective Green, g (s) | | 39.2 | | | | | | 34.0 | | 58.8 | 58.8 | | | Actuated g/C Ratio | | 0.35 | | | | | | 0.30 | | 0.52 | 0.52 | | | Clearance Time (s) | | 6.0 | | | | | | 8.0 | | 4.0 | 8.0 | | | Vehicle Extension (s) | | 3.0 | | | | | | 3.0 | | 3.0 | 3.0 | | | | | 1718 | | | | | | 1054 | | 454 | 922 | | | Lane Grp Cap (vph)
v/s Ratio Prot | | c0.21 | | | | | | 0.20 | | c0.15 | | | | v/s Ratio Perm | | CU.Z I | | | | | | 0.20 | | | 0.09 | | | | | 0.50 | | | | | | 0.66 | | c0.27 | 0.40 | | | v/c Ratio | | 0.59 | | | | | | 0.66 | | 0.79 | 0.18 | | | Uniform Delay, d1 | | 29.8 | | | | | | 34.0 | | 18.4 | 13.9 | | | Progression Factor | | 1.25 | | | | | | 1.00 | | 1.82 | 0.33 | | | Incremental Delay, d2 | | 1.4 | | | | | | 1.6 | | 4.9 | 0.0 | | | Delay (s) | | 38.5 | | | | | | 35.6 | | 38.2 | 4.7 | | | Level of Service | | D | | | 0.0 | | | D | | D | A | | | Approach Delay (s) Approach LOS | | 38.5
D | | | 0.0
A | | | 35.6
D | | | 27.7
C | | | • • | | D | | | ٨ | | | D | | | C | | | Intersection Summary | | | | | | | | | _ | | | | | HCM Average Control Delay | | | 35.1 | H | CM Level | of Service |) | | D | | | | | HCM Volume to Capacity ratio | | | 0.67 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | um of lost | | | | 10.0 | | | | | Intersection Capacity Utilization | | | 93.8% | IC | U Level o | of Service | | | F | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | † | <i>></i> | / | ↓ | <i>></i> | 4 | | | | |-----------------------------------|-------|----------|----------|-------------|------------|----------|-------------|--------|------|--|--| | Movement | EBL | EBT | NBT | NBR | SBL | SBT | NER | NER2 | | | | | Lane Configurations | ň | 41₽ | ተተኈ | | ň | ^ | 7 | 7 | | | | | Volume (vph) | 695 | 830 | 250 | 30 | 170 | 145 | 420 | 75 | | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | | Total Lost time (s) | 7.0 | 7.0 | 7.0 | | 7.0 | 7.0 | 7.0 | 7.0 | | | | | Lane Util. Factor | 0.91 | 0.91 | 0.91 | | 1.00 | 0.95 | 1.00 | 1.00 | | | | | Frpb, ped/bikes | 1.00 | 1.00 | 0.98 | | 1.00 | 1.00 | 1.00 | 0.76 | | | | | Flpb, ped/bikes | 0.98 | 1.00 | 1.00 | | 0.88 | 1.00 | 1.00 | 1.00 | | | | | Frt | 1.00 | 1.00 | 0.98 | | 1.00 | 1.00 | 0.85 | 0.85 | | | | | Flt Protected | 0.95 | 0.99 | 1.00 | | 0.95 | 1.00 | 1.00 | 1.00 | | | | | Satd. Flow (prot) | 1548 | 3276 | 4503 | | 1503 | 3275 | 1536 | 1177 | | | | | Flt Permitted | 0.95 | 0.99 | 1.00 | | 0.56 | 1.00 | 1.00 | 1.00 | | | | | Satd. Flow (perm) | 1548 | 3276 | 4503 | | 893 | 3275 | 1536 | 1177 | | | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | | | | Adj. Flow (vph) | 732 | 874 | 263 | 32 | 179 | 153 | 442 | 79 | | | | | RTOR Reduction (vph) | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 47 | | | | | Lane Group Flow (vph) | 520 | 1086 | 292 | 0 | 179 | 153 | 442 | 32 | | | | | Confl. Peds. (#/hr) | 10 | | | 290 | 290 | | | 125 | | | | | Heavy Vehicles (%) | 3% | 3% | 10% | 7% | 4% | 9% | 4% | 3% | | | | | Turn Type | Perm | | | | Perm | | custom | custom | | | | | Protected Phases | | 2 | 8 | | | 4 | | | | | | | Permitted Phases | 2 | | | | 4 | | 2 | 2 | | | | | Actuated Green, G (s) | 46.0 | 46.0 | 52.0 | | 52.0 | 52.0 | 46.0 | 46.0 | | | | | Effective Green, g (s) | 46.0 | 46.0 | 52.0 | | 52.0 | 52.0 | 46.0 | 46.0 | | | | | Actuated g/C Ratio | 0.41 | 0.41 | 0.46 | | 0.46 | 0.46 | 0.41 | 0.41 | | | | | Clearance Time (s) | 7.0 | 7.0 | 7.0 | | 7.0 | 7.0 | 7.0 | 7.0 | | | | | Vehicle Extension (s) | 3.0 | 3.0 | 3.0 | | 3.0 | 3.0 | 3.0 | 3.0 | | | | | Lane Grp Cap (vph) | 636 | 1346 | 2091 | | 415 | 1521 | 631 | 483 | | | | | v/s Ratio Prot | | | 0.06 | | | 0.05 | | | | | | | v/s Ratio Perm | c0.34 | 0.33 | | | c0.20 | | 0.29 | 0.03 | | | | | v/c Ratio | 0.82 | 0.81 | 0.14 | | 0.43 | 0.10 | 0.70 | 0.07 | | | | | Uniform Delay, d1 | 29.3 | 29.1 | 17.2 | | 20.1 | 16.9 | 27.3 | 20.0 | | | | | Progression Factor | 0.51 | 0.48 | 1.00 | | 0.92 | 0.59 | 1.00 | 1.00 | | | | | Incremental Delay, d2 | 9.7 | 4.6 | 0.0 | | 0.5 | 0.0 | 6.4 | 0.3 | | | | | Delay (s) | 24.6 | 18.5 | 17.2 | | 19.0 | 10.0 | 33.7 | 20.3 | | | | | Level of Service | С | В | В | | В | Α | С | С | | | | | Approach Delay (s) | | 20.5 | 17.2 | | | 14.8 | | | | | | | Approach LOS | | С | В | | | В | | | | | | | Intersection Summary | | | | | | | | | | | | | HCM Average Control Delay | | | 21.6 | H | CM Level | of Servi | ce | | С | | | | HCM Volume to Capacity ration | 0 | | 0.61 | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | Sı | um of lost | time (s) | | | 14.0 | | | | Intersection Capacity Utilization | on | | 130.8% | | U Level o | | 9 | | Н | | | | Analysis Period (min) | | | 15 | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | A | † | ₹ | (w | ļ | لر | <i>•</i> | × | 4 | 4 | × | t | |-----------------------------------|----------|------------|--------|------|------------|------------|----------|------|------|------|------|------| | Movement | NBL | NBT | NBR | SBL | SBT | SBR | NEL | NET | NER | SWL | SWT | SWR | | Lane Configurations | | ∱ } | | | ^ | | ň | 41₽ | | | | | | Volume (vph) | 0 | 65 | 220 | 0 | 275 | 0 | 705 | 720 | 0 | 0 | 0 | 0 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | 7.0 | | | 7.0 | | 7.0 | 7.0 | | | | | | Lane Util. Factor | | 0.95 | | | 0.95 | | 0.91 | 0.91 | | | | | | Frpb, ped/bikes | | 0.93 | | | 1.00 | | 1.00 | 1.00 | | | | | | Flpb, ped/bikes | | 1.00 | | | 1.00 | | 1.00 | 1.00 | | | | | | Frt | | 0.88 | | | 1.00 | | 1.00 | 1.00 | | | | | | Flt Protected | | 1.00 | | | 1.00 | | 0.95 | 0.99 | | | | | | Satd. Flow (prot) | | 2780 | | | 3570 | | 1547 | 3217 | | | | | | Flt Permitted | | 1.00 | | | 1.00 | | 0.95 | 0.99 | | | | | | Satd. Flow (perm) | | 2780 | | | 3570 | | 1547 | 3217 | | | | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 0 | 68 | 232 | 0 | 289 | 0 | 742 | 758 | 0 | 0 | 0 | 0 | | RTOR Reduction (vph) | 0 | 164 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Lane Group Flow (vph) | 0 | 136 | 0 | 0 | 289 | 0 | 490 | 1010 | 0 | 0 | 0 | 0 | | Confl. Peds. (#/hr) | 90 | | 65 | 65 | | 90 | | | | | | | | Heavy Vehicles (%) | 0% | 6% | 5% | 0% | 0% | 0% | 5% | 5% | 0% | 0% | 0% | 0% | | Turn Type | | | | | | | Perm | | | | | | | Protected Phases | | 8 | | | 4 | | | 2 | | | | | | Permitted Phases | | | | | | | 2 | | | | | | | Actuated Green, G (s) | | 26.0 | | | 26.0 | | 72.0 | 72.0 | | | | | | Effective Green, g (s) | | 26.0 | | | 26.0 | | 72.0 | 72.0 | | | | | | Actuated g/C Ratio | | 0.23 | | | 0.23 | | 0.64 | 0.64 | | | | | | Clearance Time (s) | | 7.0 | | | 7.0 | | 7.0 | 7.0 | | | | | | Vehicle Extension (s) | | 3.0 | | | 3.0 | | 3.0 | 3.0 | | | | | | Lane Grp Cap (vph) | | 645 | | | 829 | | 995 | 2068 | | | | | | v/s Ratio Prot | | 0.05 | | | c0.08 | | | | | | | | | v/s Ratio Perm | | | | | | | c0.32 | 0.31 | | | | | | v/c Ratio | | 0.21 | | | 0.35 | | 0.49 | 0.49 | | | | | | Uniform Delay, d1 | | 34.7 | | | 35.9 | | 10.5 | 10.4 | | | | | | Progression Factor | | 1.00 | | | 0.96 | | 0.38 | 0.39 | | | | | | Incremental Delay, d2 | | 0.2 | | | 0.2 | | 1.2 | 0.6 | | | | | | Delay (s) | |
34.9 | | | 34.7 | | 5.1 | 4.6 | | | | | | Level of Service | | С | | | С | | Α | Α | | | | | | Approach Delay (s) | | 34.9 | | | 34.7 | | | 4.8 | | | 0.0 | | | Approach LOS | | С | | | С | | | Α | | | Α | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 13.2 | H | CM Level | of Servic | e | | В | | | | | HCM Volume to Capacity ratio | | | 0.45 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | Sı | um of lost | time (s) | | | 14.0 | | | | | Intersection Capacity Utilization | | | 113.9% | IC | U Level o | of Service | | | Н | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | ## **C2** Do Nothing | | ၨ | → | ← | • | \ | 4 | | |-----------------------------------|------|----------|----------|------|------------|------------|------| | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | | Lane Configurations | * | † | † | 7 | ሻ | 7 | | | Volume (vph) | 70 | 580 | 355 | 90 | 120 | 60 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | | Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | Frpb, ped/bikes | 1.00 | 1.00 | 1.00 | 0.79 | 1.00 | 0.89 | | | Flpb, ped/bikes | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | Frt | 1.00 | 1.00 | 1.00 | 0.85 | 1.00 | 0.85 | | | Flt Protected | 0.95 | 1.00 | 1.00 | 1.00 | 0.95 | 1.00 | | | Satd. Flow (prot) | 1530 | 1626 | 1610 | 1106 | 1487 | 1233 | | | FIt Permitted | 0.95 | 1.00 | 1.00 | 1.00 | 0.95 | 1.00 | | | Satd. Flow (perm) | 1530 | 1626 | 1610 | 1106 | 1487 | 1233 | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | Adj. Flow (vph) | 78 | 644 | 394 | 100 | 133 | 67 | | | RTOR Reduction (vph) | 0 | 0 | 0 | 71 | 0 | 48 | | | _ane Group Flow (vph) | 78 | 644 | 394 | 29 | 133 | 19 | | | Confl. Peds. (#/hr) | 190 | | | 190 | 130 | 50 | | | Heavy Vehicles (%) | 5% | 4% | 5% | 3% | 8% | 4% | | | Turn Type | Prot | | | Perm | | Perm | | | Protected Phases | 5 | 2 5 | 6 | | 4 | | | | Permitted Phases | | | | 6 | | 4 | | | Actuated Green, G (s) | 14.2 | 57.7 | 36.5 | 36.5 | 35.5 | 35.5 | | | Effective Green, g (s) | 14.2 | 57.7 | 36.5 | 36.5 | 35.5 | 35.5 | | | Actuated g/C Ratio | 0.11 | 0.46 | 0.29 | 0.29 | 0.28 | 0.28 | | | Clearance Time (s) | 7.0 | | 7.0 | 7.0 | 7.0 | 7.0 | | | Vehicle Extension (s) | 3.0 | | 3.0 | 3.0 | 3.0 | 3.0 | | | _ane Grp Cap (vph) | 172 | 745 | 466 | 320 | 419 | 347 | | | //s Ratio Prot | 0.05 | c0.40 | 0.24 | | c0.09 | | | | v/s Ratio Perm | | | | 0.03 | | 0.02 | | | v/c Ratio | 0.45 | 0.86 | 0.85 | 0.09 | 0.32 | 0.05 | | | Uniform Delay, d1 | 52.3 | 30.6 | 42.1 | 32.6 | 35.7 | 33.0 | | | Progression Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | Incremental Delay, d2 | 1.9 | 10.2 | 17.0 | 0.6 | 2.0 | 0.3 | | | Delay (s) | 54.2 | 40.9 | 59.1 | 33.2 | 37.7 | 33.3 | | | Level of Service | D | D | E | С | D | С | | | Approach Delay (s) | | 42.3 | 53.8 | | 36.2 | | | | Approach LOS | | D | D | | D | | | | ntersection Summary | | | | | | | | | HCM Average Control Delay | | | 45.5 | H | CM Level | of Service | D | | HCM Volume to Capacity ration |) | | 0.66 | | | | | | Actuated Cycle Length (s) | | | 126.0 | | um of lost | | 32.8 | | Intersection Capacity Utilization | on | | 83.3% | IC | U Level c | of Service | E | | Analysis Period (min) | | | 15 | | | | | | Critical Lane Group | | | | | | | | | | ۶ | → | ← | • | - | 4 | | |----------------------------------|------|----------|-------------|------|------------|------------|--| | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | | Lane Configurations | ች | | † 1> | | | 7 | | | Volume (vph) | 25 | 675 | 375 | 5 | 0 | 70 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | 7.0 | 7.0 | 7.0 | | | 6.0 | | | Lane Util. Factor | 1.00 | 1.00 | 0.95 | | | 1.00 | | | Frt | 1.00 | 1.00 | 1.00 | | | 0.86 | | | Flt Protected | 0.95 | 1.00 | 1.00 | | | 1.00 | | | Satd. Flow (prot) | 1606 | 1610 | 3084 | | | 1463 | | | Flt Permitted | 0.95 | 1.00 | 1.00 | | | 1.00 | | | Satd. Flow (perm) | 1606 | 1610 | 3084 | | | 1463 | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | Adj. Flow (vph) | 28 | 750 | 417 | 6 | 0 | 78 | | | RTOR Reduction (vph) | 0 | 0 | 1 | 0 | 0 | 46 | | | Lane Group Flow (vph) | 28 | 750 | 422 | 0 | 0 | 32 | | | Heavy Vehicles (%) | 0% | 5% | 4% | 0% | 0% | 0% | | | Turn Type | Prot | | | | | custom | | | Protected Phases | 9 | 27910 | 6 | | | 7 9 10 | | | Permitted Phases | | | | | | | | | Actuated Green, G (s) | 10.0 | 107.5 | 43.9 | | | 50.6 | | | Effective Green, g (s) | 10.0 | 95.5 | 43.9 | | | 43.6 | | | Actuated g/C Ratio | 0.09 | 0.89 | 0.41 | | | 0.41 | | | Clearance Time (s) | 7.0 | | 7.0 | | | | | | Vehicle Extension (s) | 3.0 | | 3.0 | | | | | | Lane Grp Cap (vph) | 149 | 1430 | 1259 | | | 593 | | | v/s Ratio Prot | 0.02 | c0.47 | 0.14 | | | 0.02 | | | v/s Ratio Perm | | | | | | | | | v/c Ratio | 0.19 | 0.52 | 0.34 | | | 0.05 | | | Uniform Delay, d1 | 45.0 | 1.3 | 21.8 | | | 19.4 | | | Progression Factor | 1.00 | 1.00 | 1.00 | | | 1.00 | | | Incremental Delay, d2 | 0.6 | 0.3 | 0.7 | | | 0.0 | | | Delay (s) | 45.6 | 1.6 | 22.5 | | | 19.4 | | | Level of Service | D | Α | С | | | В | | | Approach Delay (s) | | 3.2 | 22.5 | | 19.4 | | | | Approach LOS | | Α | С | | В | | | | Intersection Summary | | | | | | | | | HCM Average Control Delay | | | 10.6 | Н | CM Level | of Service | | | HCM Volume to Capacity ratio |) | | 0.54 | | | | | | Actuated Cycle Length (s) | | | 107.5 | Sı | um of lost | t time (s) | | | Intersection Capacity Utilizatio | n | | 45.3% | IC | U Level | of Service | | | Analysis Period (min) | | | 15 | | | | | | | • | → | • | • | ← | • | 4 | † | / | \ | ↓ | 4 | |-------------------------------|-------------|------------|-------|------|-------------|------------|------|----------|----------|----------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | , T | ↑ ↑ | | | र्सी | | | 4 | | J. | £ | | | Volume (vph) | 85 | 580 | 15 | 20 | 330 | 75 | 10 | 15 | 10 | 45 | 10 | 50 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 7.0 | 7.0 | | | 7.0 | | | 7.0 | | 7.0 | 7.0 | | | Lane Util. Factor | 1.00 | 0.95 | | | 0.95 | | | 1.00 | | 1.00 | 1.00 | | | Frpb, ped/bikes | 1.00 | 1.00 | | | 0.95 | | | 0.98 | | 1.00 | 0.96 | | | Flpb, ped/bikes | 0.86 | 1.00 | | | 1.00 | | | 0.99 | | 0.94 | 1.00 | | | Frt | 1.00 | 1.00 | | | 0.97 | | | 0.96 | | 1.00 | 0.87 | | | Flt Protected | 0.95 | 1.00 | | | 1.00 | | | 0.99 | | 0.95 | 1.00 | | | Satd. Flow (prot) | 1374 | 3041 | | | 2800 | | | 1413 | | 1252 | 1425 | | | FIt Permitted | 0.47 | 1.00 | | | 0.90 | | | 0.92 | | 0.73 | 1.00 | | | Satd. Flow (perm) | 686 | 3041 | | | 2537 | | | 1311 | | 964 | 1425 | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 94 | 644 | 17 | 22 | 367 | 83 | 11 | 17 | 11 | 50 | 11 | 56 | | RTOR Reduction (vph) | 0 | 2 | 0 | 0 | 15 | 0 | 0 | 9 | 0 | 0 | 44 | 0 | | Lane Group Flow (vph) | 94 | 659 | 0 | 0 | 457 | 0 | 0 | 30 | 0 | 50 | 23 | 0 | | Confl. Peds. (#/hr) | 110 | | 50 | 50 | | 110 | 35 | | 75 | 75 | | 35 | | Heavy Vehicles (%) | 1% | 5% | 0% | 10% | 5% | 8% | 15% | 7% | 10% | 20% | 0% | 0% | | Turn Type | Perm | | | Perm | | | Perm | | | Perm | | | | Protected Phases | | 2 | | | 6 | | | 8 | | | 4 | | | Permitted Phases | 2 | | | 6 | | | 8 | | | 4 | | | | Actuated Green, G (s) | 35.2 | 35.2 | | | 35.2 | | | 17.0 | | 17.0 | 17.0 | | | Effective Green, g (s) | 35.2 | 35.2 | | | 35.2 | | | 17.0 | | 17.0 | 17.0 | | | Actuated g/C Ratio | 0.43 | 0.43 | | | 0.43 | | | 0.21 | | 0.21 | 0.21 | | | Clearance Time (s) | 7.0 | 7.0 | | | 7.0 | | | 7.0 | | 7.0 | 7.0 | | | Vehicle Extension (s) | 3.0 | 3.0 | | | 3.0 | | | 3.0 | | 3.0 | 3.0 | | | Lane Grp Cap (vph) | 294 | 1302 | | | 1086 | | | 271 | | 199 | 295 | | | v/s Ratio Prot | | c0.22 | | | | | | | | | 0.02 | | | v/s Ratio Perm | 0.14 | | | | 0.18 | | | 0.02 | | c0.05 | | | | v/c Ratio | 0.32 | 0.51 | | | 0.42 | | | 0.11 | | 0.25 | 0.08 | | | Uniform Delay, d1 | 15.6 | 17.2 | | | 16.4 | | | 26.5 | | 27.3 | 26.3 | | | Progression Factor | 1.00 | 1.00 | | | 1.00 | | | 0.65 | | 1.00 | 1.00 | | | Incremental Delay, d2 | 2.9 | 1.4 | | | 1.2 | | | 0.2 | | 0.7 | 0.1 | | | Delay (s) | 18.4 | 18.6 | | | 17.6 | | | 17.5 | | 27.9 | 26.4 | | | Level of Service | В | В | | | В | | | В | | С | С | | | Approach Delay (s) | | 18.5 | | | 17.6 | | | 17.5 | | | 27.1 | | | Approach LOS | | В | | | В | | | В | | | С | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Dela | | | 18.9 | H | CM Level | of Servic | е | | В | | | | | HCM Volume to Capacity ra | atio | | 0.42 | | | | | | | | | | | Actuated Cycle Length (s) | | | 82.2 | | um of lost | | | | 30.0 | | | | | Intersection Capacity Utiliza | ation | | 72.0% | IC | CU Level of | of Service | | | С | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | Description: Queen's Quay | / Rees / Ra | disson W | est | | | | | | | | | | | | ၨ | - | \rightarrow | F | • | ← | • | • | † | ~ | > | ↓ | |-----------------------------------|----------|------------|---------------|------|-------------|------------|------|------|----------|------|-------------|--------------| | Movement | EBL | EBT | EBR | WBU | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | | Lane Configurations | ሻ | † † | | | ă | ∱ } | | ሻ | † | | ň | (| | Volume (vph) | 40 | 590 | 0 | 30 | 55 | 390 | 25 | 5 | 0 | 5 | 55 | 35 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time
(s) | 7.0 | 7.0 | | | 7.0 | 7.0 | | 7.0 | 7.0 | | 7.0 | 7.0 | | Lane Util. Factor | 1.00 | 0.95 | | | 1.00 | 0.95 | | 1.00 | 1.00 | | 1.00 | 1.00 | | Frpb, ped/bikes | 1.00 | 1.00 | | | 1.00 | 0.99 | | 1.00 | 1.00 | | 1.00 | 0.98 | | Flpb, ped/bikes | 0.89 | 1.00 | | | 1.00 | 1.00 | | 1.00 | 1.00 | | 0.91 | 1.00 | | Frt | 1.00 | 1.00 | | | 1.00 | 0.99 | | 1.00 | 0.85 | | 1.00 | 0.93 | | Flt Protected | 0.95 | 1.00 | | | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | | Satd. Flow (prot) | 1379 | 3060 | | | 1559 | 2889 | | 1575 | 1409 | | 1426 | 1529 | | Flt Permitted | 0.47 | 1.00 | | | 0.34 | 1.00 | | 0.71 | 1.00 | | 0.75 | 1.00 | | Satd. Flow (perm) | 680 | 3060 | | | 558 | 2889 | | 1177 | 1409 | | 1131 | 1529 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 44 | 656 | 0 | 33 | 61 | 433 | 28 | 6 | 0 | 6 | 61 | 39 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 5 | 0 | 0 | 25 | | Lane Group Flow (vph) | 44 | 656 | 0 | 0 | 94 | 457 | 0 | 6 | 1 | 0 | 61 | 47 | | Confl. Peds. (#/hr) | 140 | | | | | | 140 | | | | 100 | | | Heavy Vehicles (%) | 4% | 5% | 2% | 5% | 2% | 9% | 4% | 2% | 2% | 2% | 2% | 2% | | Turn Type | Perm | | | Perm | Perm | | | Perm | | | Perm | | | Protected Phases | | 2 | | | | 6 | | | 8 | | | 4 | | Permitted Phases | 2 | | | 6 | 6 | | | 8 | | | 4 | | | Actuated Green, G (s) | 38.0 | 38.0 | | | 38.0 | 38.0 | | 21.8 | 21.8 | | 21.8 | 21.8 | | Effective Green, g (s) | 38.0 | 38.0 | | | 38.0 | 38.0 | | 21.8 | 21.8 | | 21.8 | 21.8 | | Actuated g/C Ratio | 0.41 | 0.41 | | | 0.41 | 0.41 | | 0.24 | 0.24 | | 0.24 | 0.24 | | Clearance Time (s) | 7.0 | 7.0 | | | 7.0 | 7.0 | | 7.0 | 7.0 | | 7.0 | 7.0 | | Vehicle Extension (s) | 3.0 | 3.0 | | | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | 3.0 | | Lane Grp Cap (vph) | 280 | 1261 | | | 230 | 1191 | | 278 | 333 | | 267 | 362 | | v/s Ratio Prot | | c0.21 | | | | 0.16 | | | 0.00 | | | 0.03 | | v/s Ratio Perm | 0.06 | | | | 0.17 | | | 0.01 | | | c0.05 | | | v/c Ratio | 0.16 | 0.52 | | | 0.41 | 0.38 | | 0.02 | 0.00 | | 0.23 | 0.13 | | Uniform Delay, d1 | 17.0 | 20.3 | | | 19.2 | 18.9 | | 27.0 | 26.9 | | 28.4 | 27.7 | | Progression Factor | 1.00 | 1.00 | | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | Incremental Delay, d2 | 1.2 | 1.5 | | | 5.3 | 0.9 | | 0.0 | 0.0 | | 0.4 | 0.2 | | Delay (s) | 18.2 | 21.8 | | | 24.5 | 19.9 | | 27.0 | 26.9 | | 28.9 | 27.9 | | Level of Service | В | С | | | С | В | | С | С | | С | С | | Approach Delay (s) | | 21.6 | | | | 20.6 | | | 27.0 | | | 28.3 | | Approach LOS | | C | | | | С | | | С | | | С | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 21.9 | Н | CM Level | of Service | Э | | С | | | | | HCM Volume to Capacity ration |) | | 0.41 | | | | | | | | | | | Actuated Cycle Length (s) | | | 92.2 | | um of lost | | | | 32.4 | | | | | Intersection Capacity Utilization | n | | 93.3% | IC | CU Level of | of Service | | | F | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | Description: Queen's Quay / L | ower Sin | ncoe / Hai | rbourfront | East | | | | | | | | | | | ۶ | → | • | • | ← | 4 | 4 | † | / | / | Ţ | 4 | |---------------------------------|-------|------------|-------|------|-------------|------------|------|-----------|------|----------|-----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | ∱ ⊅ | | | €1 } | | | 4 | | ሻ | ↑ | 7 | | Volume (vph) | 110 | 545 | 20 | 15 | 450 | 150 | 20 | 40 | 10 | 100 | 10 | 110 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 5.0 | 7.0 | | | 7.0 | | | 7.0 | | 7.0 | 7.0 | 7.0 | | Lane Util. Factor | 1.00 | 0.95 | | | 0.95 | | | 1.00 | | 1.00 | 1.00 | 1.00 | | Frpb, ped/bikes | 1.00 | 0.99 | | | 0.92 | | | 0.99 | | 1.00 | 1.00 | 0.61 | | Flpb, ped/bikes | 0.99 | 1.00 | | | 1.00 | | | 0.89 | | 0.92 | 1.00 | 1.00 | | Frt | 1.00 | 0.99 | | | 0.96 | | | 0.98 | | 1.00 | 1.00 | 0.85 | | Flt Protected | 0.95 | 1.00 | | | 1.00 | | | 0.99 | | 0.95 | 1.00 | 1.00 | | Satd. Flow (prot) | 1483 | 2950 | | | 2695 | | | 1437 | | 1415 | 1691 | 871 | | Flt Permitted | 0.20 | 1.00 | | | 0.93 | | | 0.93 | | 0.71 | 1.00 | 1.00 | | Satd. Flow (perm) | 306 | 2950 | | | 2497 | | | 1352 | | 1053 | 1691 | 871 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 122 | 606 | 22 | 17 | 500 | 167 | 22 | 44 | 11 | 111 | 11 | 122 | | RTOR Reduction (vph) | 0 | 2 | 0 | 0 | 26 | 0 | 0 | 5 | 0 | 0 | 0 | 88 | | Lane Group Flow (vph) | 122 | 626 | 0 | 0 | 658 | 0 | 0 | 72 | 0 | 111 | 11 | 34 | | Confl. Peds. (#/hr) | 150 | | 170 | 170 | | 150 | 655 | | 85 | 85 | | 655 | | Heavy Vehicles (%) | 7% | 7% | 6% | 0% | 6% | 4% | 0% | 0% | 0% | 4% | 0% | 1% | | Turn Type | pm+pt | | | Perm | | | Perm | | | Perm | | Perm | | Protected Phases | 5 | 2 | | _ | 6 | | | 8 | | | 4 | | | Permitted Phases | 2 | | | 6 | | | 8 | | | 4 | | 4 | | Actuated Green, G (s) | 40.8 | 40.8 | | | 28.1 | | | 28.6 | | 28.6 | 28.6 | 28.6 | | Effective Green, g (s) | 40.8 | 40.8 | | | 28.1 | | | 28.6 | | 28.6 | 28.6 | 28.6 | | Actuated g/C Ratio | 0.40 | 0.40 | | | 0.27 | | | 0.28 | | 0.28 | 0.28 | 0.28 | | Clearance Time (s) | 5.0 | 7.0 | | | 7.0 | | | 7.0 | | 7.0 | 7.0 | 7.0 | | Vehicle Extension (s) | 3.0 | 3.0 | | | 3.0 | | | 3.0 | | 3.0 | 3.0 | 3.0 | | Lane Grp Cap (vph) | 211 | 1178 | | | 687 | | | 378 | | 295 | 473 | 244 | | v/s Ratio Prot | 0.04 | c0.21 | | | 0.00 | | | 0.05 | | 0.44 | 0.01 | 0.04 | | v/s Ratio Perm | 0.19 | 0.50 | | | c0.26 | | | 0.05 | | c0.11 | 0.00 | 0.04 | | v/c Ratio | 0.58 | 0.53 | | | 0.96 | | | 0.19 | | 0.38 | 0.02 | 0.14 | | Uniform Delay, d1 | 21.8 | 23.4 | | | 36.5 | | | 28.0 | | 29.6 | 26.7 | 27.6 | | Progression Factor | 1.00 | 1.00 | | | 1.00 | | | 1.00 | | 1.00 | 1.00 | 1.00 | | Incremental Delay, d2 | 3.8 | 1.7 | | | 25.4 | | | 1.1 | | 3.6 | 0.1 | 1.2 | | Delay (s) | 25.6 | 25.1
C | | | 61.9 | | | 29.1 | | 33.3 | 26.8 | 28.8 | | Level of Service | С | 25.2 | | | E
61.9 | | | C | | С | C | С | | Approach Delay (s) Approach LOS | | 25.2
C | | | 61.9
E | | | 29.1
C | | | 30.7
C | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 40.4 | H | CM Level | of Service | Э | | D | | | | | HCM Volume to Capacity ra | ıtio | | 0.69 | | | | | | | | | | | Actuated Cycle Length (s) | | | 102.2 | | um of lost | | | | 39.8 | | | | | Intersection Capacity Utiliza | ition | | 85.5% | IC | U Level o | of Service | | | Е | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | • | • | ← | 4 | 1 | † | / | / | † | 1 | |-----------------------------------|------|----------|-------|------|------------|------------|------|----------|------|----------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 414 | | | 414 | | | 4 | | | 4 | | | Volume (vph) | 45 | 605 | 10 | 15 | 560 | 320 | 45 | 0 | 30 | 20 | 0 | 15 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | 7.0 | | | 7.0 | | | 7.0 | | | 7.0 | | | Lane Util. Factor | | 0.95 | | | 0.95 | | | 1.00 | | | 1.00 | | | Frpb, ped/bikes | | 1.00 | | | 0.95 | | | 0.99 | | | 0.99 | | | Flpb, ped/bikes | | 1.00 | | | 1.00 | | | 0.99 | | | 0.99 | | | Frt | | 1.00 | | | 0.95 | | | 0.95 | | | 0.94 | | | Flt Protected | | 1.00 | | | 1.00 | | | 0.97 | | | 0.97 | | | Satd. Flow (prot) | | 3011 | | | 2774 | | | 1508 | | | 1520 | | | Flt Permitted | | 0.77 | | | 0.93 | | | 0.79 | | | 0.83 | | | Satd. Flow (perm) | | 2319 | | | 2594 | | | 1231 | | | 1299 | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 50 | 672 | 11 | 17 | 622 | 356 | 50 | 0 | 33 | 22 | 0 | 17 | | RTOR Reduction (vph) | 0 | 1 | 0 | 0 | 54 | 0 | 0 | 23 | 0 | 0 | 15 | 0 | | Lane Group Flow (vph) | 0 | 732 | 0 | 0 | 941 | 0 | 0 | 60 | 0 | 0 | 24 | 0 | | Confl. Peds. (#/hr) | 85 | | 185 | 185 | | 85 | 10 | | 15 | 15 | | 10 | | Heavy Vehicles (%) | 0% | 6% | 0% | 13% | 6% | 0% | 2% | 0% | 0% | 0% | 0% | 0% | | Turn Type | Perm | | | Perm | | | Perm | | | Perm | | | | Protected Phases | | 2 | | | 6 | | | 8 | | | 4 | | | Permitted Phases | 2 | | | 6 | | | 8 | | | 4 | | | | Actuated Green, G (s) | | 50.4 | | | 50.4 | | | 9.3 | | | 9.3 | | | Effective Green, g (s) | | 50.4 | | | 50.4 | | | 9.3 | | | 9.3 | | | Actuated g/C Ratio | | 0.50 | | | 0.50 | | | 0.09 | | | 0.09 | | | Clearance Time (s) | | 7.0 | | | 7.0 | | | 7.0 | | | 7.0 | | | Vehicle Extension (s) | | 3.0 | | | 3.0 | | | 3.0 | | | 3.0 | | | Lane Grp Cap (vph) | | 1149 | | | 1286 | | | 113 | | | 119 | | | v/s Ratio Prot | | | | | | | | | | | | | | v/s Ratio Perm | | 0.32 | | | c0.36 | | | c0.05 | | | 0.02 | | | v/c Ratio | | 0.64 | | | 0.73 | | | 0.53 | | | 0.20 | | | Uniform Delay, d1 | | 18.9 | | | 20.3 | | | 44.1 | | | 42.7 | | | Progression Factor | | 1.00 | | | 1.00 | | | 1.00 | | | 1.00 | | | Incremental Delay, d2 | | 2.7 | | | 3.7 | | | 4.8 | | | 0.8 | | | Delay (s) | | 21.6 | | | 24.0 | | | 48.9 | | | 43.6 | | | Level of Service | | С | | | С | | | D | | | D | | | Approach Delay (s) | | 21.6 | | | 24.0 | | | 48.9 | | | 43.6 | | | Approach LOS | | С | | | С | | | D | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 24.6 | H | CM Level | of Service | 9 | | С | | | | | HCM Volume to Capacity ratio | | | 0.70 | | | | | | | | | | | Actuated Cycle Length (s) | | | 101.7 | | um of lost | | | | 42.0 | | | | | Intersection Capacity Utilization | | | 82.6% | IC | U Level o | of Service | | | Е | | | | | Analysis Period (min) | | | 15 | | | | | | | | | |
| c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | * | • | ← | 4 | 1 | † | / | / | + | √ | |-------------------------------|-------|------------|--------|------|------------|------------|------|----------|----------|----------|----------|-------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | ∱ ⊅ | | ሻ | ተ ኈ | | | 4 | | | र्स | 7 | | Volume (vph) | 115 | 520 | 20 | 50 | 675 | 210 | 5 | 65 | 50 | 80 | 10 | 340 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 5.0 | 7.0 | | 7.0 | 7.0 | | | 7.0 | | | 7.0 | 7.0 | | Lane Util. Factor | 1.00 | 0.95 | | 1.00 | 0.95 | | | 1.00 | | | 1.00 | 1.00 | | Frpb, ped/bikes | 1.00 | 0.99 | | 1.00 | 0.96 | | | 0.90 | | | 1.00 | 0.83 | | Flpb, ped/bikes | 1.00 | 1.00 | | 0.89 | 1.00 | | | 0.99 | | | 0.84 | 1.00 | | Frt | 1.00 | 0.99 | | 1.00 | 0.96 | | | 0.94 | | | 1.00 | 0.85 | | FIt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | | 1.00 | | | 0.96 | 1.00 | | Satd. Flow (prot) | 1570 | 2965 | | 1435 | 2819 | | | 1426 | | | 1305 | 1174 | | FIt Permitted | 0.16 | 1.00 | | 0.43 | 1.00 | | | 0.99 | | | 0.71 | 1.00 | | Satd. Flow (perm) | 269 | 2965 | | 642 | 2819 | | | 1411 | | | 964 | 1174 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 128 | 578 | 22 | 56 | 750 | 233 | 6 | 72 | 56 | 89 | 11 | 378 | | RTOR Reduction (vph) | 0 | 3 | 0 | 0 | 29 | 0 | 0 | 33 | 0 | 0 | 0 | 254 | | Lane Group Flow (vph) | 128 | 597 | 0 | 56 | 954 | 0 | 0 | 101 | 0 | 0 | 100 | 124 | | Confl. Peds. (#/hr) | 180 | | 165 | 165 | | 180 | 200 | | 275 | 275 | | 200 | | Heavy Vehicles (%) | 2% | 7% | 0% | 0% | 6% | 4% | 0% | 0% | 0% | 4% | 0% | 1% | | Turn Type | pm+pt | | | Perm | | | Perm | | | Perm | | Perm | | Protected Phases | 5 | 2 | | | 6 | | | 8 | | | 4 | | | Permitted Phases | 2 | | | 6 | | | 8 | | | 4 | | 4 | | Actuated Green, G (s) | 45.7 | 45.7 | | 33.4 | 33.4 | | | 20.6 | | | 20.6 | 20.6 | | Effective Green, g (s) | 45.7 | 45.7 | | 33.4 | 33.4 | | | 20.6 | | | 20.6 | 20.6 | | Actuated g/C Ratio | 0.57 | 0.57 | | 0.42 | 0.42 | | | 0.26 | | | 0.26 | 0.26 | | Clearance Time (s) | 5.0 | 7.0 | | 7.0 | 7.0 | | | 7.0 | | | 7.0 | 7.0 | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | | | 3.0 | | | 3.0 | 3.0 | | Lane Grp Cap (vph) | 271 | 1687 | | 267 | 1173 | | | 362 | | | 247 | 301 | | v/s Ratio Prot | c0.04 | 0.20 | | | c0.34 | | | | | | | | | v/s Ratio Perm | 0.23 | | | 0.09 | | | | 0.07 | | | 0.10 | c0.11 | | v/c Ratio | 0.47 | 0.35 | | 0.21 | 0.81 | | | 0.28 | | | 0.40 | 0.41 | | Uniform Delay, d1 | 10.5 | 9.3 | | 15.0 | 20.7 | | | 23.9 | | | 24.8 | 24.8 | | Progression Factor | 1.00 | 1.00 | | 1.00 | 1.00 | | | 1.00 | | | 1.00 | 1.00 | | Incremental Delay, d2 | 1.3 | 0.6 | | 1.8 | 6.2 | | | 0.4 | | | 1.1 | 0.9 | | Delay (s) | 11.8 | 9.9 | | 16.8 | 26.9 | | | 24.3 | | | 25.9 | 25.8 | | Level of Service | В | Α | | В | С | | | С | | | С | С | | Approach Delay (s) | | 10.3 | | | 26.4 | | | 24.3 | | | 25.8 | | | Approach LOS | | В | | | С | | | С | | | С | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Dela | | | 21.2 | Н | CM Level | of Service | 9 | | С | | | | | HCM Volume to Capacity ra | atio | | 0.64 | | | | | | | | | | | Actuated Cycle Length (s) | | | 80.3 | | um of lost | | | | 19.0 | | | | | Intersection Capacity Utiliza | ation | | 102.8% | IC | U Level c | of Service | | | G | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | ← | • | \ | 4 | | |---------------------------------|-------|----------|----------|------|------------|------------|--| | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | | Lane Configurations | * | ^ | ^ | | ች | 7 | | | Volume (vph) | 200 | 400 | 735 | 115 | 95 | 240 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | 6.0 | 6.0 | 6.0 | | 6.0 | 6.0 | | | Lane Util. Factor | 1.00 | 0.95 | 0.95 | | 1.00 | 1.00 | | | Frpb, ped/bikes | 1.00 | 1.00 | 0.99 | | 1.00 | 0.94 | | | Flpb, ped/bikes | 0.99 | 1.00 | 1.00 | | 1.00 | 1.00 | | | Frt | 1.00 | 1.00 | 0.98 | | 1.00 | 0.85 | | | Fit Protected | 0.95 | 1.00 | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (prot) | 1526 | 3031 | 2923 | | 1545 | 1312 | | | Flt Permitted | 0.24 | 1.00 | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (perm) | 381 | 3031 | 2923 | | 1545 | 1312 | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | Adj. Flow (vph) | 222 | 444 | 817 | 128 | 106 | 267 | | | RTOR Reduction (vph) | 0 | 0 | 16 | 0 | 0 | 56 | | | Lane Group Flow (vph) | 222 | 444 | 929 | 0 | 106 | 211 | | | Confl. Peds. (#/hr) | 85 | | | 85 | 60 | 55 | | | Heavy Vehicles (%) | 4% | 6% | 6% | 12% | 4% | 3% | | | Turn Type | Perm | | | | | Perm | | | Protected Phases | | 2 | 6 | | 4 | | | | Permitted Phases | 2 | | | | | 4 | | | Actuated Green, G (s) | 41.0 | 41.0 | 41.0 | | 27.0 | 27.0 | | | Effective Green, g (s) | 41.0 | 41.0 | 41.0 | | 27.0 | 27.0 | | | Actuated g/C Ratio | 0.51 | 0.51 | 0.51 | | 0.34 | 0.34 | | | Clearance Time (s) | 6.0 | 6.0 | 6.0 | | 6.0 | 6.0 | | | Lane Grp Cap (vph) | 195 | 1553 | 1498 | | 521 | 443 | | | v/s Ratio Prot | | 0.15 | 0.32 | | 0.07 | | | | v/s Ratio Perm | c0.58 | | | | | c0.16 | | | v/c Ratio | 1.14 | 0.29 | 0.62 | | 0.20 | 0.48 | | | Uniform Delay, d1 | 19.5 | 11.1 | 13.9 | | 18.9 | 20.9 | | | Progression Factor | 1.00 | 1.00 | 1.00 | | 1.00 | 1.00 | | | Incremental Delay, d2 | 106.6 | 0.5 | 1.9 | | 0.9 | 3.7 | | | Delay (s) | 126.1 | 11.6 | 15.9 | | 19.7 | 24.6 | | | Level of Service | F | В | В | | В | С | | | Approach Delay (s) | | 49.8 | 15.9 | | 23.2 | | | | Approach LOS | | D | В | | С | | | | Intersection Summary | | | | | | | | | HCM Average Control Delay | | | 28.6 | Н | CM Level | of Service | | | HCM Volume to Capacity rati | 0 | | 0.88 | | 0.01 | | | | Actuated Cycle Length (s) | - | | 80.0 | Sı | ım of lost | time (s) | | | Intersection Capacity Utilizati | on | | 84.0% | | | of Service | | | Analysis Period (min) | | | 15 | | | | | | | • | → | ← | • | \ | 1 | | |---------------------------------|------|----------|----------|------|------------|------------|--| | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | | Lane Configurations | ች | ↑ | ↑ | 7 | ች | 7 | | | Volume (vph) | 70 | 645 | 580 | 155 | 95 | 95 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | | Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | Frpb, ped/bikes | 1.00 | 1.00 | 1.00 | 0.74 | 1.00 | 0.93 | | | Flpb, ped/bikes | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | Frt | 1.00 | 1.00 | 1.00 | 0.85 | 1.00 | 0.85 | | | Flt Protected | 0.95 | 1.00 | 1.00 | 1.00 | 0.95 | 1.00 | | | Satd. Flow (prot) | 1606 | 1642 | 1674 | 1050 | 1545 | 1314 | | | Flt Permitted | 0.95 | 1.00 | 1.00 | 1.00 | 0.95 | 1.00 | | | Satd. Flow (perm) | 1606 | 1642 | 1674 | 1050 | 1545 | 1314 | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | | Adj. Flow (vph) | 74 | 679 | 611 | 163 | 100 | 100 | | | RTOR Reduction (vph) | 0 | 0 | 0 | 75 | 0 | 72 | | | Lane Group Flow (vph) | 74 | 679 | 611 | 88 | 100 | 28 | | | Confl. Peds. (#/hr) | 243 | | | 243 | 38 | 27 | | | Heavy Vehicles (%) | 0% | 3% | 1% | 1% | 4% | 2% | | | Turn Type | Prot | | | Perm | | Perm | | | Protected Phases | 5 | 2 5 | 6 | | 4 | | | | Permitted Phases | | | | 6 | | 4 | | | Actuated Green, G (s) | 14.2 | 57.7 | 36.5 | 36.5 | 35.5 | 35.5 | | | Effective Green, g (s) | 14.2 | 57.7 | 36.5 | 36.5 | 35.5 | 35.5 | | | Actuated g/C Ratio | 0.11 | 0.46 | 0.29 | 0.29 | 0.28 | 0.28 | | | Clearance Time (s) | 7.0 | | 7.0 | 7.0 | 7.0 | 7.0 | | | Vehicle Extension (s) | 3.0 | | 3.0 | 3.0 | 3.0 | 3.0 | | | Lane Grp Cap (vph) | 181 | 752 | 485 | 304 | 435 | 370 | | | v/s Ratio Prot | 0.05 | c0.41 | c0.36 | | c0.06 | | | | v/s Ratio Perm | | | | 0.08 | | 0.02 | | | v/c Ratio | 0.41 | 0.90 | 1.26 | 0.29 | 0.23 | 80.0 | | | Uniform Delay, d1 | 52.0 | 31.6 | 44.8 | 34.7 | 34.8 | 33.2 | | | Progression Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | Incremental Delay, d2 | 1.5 | 14.1 | 132.8 | 2.4 | 1.2 | 0.4 | | | Delay (s) | 53.5 | 45.7 | 177.5 | 37.1 | 36.0 | 33.6 | | | Level of Service | D | D | F | D | D | С | | | Approach Delay (s) | | 46.5 | 147.9 | | 34.8 | | | | Approach LOS | | D | F | | С | | | | Intersection Summary | | | | | | | | | HCM Average Control Delay | | | 90.6 | H | CM Level | of Service | | | HCM Volume to Capacity rati | 0 | | 0.82 | | | | | | Actuated Cycle Length (s) | | | 126.0 | Sı | um of lost | time (s) | | | Intersection Capacity Utilizati | on | | 86.4% | | | of Service | | | Analysis Period (min) | | | 15 | | | | | | , manyoro i oriou (mini) | | | | | | | | | | ۶ | - | • | • | > | 4 | | | |---------------------------------|------|----------|------------|------|-------------|------------|----|----| | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | | | ane Configurations | * | † | ↑ ↑ | | | # | | | | olume (vph) | 45 | 695 | 685 | 10 | 0 | 50 | | | | eal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | tal Lost time (s) | 7.0 | 7.0 | 7.0 | | | 6.0 | | | | ne Util. Factor | 1.00 | 1.00 | 0.95 | | | 1.00 | | | | t | 1.00 | 1.00 | 1.00 | | | 0.86 | | | | t Protected | 0.95 | 1.00 | 1.00 | | | 1.00 | | | | atd. Flow (prot) | 1606 | 1642 | 3144 | | | 1463 | | | | t Permitted | 0.95 | 1.00 | 1.00 | | | 1.00 | | | | atd. Flow (perm) | 1606 | 1642 | 3144 | | | 1463 | | | | eak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | | | dj. Flow (vph) | 47 | 732 | 721 | 11 | 0 | 53 | | | | TOR Reduction (vph) | 0 | 0 | 1 | 0 | 0 | 32 | | | | ane Group Flow (vph) | 47 | 732 | 731 | 0 | 0 | 21 | | | | eavy
Vehicles (%) | 0% | 3% | 2% | 0% | 0% | 0% | | | | ırn Type | Prot | | | | | custom | | | | otected Phases | 9 : | 2 7 9 10 | 6 | | | 7 9 10 | | | | rmitted Phases | | | | | | | | | | tuated Green, G (s) | 10.0 | 106.9 | 43.9 | | | 50.0 | | | | fective Green, g (s) | 10.0 | 94.9 | 43.9 | | | 43.0 | | | | tuated g/C Ratio | 0.09 | 0.89 | 0.41 | | | 0.40 | | | | earance Time (s) | 7.0 | | 7.0 | | | | | | | hicle Extension (s) | 3.0 | | 3.0 | | | | | | | ine Grp Cap (vph) | 150 | 1458 | 1291 | | | 588 | | | | s Ratio Prot | 0.03 | c0.45 | c0.23 | | | 0.01 | | | | Ratio Perm | | | | | | | | | | Ratio | 0.31 | 0.50 | 0.57 | | | 0.04 | | | | niform Delay, d1 | 45.2 | 1.2 | 24.2 | | | 19.4 | | | | ogression Factor | 1.00 | 1.00 | 1.00 | | | 1.00 | | | | cremental Delay, d2 | 1.2 | 0.3 | 1.8 | | | 0.0 | | | | elay (s) | 46.4 | 1.5 | 26.0 | | | 19.4 | | | | evel of Service | D | Α | С | | | В | | | | pproach Delay (s) | | 4.2 | 26.0 | | 19.4 | | | | | proach LOS | | Α | С | | В | | | | | ersection Summary | | | | | | | | | | CM Average Control Delay | | | 14.9 | Н | CM Level | of Service | | В | | M Volume to Capacity ratio | | | 0.52 | | | | | | | tuated Cycle Length (s) | | | 106.9 | Sı | ım of lost | time (s) | 14 | .0 | | tersection Capacity Utilization | 1 | | 46.5% | | | of Service | | Α | | nalysis Period (min) | | | 15 | | | | | | | | • | → | • | • | ← | • | • | † | / | \ | ↓ | 4 | |-------------------------------|-------------|----------|-------|------|------------|------------|------|----------|----------|----------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | ħβ | | | 414 | | | 44 | | ሻ | f) | | | Volume (vph) | 110 | 570 | 10 | 30 | 610 | 65 | 15 | 25 | 15 | 50 | 15 | 105 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 7.0 | 7.0 | | | 7.0 | | | 7.0 | | 7.0 | 7.0 | | | Lane Util. Factor | 1.00 | 0.95 | | | 0.95 | | | 1.00 | | 1.00 | 1.00 | | | Frpb, ped/bikes | 1.00 | 1.00 | | | 0.96 | | | 0.97 | | 1.00 | 0.93 | | | Flpb, ped/bikes | 0.87 | 1.00 | | | 1.00 | | | 0.98 | | 0.92 | 1.00 | | | Frt | 1.00 | 1.00 | | | 0.99 | | | 0.96 | | 1.00 | 0.87 | | | Flt Protected | 0.95 | 1.00 | | | 1.00 | | | 0.99 | | 0.95 | 1.00 | | | Satd. Flow (prot) | 1389 | 3020 | | | 2978 | | | 1536 | | 1365 | 1363 | | | FIt Permitted | 0.30 | 1.00 | | | 0.90 | | | 0.89 | | 0.72 | 1.00 | | | Satd. Flow (perm) | 442 | 3020 | | | 2692 | | | 1392 | | 1033 | 1363 | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 116 | 600 | 11 | 32 | 642 | 68 | 16 | 26 | 16 | 53 | 16 | 111 | | RTOR Reduction (vph) | 0 | 1 | 0 | 0 | 6 | 0 | 0 | 13 | 0 | 0 | 87 | 0 | | Lane Group Flow (vph) | 116 | 610 | 0 | 0 | 736 | 0 | 0 | 45 | 0 | 53 | 40 | 0 | | Confl. Peds. (#/hr) | 184 | | 40 | 40 | | 184 | 82 | | 101 | 101 | | 82 | | Heavy Vehicles (%) | 1% | 6% | 0% | 0% | 2% | 0% | 0% | 0% | 0% | 8% | 0% | 0% | | Turn Type | Perm | | | Perm | | | Perm | | | Perm | | | | Protected Phases | | 2 | | | 6 | | | 8 | | | 4 | | | Permitted Phases | 2 | | | 6 | | | 8 | | | 4 | | | | Actuated Green, G (s) | 32.7 | 32.7 | | | 32.7 | | | 16.9 | | 16.9 | 16.9 | | | Effective Green, g (s) | 32.7 | 32.7 | | | 32.7 | | | 16.9 | | 16.9 | 16.9 | | | Actuated g/C Ratio | 0.41 | 0.41 | | | 0.41 | | | 0.21 | | 0.21 | 0.21 | | | Clearance Time (s) | 7.0 | 7.0 | | | 7.0 | | | 7.0 | | 7.0 | 7.0 | | | Vehicle Extension (s) | 3.0 | 3.0 | | | 3.0 | | | 3.0 | | 3.0 | 3.0 | | | Lane Grp Cap (vph) | 182 | 1241 | | | 1106 | | | 296 | | 219 | 289 | | | v/s Ratio Prot | | 0.20 | | | | | | | | | 0.03 | | | v/s Ratio Perm | 0.26 | | | | c0.27 | | | 0.03 | | c0.05 | | | | v/c Ratio | 0.64 | 0.49 | | | 0.67 | | | 0.15 | | 0.24 | 0.14 | | | Uniform Delay, d1 | 18.7 | 17.3 | | | 19.0 | | | 25.5 | | 26.0 | 25.4 | | | Progression Factor | 1.00 | 1.00 | | | 1.00 | | | 0.84 | | 1.00 | 1.00 | | | Incremental Delay, d2 | 15.8 | 1.4 | | | 3.2 | | | 0.2 | | 0.6 | 0.2 | | | Delay (s) | 34.6 | 18.7 | | | 22.2 | | | 21.7 | | 26.6 | 25.7 | | | Level of Service | С | В | | | С | | | С | | С | С | | | Approach Delay (s) | | 21.2 | | | 22.2 | | | 21.7 | | | 25.9 | | | Approach LOS | | С | | | С | | | С | | | С | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Dela | у | | 22.2 | H | CM Level | of Service | Э | | С | | | | | HCM Volume to Capacity ra | atio | | 0.52 | | | | | | | | | | | Actuated Cycle Length (s) | | | 79.6 | S | um of lost | time (s) | | | 30.0 | | | | | Intersection Capacity Utiliza | ation | | 80.2% | IC | U Level o | of Service | | | D | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | Description: Queen's Quay | / Rees / Ra | disson W | est | | | | | | | | | | | | ۶ | → | * | F | • | ← | • | 1 | † | ~ | / | ţ | |---|--------------|--------------|-----------|--------------|------------|--------------|------|----------|----------|------|------------|------------| | Movement | EBL | EBT | EBR | WBU | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | | Lane Configurations | ሻ | Φ₽ | | Ð | | ∱ ⊅ | | 7 | ĵ⇒ | | ሻ | ĵ» | | Volume (vph) | 65 | 585 | 0 | 50 | 20 | 650 | 80 | 15 | 45 | 35 | 65 | 5 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 7.0 | 7.0 | | 7.0 | | 7.0 | | 7.0 | 7.0 | | 7.0 | 7.0 | | Lane Util. Factor | 1.00 | 0.95 | | 1.00 | | 0.95 | | 1.00 | 1.00 | | 1.00 | 1.00 | | Frpb, ped/bikes | 1.00 | 1.00 | | 1.00 | | 0.98 | | 1.00 | 1.00 | | 1.00 | 0.97 | | Flpb, ped/bikes | 0.95 | 1.00 | | 1.00 | | 1.00 | | 1.00 | 1.00 | | 0.93 | 1.00 | | Frt | 1.00 | 1.00 | | 1.00 | | 0.98 | | 1.00 | 0.93 | | 1.00 | 0.86 | | Flt Protected | 0.95 | 1.00 | | 0.95 | | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | | Satd. Flow (prot) | 1479 | 3060 | | 1606 | | 3038 | | 1575 | 1548 | | 1423 | 1376 | | Flt Permitted | 0.30 | 1.00 | | 0.40 | | 0.93 | | 0.72 | 1.00 | | 0.70 | 1.00 | | Satd. Flow (perm) | 475 | 3060 | 2.05 | 674 | | 2823 | 0.05 | 1199 | 1548 | 2.05 | 1052 | 1376 | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 68 | 616 | 0 | 53 | 21 | 684 | 84 | 16 | 47 | 37 | 68 | 5 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 32 | 0 | 0 | 41 | | Lane Group Flow (vph) | 68 | 616 | 0 | 53 | 0 | 782 | 0 | 16 | 52 | 0 | 68 | 11 | | Confl. Peds. (#/hr) | 138 | F 0/ | 00/ | 00/ | 00/ | 00/ | 138 | 00/ | 00/ | 00/ | 101 | 00/ | | Heavy Vehicles (%) | 3% | 5% | 2% | 0% | 2% | 2% | 1% | 2% | 2% | 2% | 5% | 2% | | Turn Type | Perm | 0 | | Perm | Perm | ^ | | Perm | 0 | | Perm | 4 | | Protected Phases | 2 | 2 | | c | c | 6 | | 0 | 8 | | 4 | 4 | | Permitted Phases | 2
35.7 | 25.7 | | 6 | 6 | 35.7 | | 8
9.6 | 9.6 | | 4 | 0.6 | | Actuated Green, G (s) | 35.7
35.7 | 35.7
35.7 | | 35.7
35.7 | | 35.7
35.7 | | 9.6 | 9.6 | | 9.6
9.6 | 9.6
9.6 | | Effective Green, g (s) Actuated g/C Ratio | 0.47 | 0.47 | | 0.47 | | 0.47 | | 0.13 | 0.13 | | 0.13 | 0.13 | | Clearance Time (s) | 7.0 | 7.0 | | 7.0 | | 7.0 | | 7.0 | 7.0 | | 7.0 | 7.0 | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | | 3.0 | | 3.0 | 3.0 | | 3.0 | 3.0 | | Lane Grp Cap (vph) | 225 | 1451 | | 320 | | 1338 | | 153 | 197 | | 134 | 175 | | v/s Ratio Prot | 220 | 0.20 | | 320 | | 1330 | | 100 | 0.03 | | 134 | 0.01 | | v/s Ratio Perm | 0.14 | 0.20 | | 0.08 | | c0.28 | | 0.01 | 0.03 | | c0.06 | 0.01 | | v/c Ratio | 0.14 | 0.42 | | 0.00 | | 0.58 | | 0.10 | 0.26 | | 0.51 | 0.06 | | Uniform Delay, d1 | 12.2 | 13.0 | | 11.3 | | 14.4 | | 29.0 | 29.7 | | 30.6 | 28.9 | | Progression Factor | 1.00 | 1.00 | | 1.00 | | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | Incremental Delay, d2 | 3.4 | 0.9 | | 1.1 | | 1.9 | | 0.3 | 0.7 | | 3.0 | 0.2 | | Delay (s) | 15.6 | 13.9 | | 12.4 | | 16.3 | | 29.4 | 30.4 | | 33.6 | 29.0 | | Level of Service | В | В | | В | | В | | C | C | | C | 23.0
C | | Approach Delay (s) | | 14.1 | | | | 16.0 | | | 30.2 | | | 31.7 | | Approach LOS | | В | | | | В | | | C | | | C | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Dela | | | 17.2 | H | CM Level | of Service |) | | В | | | | | HCM Volume to Capacity ra | atio | | 0.57 | | | | | | | | | | | Actuated Cycle Length (s) | | | 75.3 | | um of lost | | | | 30.0 | | | | | Intersection Capacity Utiliza | ation | | 80.5% | IC | U Level c | of Service | | | D | | | | | Analysis Period (min) | | | 15 | _ | | | | | | | | | | Description: Queen's Quay | / Lower Sim | coe / Har | bourfront | East | | | | | | | | | | | ۶ | → | • | • | ← | • | 4 | † | ~ | / | ↓ | 4 | |-------------------------------|-------------|--------------|-------|------|---------------|------------|------|--------------|------|--------------|--------------|--------------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | ∱ ⊅ | | | सीके | | | 4 | | ሻ | ↑ | 7 | | Volume (vph) | 90 | 625 | 15 | 5 | 705 | 265 | 10 | 15 | 15 | 55 | 20 | 115 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 5.0 | 7.0 | | | 7.0 | | | 7.0 | | 7.0 | 7.0 | 7.0 | | Lane Util. Factor | 1.00 | 0.95 | | | 0.95 | | | 1.00 | | 1.00 | 1.00 | 1.00 | | Frpb, ped/bikes | 1.00 | 0.99 | | | 0.90 | | | 0.96 | | 1.00 | 1.00 | 0.63 | | Flpb, ped/bikes
Frt | 1.00 | 1.00 | | | 1.00
0.96 | | | 0.91
0.95 | | 0.91
1.00 | 1.00
1.00 | 1.00
0.85 | | FIt Protected | 0.95 | 1.00 | | | 1.00 | | | 0.95 | | 0.95 | 1.00 | 1.00 | | Satd. Flow (prot) | 1606 | 3013 | | | 2753 | | | 1386 | | 1420 | 1691 | 908 | | Flt Permitted | 0.11 | 1.00 | | | 0.95 | | | 0.94 | | 0.73 | 1.00 | 1.00 |
| Satd. Flow (perm) | 188 | 3013 | | | 2619 | | | 1326 | | 1090 | 1691 | 908 | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 95 | 658 | 16 | 5 | 742 | 279 | 11 | 16 | 16 | 58 | 21 | 121 | | RTOR Reduction (vph) | 0 | 1 | 0 | 0 | 31 | 0 | 0 | 12 | 0 | 0 | 0 | 87 | | Lane Group Flow (vph) | 95 | 673 | 0 | 0 | 995 | 0 | 0 | 31 | 0 | 58 | 21 | 34 | | Confl. Peds. (#/hr) | 170 | | 333 | 333 | | 170 | 559 | | 86 | 86 | | 559 | | Heavy Vehicles (%) | 0% | 5% | 0% | 0% | 1% | 0% | 0% | 0% | 0% | 3% | 0% | 0% | | Turn Type | pm+pt | | | Perm | | | Perm | | | Perm | | Perm | | Protected Phases | 5 | 2 | | | 6 | | | 8 | | | 4 | | | Permitted Phases | 2 | | | 6 | | | 8 | | | 4 | | 4 | | Actuated Green, G (s) | 41.8 | 41.8 | | | 30.9 | | | 28.6 | | 28.6 | 28.6 | 28.6 | | Effective Green, g (s) | 41.8 | 41.8 | | | 30.9 | | | 28.6 | | 28.6 | 28.6 | 28.6 | | Actuated g/C Ratio | 0.41 | 0.41 | | | 0.30 | | | 0.28 | | 0.28 | 0.28 | 0.28 | | Clearance Time (s) | 5.0 | 7.0 | | | 7.0 | | | 7.0 | | 7.0 | 7.0 | 7.0 | | Vehicle Extension (s) | 3.0 | 3.0 | | | 3.0 | | | 3.0 | | 3.0 | 3.0 | 3.0 | | Lane Grp Cap (vph) | 157 | 1220 | | | 784 | | | 367 | | 302 | 469 | 252 | | v/s Ratio Prot | 0.03 | c0.22 | | | 0.00 | | | 0.00 | | | 0.01 | 2.24 | | v/s Ratio Perm | 0.21 | 0.55 | | | c0.38 | | | 0.02 | | c0.05 | 0.04 | 0.04 | | v/c Ratio | 0.61 | 0.55 | | | 1.27 | | | 0.09 | | 0.19 | 0.04 | 0.13 | | Uniform Delay, d1 | 23.9 | 23.5
1.00 | | | 36.2 | | | 27.6
1.00 | | 28.5 | 27.3 | 28.0 | | Progression Factor | 1.00
6.4 | 1.00 | | | 1.00
131.2 | | | 0.5 | | 1.00
1.4 | 1.00
0.2 | 1.00
1.1 | | Incremental Delay, d2 | | | | | | | | | | | | 29.1 | | Delay (s)
Level of Service | 30.4
C | 25.3
C | | | 167.4
F | | | 28.1
C | | 29.9
C | 27.5
C | 29.1
C | | Approach Delay (s) | U | 25.9 | | | 167.4 | | | 28.1 | | U | 29.2 | U | | Approach LOS | | C | | | F | | | C | | | C | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Dela | , | | 97.5 | Н | CM Level | of Servic | е | | F | | | | | HCM Volume to Capacity ra | itio | | 0.78 | _ | | | | | 00.0 | | | | | Actuated Cycle Length (s) | . | | 103.2 | | um of lost | ٠, | | | 39.8 | | | | | Intersection Capacity Utiliza | ition | | 97.4% | IC | CU Level of | of Service | | | F | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | • | • | • | • | 4 | † | / | / | Ţ | 4 | |---|------|--------------|------------|--------|--------------|------------|------------|--------------|------------|----------|--------------|-------------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 414 | | | र्सी | | | - ↔ | | | 4 | | | Volume (vph) | 15 | 660 | 20 | 20 | 810 | 30 | 10 | 0 | 20 | 175 | 0 | 135 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | 7.0 | | | 7.0 | | | 7.0 | | | 7.0 | | | Lane Util. Factor | | 0.95 | | | 0.95 | | | 1.00 | | | 1.00 | | | Frpb, ped/bikes | | 0.99 | | | 0.99 | | | 0.98 | | | 0.98 | | | Flpb, ped/bikes | | 1.00 | | | 1.00 | | | 1.00 | | | 0.99 | | | Frt | | 1.00 | | | 0.99 | | | 0.91 | | | 0.94 | | | Fit Protected | | 1.00
3004 | | | 1.00
3132 | | | 0.98
1479 | | | 0.97
1506 | | | Satd. Flow (prot) Flt Permitted | | 0.92 | | | 0.92 | | | 0.87 | | | 0.81 | | | Satd. Flow (perm) | | 2772 | | | 2896 | | | 1308 | | | 1250 | | | <u></u> | 0.05 | | 0.05 | 0.05 | | 0.05 | 0.05 | | 0.05 | 0.05 | | 0.05 | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95
21 | 0.95 | 0.95
853 | 0.95
32 | 0.95
11 | 0.95 | 0.95
21 | 0.95 | 0.95 | 0.95
142 | | Adj. Flow (vph) RTOR Reduction (vph) | 16 | 695
2 | 0 | 21 | 003
2 | | 0 | 0
16 | 0 | 184
0 | 0
23 | 142 | | \ 1 / | 0 | 730 | 0 | 0 | 904 | 0 | 0 | 16 | 0 | 0 | 303 | 0 | | Lane Group Flow (vph) Confl. Peds. (#/hr) | 143 | 730 | 109 | 109 | 904 | 143 | 24 | 10 | 14 | 14 | 303 | 24 | | Heavy Vehicles (%) | 0% | 6% | 0% | 0% | 1% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | | | | 0 /0 | 0 /0 | Perm | 1 /0 | U /0 | Perm | 0 /0 | 0 /0 | Perm | 0 /0 | 0 /0 | | Turn Type Protected Phases | Perm | 2 | | Pelili | 6 | | Pelili | 8 | | Pelili | 4 | | | Permitted Phases | 2 | 2 | | 6 | U | | 8 | 0 | | 4 | 4 | | | Actuated Green, G (s) | 2 | 50.9 | | U | 50.9 | | U | 27.5 | | 4 | 27.5 | | | Effective Green, g (s) | | 50.9 | | | 50.9 | | | 27.5 | | | 27.5 | | | Actuated g/C Ratio | | 0.46 | | | 0.46 | | | 0.25 | | | 0.25 | | | Clearance Time (s) | | 7.0 | | | 7.0 | | | 7.0 | | | 7.0 | | | Vehicle Extension (s) | | 3.0 | | | 3.0 | | | 3.0 | | | 3.0 | | | Lane Grp Cap (vph) | | 1269 | | | 1326 | | | 323 | | | 309 | | | v/s Ratio Prot | | 1200 | | | 1020 | | | 020 | | | 000 | | | v/s Ratio Perm | | 0.26 | | | c0.31 | | | 0.01 | | | c0.24 | | | v/c Ratio | | 0.58 | | | 0.68 | | | 0.05 | | | 0.98 | | | Uniform Delay, d1 | | 22.2 | | | 23.8 | | | 31.9 | | | 41.6 | | | Progression Factor | | 1.00 | | | 1.00 | | | 1.00 | | | 1.00 | | | Incremental Delay, d2 | | 1.9 | | | 2.8 | | | 0.1 | | | 46.0 | | | Delay (s) | | 24.1 | | | 26.6 | | | 32.0 | | | 87.6 | | | Level of Service | | С | | | С | | | С | | | F | | | Approach Delay (s) | | 24.1 | | | 26.6 | | | 32.0 | | | 87.6 | | | Approach LOS | | С | | | С | | | С | | | F | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 35.7 | Н | CM Level | of Service | е | | D | | | | | HCM Volume to Capacity ratio | | | 0.79 | | | | | | | | | | | Actuated Cycle Length (s) | | | 111.2 | | um of lost | | | | 32.8 | | | | | Intersection Capacity Utilization | 1 | | 81.5% | IC | CU Level of | of Service | | | D | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | * | • | ← | 4 | 1 | † | <i>></i> | / | Ţ | ✓ | |-------------------------------|-------------|-------------|-------|-------------|--------------|------------|------|-------------|-------------|----------|-------------|-----------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | ∱ ∱ | | ሻ | ተ ኈ | | | 4 | | | र्स | 7 | | Volume (vph) | 185 | 720 | 0 | 50 | 675 | 240 | 5 | 20 | 30 | 95 | 30 | 120 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 5.0 | 7.0 | | 7.0 | 7.0 | | | 7.0 | | | 7.0 | 7.0 | | Lane Util. Factor | 1.00 | 0.95 | | 1.00 | 0.95 | | | 1.00 | | | 1.00 | 1.00 | | Frpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 0.97 | | | 0.92 | | | 1.00 | 0.81 | | Flpb, ped/bikes | 1.00 | 1.00 | | 0.93 | 1.00 | | | 0.99 | | | 0.91 | 1.00 | | Frt | 1.00 | 1.00 | | 1.00 | 0.96 | | | 0.93 | | | 1.00 | 0.85 | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | | 1.00 | | | 0.96 | 1.00 | | Satd. Flow (prot) | 1588 | 3060 | | 1493 | 2941 | | | 1422 | | | 1440 | 1170 | | Flt Permitted | 0.12 | 1.00 | | 0.36 | 1.00 | | | 0.98 | | | 0.74 | 1.00 | | Satd. Flow (perm) | 200 | 3060 | | 572 | 2941 | | | 1398 | | | 1106 | 1170 | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 195 | 758 | 0 | 53 | 711 | 253 | 5 | 21 | 32 | 100 | 32 | 126 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 40 | 0 | 0 | 21 | 0 | 0 | 0 | 84 | | Lane Group Flow (vph) | 195 | 758 | 0 | 53 | 924 | 0 | 0 | 37 | 0 | 0 | 132 | 42 | | Confl. Peds. (#/hr) | 118 | =0/ | 126 | 126 | 40/ | 118 | 197 | 00/ | 142 | 142 | 00/ | 197 | | Heavy Vehicles (%) | 1% | 5% | 0% | 0% | 1% | 3% | 0% | 0% | 0% | 4% | 0% | 0% | | Turn Type | pm+pt | | | Perm | | | Perm | | | Perm | | Perm | | Protected Phases | 5 | 2 | | • | 6 | | | 8 | | _ | 4 | _ | | Permitted Phases | 2 | 44.0 | | 6 | 00.4 | | 8 | 00.0 | | 4 | 00.0 | 4 | | Actuated Green, G (s) | 44.0 | 44.0 | | 28.4 | 28.4 | | | 29.0 | | | 29.0 | 29.0 | | Effective Green, g (s) | 44.0 | 44.0 | | 28.4 | 28.4 | | | 29.0 | | | 29.0 | 29.0 | | Actuated g/C Ratio | 0.51 | 0.51 | | 0.33 | 0.33 | | | 0.33 | | | 0.33 | 0.33 | | Clearance Time (s) | 5.0 | 7.0 | | 7.0 | 7.0 | | | 7.0 | | | 7.0 | 7.0 | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | | | 3.0 | | | 3.0 | 3.0 | | Lane Grp Cap (vph) | 270 | 1548 | | 187 | 960 | | | 466 | | | 369 | 390 | | v/s Ratio Prot | c0.09 | 0.25 | | 0.00 | c0.31 | | | 0.00 | | | -0.40 | 0.04 | | v/s Ratio Perm | 0.28 | 0.40 | | 0.09 | 0.06 | | | 0.03 | | | c0.12 | 0.04 | | v/c Ratio | 0.72 | 0.49 | | 0.28 | 0.96 | | | 0.08 | | | 0.36 | 0.11 | | Uniform Delay, d1 | 16.1 | 14.1 | | 21.7 | 28.8 | | | 19.9 | | | 22.0 | 20.1 | | Progression Factor | 1.00
9.2 | 1.00 | | 1.00 | 1.00
21.2 | | | 1.00 | | | 1.00
2.7 | 1.00 | | Incremental Delay, d2 | 25.3 | 1.1
15.2 | | 3.8
25.5 | 50.0 | | | 0.3
20.2 | | | 24.6 | 0.6 | | Delay (s)
Level of Service | 25.5
C | 15.2
B | | 25.5
C | 50.0
D | | | 20.2
C | | | 24.0
C | 20.6
C | | Approach Delay (s) | C | 17.3 | | C | 48.7 | | | 20.2 | | | 22.7 | C | | Approach LOS | | 17.3
B | | | 40.7
D | | | C C | | | C | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Dela | | | 31.9 | H | CM Level | of Service |) | | С | | | | | HCM Volume to Capacity ra | atio | | 0.67 | | | | | | | | | | | Actuated Cycle Length (s) | | | 87.0 | | um of lost | | | | 19.0 | | | | | Intersection Capacity Utiliza | ation | | 96.8% | IC | U Level c | of Service | | | F | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | • | → | ← | • | \ | 4 | | |---------------------------------|-------|----------|------------|------|------------|------------|--| | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | |
Lane Configurations | ሻ | ^ | ∱ ∱ | | * | 7 | | | Volume (vph) | 185 | 625 | 645 | 200 | 155 | 355 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | 6.0 | 6.0 | 6.0 | | 6.0 | 6.0 | | | Lane Util. Factor | 1.00 | 0.95 | 0.95 | | 1.00 | 1.00 | | | Frpb, ped/bikes | 1.00 | 1.00 | 0.98 | | 1.00 | 0.95 | | | Flpb, ped/bikes | 0.98 | 1.00 | 1.00 | | 1.00 | 1.00 | | | Frt | 1.00 | 1.00 | 0.96 | | 1.00 | 0.85 | | | Flt Protected | 0.95 | 1.00 | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (prot) | 1534 | 3031 | 2965 | | 1516 | 1359 | | | Flt Permitted | 0.26 | 1.00 | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (perm) | 419 | 3031 | 2965 | | 1516 | 1359 | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | | Adj. Flow (vph) | 195 | 658 | 679 | 211 | 163 | 374 | | | RTOR Reduction (vph) | 0 | 0 | 37 | 0 | 0 | 72 | | | Lane Group Flow (vph) | 195 | 658 | 853 | 0 | 163 | 302 | | | Confl. Peds. (#/hr) | 106 | | | 106 | 42 | 49 | | | Heavy Vehicles (%) | 3% | 6% | 2% | 5% | 6% | 0% | | | Turn Type | Perm | | | | | Perm | | | Protected Phases | | 2 | 6 | | 4 | | | | Permitted Phases | 2 | | | | | 4 | | | Actuated Green, G (s) | 41.0 | 41.0 | 41.0 | | 27.0 | 27.0 | | | Effective Green, g (s) | 41.0 | 41.0 | 41.0 | | 27.0 | 27.0 | | | Actuated g/C Ratio | 0.51 | 0.51 | 0.51 | | 0.34 | 0.34 | | | Clearance Time (s) | 6.0 | 6.0 | 6.0 | | 6.0 | 6.0 | | | Lane Grp Cap (vph) | 215 | 1553 | 1520 | | 512 | 459 | | | v/s Ratio Prot | | 0.22 | 0.29 | | 0.11 | | | | v/s Ratio Perm | c0.47 | | | | | c0.22 | | | v/c Ratio | 0.91 | 0.42 | 0.56 | | 0.32 | 0.66 | | | Uniform Delay, d1 | 17.8 | 12.1 | 13.3 | | 19.7 | 22.6 | | | Progression Factor | 1.00 | 1.00 | 1.00 | | 1.00 | 1.00 | | | Incremental Delay, d2 | 41.2 | 0.8 | 1.5 | | 1.6 | 7.2 | | | Delay (s) | 58.9 | 13.0 | 14.8 | | 21.3 | 29.8 | | | Level of Service | Е | В | В | | С | С | | | Approach Delay (s) | | 23.5 | 14.8 | | 27.2 | | | | Approach LOS | | С | В | | С | | | | Intersection Summary | | | | | | | | | HCM Average Control Delay | | | 21.0 | Н | CM Level | of Service | | | HCM Volume to Capacity rat | | | 0.81 | | | | | | Actuated Cycle Length (s) | | | 80.0 | Sı | um of lost | time (s) | | | Intersection Capacity Utilizati | ion | | 105.8% | | | of Service | | | Analysis Period (min) | | | 15 | | | | | | | ۶ | → | • | • | — | • | 1 | † | / | / | + | ✓ | |-----------------------------------|-------|-------------|--------|------|------------|------------|------|------------|------|----------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | 14.14 | ↑ ↑↑ | | | | | | ∱ ∱ | | ሻ | ^ | | | Volume (vph) | 1520 | 2530 | 65 | 0 | 0 | 0 | 0 | 70 | 90 | 165 | 115 | 0 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 7.0 | 7.0 | | | | | | 7.0 | | 6.0 | 7.0 | | | Lane Util. Factor | 0.97 | 0.91 | | | | | | 0.95 | | 1.00 | 0.95 | | | Frpb, ped/bikes | 1.00 | 1.00 | | | | | | 1.00 | | 1.00 | 1.00 | | | Flpb, ped/bikes | 1.00 | 1.00 | | | | | | 1.00 | | 1.00 | 1.00 | | | Frt | 1.00 | 1.00 | | | | | | 0.92 | | 1.00 | 1.00 | | | FIt Protected | 0.95 | 1.00 | | | | | | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (prot) | 3395 | 4912 | | | | | | 3084 | | 1767 | 3433 | | | Flt Permitted | 0.95 | 1.00 | | | | | | 1.00 | | 0.47 | 1.00 | | | Satd. Flow (perm) | 3395 | 4912 | | | | | | 3084 | | 879 | 3433 | | | Peak-hour factor, PHF | 0.97 | 0.97 | 0.97 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 1567 | 2608 | 67 | 0 | 0 | 0 | 0 | 78 | 100 | 183 | 128 | 0 | | RTOR Reduction (vph) | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 41 | 0 | 0 | 0 | 0 | | Lane Group Flow (vph) | 1567 | 2673 | 0 | 0 | 0 | 0 | 0 | 137 | 0 | 183 | 128 | 0 | | Confl. Peds. (#/hr) | | | 20 | | | | | | | | | | | Heavy Vehicles (%) | 2% | 4% | 3% | 0% | 0% | 0% | 0% | 6% | 6% | 1% | 4% | 0% | | Turn Type | Split | | | | | | | | | pm+pt | | | | Protected Phases | 2 | 2 | | | | | | 8 | | 7 | 4 | | | Permitted Phases | | | | | | | | | | 4 | | | | Actuated Green, G (s) | 92.5 | 92.5 | | | | | | 17.0 | | 37.5 | 37.5 | | | Effective Green, g (s) | 92.5 | 92.5 | | | | | | 17.0 | | 37.5 | 37.5 | | | Actuated g/C Ratio | 0.64 | 0.64 | | | | | | 0.12 | | 0.26 | 0.26 | | | Clearance Time (s) | 7.0 | 7.0 | | | | | | 7.0 | | 6.0 | 7.0 | | | Vehicle Extension (s) | 3.0 | 3.0 | | | | | | 3.0 | | 3.0 | 3.0 | | | Lane Grp Cap (vph) | 2181 | 3155 | | | | | | 364 | | 318 | 894 | | | v/s Ratio Prot | 0.46 | c0.54 | | | | | | 0.04 | | c0.06 | 0.04 | | | v/s Ratio Perm | | | | | | | | | | c0.09 | | | | v/c Ratio | 0.72 | 0.85 | | | | | | 0.38 | | 0.58 | 0.14 | | | Uniform Delay, d1 | 17.1 | 20.2 | | | | | | 58.6 | | 44.1 | 40.9 | | | Progression Factor | 1.00 | 1.00 | | | | | | 1.00 | | 1.00 | 1.00 | | | Incremental Delay, d2 | 2.1 | 3.0 | | | | | | 0.7 | | 2.5 | 0.1 | | | Delay (s) | 19.2 | 23.2 | | | | | | 59.3 | | 46.6 | 41.0 | | | Level of Service | В | С | | | | | | E | | D | D | | | Approach Delay (s) | | 21.7 | | | 0.0 | | | 59.3 | | | 44.3 | | | Approach LOS | | С | | | Α | | | E | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 24.6 | H | CM Level | of Service |) | | С | | | | | HCM Volume to Capacity ration |) | | 0.76 | | | | | | | | | | | Actuated Cycle Length (s) | 144.0 | | | | um of lost | | | | 13.0 | | | | | Intersection Capacity Utilization | on | | 120.2% | IC | U Level o | of Service | | | Н | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | • | • | *_ | • | ሻ | † | / | - | ţ | ≽ J | |--------------------------------|-------|-----------------|--------|------|------------|-------------|------|----------|------|------|-------|------------| | Movement | EBL | EBT | EBR | WBL | WBR | WBR2 | NBL | NBT | NBR | SBL | SBT | SBR2 | | Lane Configurations | 77 | ተተ _ጉ | | 7 | 777 | | ň | f) | | | 4₽ | 7 | | Volume (vph) | 470 | 2275 | 40 | 10 | 940 | 135 | 10 | 65 | 100 | 190 | 55 | 10 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 6.0 | 6.0 | | 6.0 | 6.0 | | 8.0 | 8.0 | | | 8.0 | 8.0 | | Lane Util. Factor | 0.97 | 0.91 | | 1.00 | 0.76 | | 1.00 | 1.00 | | | 0.95 | 1.00 | | Frpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 0.97 | | 1.00 | 0.93 | | | 1.00 | 1.00 | | Flpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | | 0.94 | 1.00 | | Frt | 1.00 | 1.00 | | 1.00 | 0.85 | | 1.00 | 0.91 | | | 1.00 | 0.85 | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | | | 0.96 | 1.00 | | Satd. Flow (prot) | 3330 | 4953 | | 1785 | 3476 | | 1750 | 1554 | | | 3160 | 1566 | | Flt Permitted | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.58 | 1.00 | | | 0.66 | 1.00 | | Satd. Flow (perm) | 3330 | 4953 | | 1785 | 3476 | | 1076 | 1554 | | | 2182 | 1566 | | Peak-hour factor, PHF | 0.97 | 0.97 | 0.97 | 0.91 | 0.91 | 0.91 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 485 | 2345 | 41 | 11 | 1033 | 148 | 11 | 72 | 111 | 211 | 61 | 11 | | RTOR Reduction (vph) | 0 | 1 | 0 | 0 | 14 | 0 | 0 | 49 | 0 | 0 | 0 | 8 | | Lane Group Flow (vph) | 485 | 2385 | 0 | 11 | 1167 | 0 | 11 | 134 | 0 | 0 | 272 | 3 | | Confl. Peds. (#/hr) | 5 | | 40 | 40 | | 5 | | | 80 | 80 | | | | Heavy Vehicles (%) | 4% | 3% | 13% | 0% | 2% | 2% | 2% | 5% | 1% | 2% | 4% | 2% | | Turn Type | Prot | | | | custom | | Perm | | | Perm | | Perm | | Protected Phases | 5 | 2 | | 1 | | | | 8 | | | 4 | | | Permitted Phases | | | | | 6 | | 8 | | | 4 | | 4 | | Actuated Green, G (s) | 26.8 | 60.6 | | 4.4 | 38.2 | | 27.0 | 27.0 | | | 27.0 | 27.0 | | Effective Green, g (s) | 26.8 | 60.6 | | 4.4 | 38.2 | | 27.0 | 27.0 | | | 27.0 | 27.0 | | Actuated g/C Ratio | 0.24 | 0.54 | | 0.04 | 0.34 | | 0.24 | 0.24 | | | 0.24 | 0.24 | | Clearance Time (s) | 6.0 | 6.0 | | 6.0 | 6.0 | | 8.0 | 8.0 | | | 8.0 | 8.0 | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | 3.0 | | | 3.0 | 3.0 | | Lane Grp Cap (vph) | 797 | 2680 | | 70 | 1186 | | 259 | 375 | | | 526 | 378 | | v/s Ratio Prot | c0.15 | c0.48 | | 0.01 | | | | 0.09 | | | | | | v/s Ratio Perm | | | | | c0.34 | | 0.01 | | | | c0.12 | 0.00 | | v/c Ratio | 0.61 | 0.89 | | 0.16 | 0.98 | | 0.04 | 0.36 | | | 0.52 | 0.01 | | Uniform Delay, d1 | 37.9 | 22.7 | | 52.0 | 36.6 | | 32.6 | 35.3 | | | 36.8 | 32.3 | | Progression Factor | 1.00 | 1.00 | | 0.99 | 0.27 | | 1.00 | 1.00 | | | 1.00 | 1.00 | | Incremental Delay, d2 | 1.3 | 4.9 | | 8.0 | 19.8 | | 0.1 | 0.6 | | | 0.9 | 0.0 | | Delay (s) | 39.3 | 27.7 | | 52.2 | 29.6 | | 32.7 | 35.9 | | | 37.7 | 32.3 | | Level of Service | D | С | | D | С | | С | D | | | D | С | | Approach Delay (s) | | 29.6 | | | | | | 35.7 | | | 37.5 | | | Approach LOS | | С | | | | | | D | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 30.4 | ŀ | ICM Leve | l of Servic | e | | С | | | | | HCM Volume to Capacity rat | tio | 0.74 | | _ | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | Sum of los | | | | 14.0 | | | | | Intersection Capacity Utilizat | tion | | 113.4% | 10 | CU Level | of Service | | | Н | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ᄼ | → | • | • | † | / | / | | 4 | 4 | t | | |----------------------------------|-------|------------|-------|-----------|-----------|------------|----------|----------|------|-------------|------|--| | Movement | EBL2 | EBT | EBR | NBL | NBT | NBR2 | SBL | SBT | SBR | SWR | SWR2 | | | Lane Configurations | ሻ | ∱ ∱ | | ሻ | ↑ | | ሻ | ₽ | | ブブ だ | | | | Volume (vph) | 85 | 1130 | 95 | 25 | 30 | 10 | 95 | 25 | 50 | 1010 | 115 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | 6.0 | 6.0 | | 7.0 | 7.0 | | 7.0 | 7.0 | | 6.0 | | | | Lane Util. Factor | 1.00 | 0.95 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 0.76 | | | | Frpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 0.99 | | 1.00 | 0.94 | | 0.97 | | | | Flpb, ped/bikes | 1.00 | 1.00 | | 0.93 | 1.00 | | 0.97 | 1.00 | | 1.00 | | | | Frt | 1.00 | 0.99 | | 1.00 | 0.96 | | 1.00 | 0.90 | | 1.00 | | | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | | 1.00 | | | | Satd. Flow (prot) | 1653 | 3390 | | 1603 | 1724 | | 1732 | 1204 | | 3951 | | | | Flt Permitted | 0.95 | 1.00 | | 0.70 | 1.00 | | 0.73 | 1.00 | | 1.00 | | | | Satd. Flow (perm) | 1653 | 3390 | | 1186 | 1724 | | 1328 | 1204 | | 3951 | | | | Peak-hour factor, PHF | 0.94 | 0.94 | 0.94 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.91 | 0.91 | | | Adj. Flow (vph) | 90 | 1202 | 101 | 28 | 33 | 11 | 106 | 28 | 56 | 1110 | 126 | | | RTOR Reduction (vph) | 0 | 6 | 0 | 0 | 8 | 0 | 0 | 40 | 0 | 10 | 0 | | | Lane Group Flow (vph) | 90 | 1297 | 0 | 28 | 36 | 0 | 106 | 44 | 0 | 1226 | 0 | | | Confl. Peds. (#/hr) | 5 | | 10 | 80 | | 30 | 30 | | 80 | • | 5 | | | Heavy Vehicles (%) | 8% | 4% | 2% | 3% | 5% | 0% | 0% | 15% | 40% | 6% | 3% | | | Turn Type | Prot | .,, | | Perm | | | Perm | 7070 | | custom | | | | Protected Phases | 5 | 2 | | 1 01111 | 8 | | 1 01111 | 4 | | odotom | | | | Permitted Phases | • | _ | | 8 | • | | 4 | • | | 6 | | | | Actuated Green, G (s) | 7.0 | 67.0 | | 32.0 | 32.0 | | 32.0 | 32.0 | | 54.0 | | | | Effective Green, g (s) | 7.0 | 67.0 | | 32.0 | 32.0 | | 32.0 | 32.0 | | 54.0 | | | | Actuated g/C Ratio | 0.06 | 0.60 | | 0.29 | 0.29 | | 0.29 | 0.29 | | 0.48 | | | | Clearance Time (s) | 6.0 | 6.0 | | 7.0 | 7.0 | | 7.0 | 7.0 | | 6.0 | | | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | | | | Lane Grp Cap (vph) | 103 | 2028 | | 339 | 493 | | 379 | 344 | | 1905 | | | | v/s Ratio Prot | 0.05 | c0.38 | | 000 | 0.02 | | 010 | 0.04 | | 1300 | | | | v/s Ratio Perm | 0.00 | 00.00 | | 0.02 | 0.02 | | c0.08 | 0.04 | | 0.31 | | | | v/c Ratio | 0.87 | 0.64 | | 0.08 | 0.07 | | 0.28 | 0.13 | | 0.64 | | | | Uniform Delay, d1 | 52.1 | 14.6 | | 29.3 | 29.2 | | 31.1 | 29.7 | | 21.8 | | | | Progression Factor | 0.75 | 1.43 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 0.15 | | | | Incremental Delay, d2 | 36.6 | 1.0 | | 0.1 | 0.1 | | 0.4 | 0.2 | | 0.7 | | | | Delay (s) | 75.3 | 22.0 | | 29.4 | 29.2 | | 31.5 | 29.8 | | 3.9 | | | | Level of Service | 7 O.O | C | | 23.4
C | C | | C | C | | Α | | | | Approach Delay (s) | | 25.4 | | J | 29.3 | | U U | 30.7 | | | | | | Approach LOS | | C | | | C | | | C | | | | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 16.7 | H | CM Leve | of Servic | e | | В | | | | | HCM Volume to Capacity ratio | | | 0.52 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | Sı | um of los | t time (s) | | | 13.0 | | | | | Intersection Capacity Utilizatio | n | | 99.2% | | | of Service | | | F | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | • | / | ← | • | * | † | ↓ | 4 | | | | |----------------------------------|------|----------|------------|------|------------|------------|-------------|------|------|--|--| | Movement | WBL2 | WBL | WBT | WBR | NBL2 | NBT | SBT | SBR2 | | | | | Lane Configurations | | ሕኻኻ | ↑ ↑ | | | ^ | † \$ | | | | | | Volume (vph) | 65 | 1090 | 595 | 475 | 100 | 895 | 250 | 640 | | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | | Total Lost time (s) | | 6.0 | 6.0 | | | 8.0 | 8.0 | | | | | | Lane Util. Factor | | 0.94 | 0.95 | | | 0.95 | 0.95 | | | | | | Frpb, ped/bikes | | 1.00 | 0.98 | | | 1.00 | 1.00 | | | | | | Flpb, ped/bikes | | 0.89 | 1.00 | | | 1.00 | 1.00 | | | | | | Frt | | 1.00 | 0.93 | | | 1.00 | 0.89 | | | | | | Flt Protected | | 0.95 | 1.00 | | | 1.00 | 1.00 | | | | | | Satd. Flow (prot) | | 4214 | 3142 | | | 3354 | 3038 | | | | | | Flt Permitted | | 0.95 | 1.00 | | | 0.63 | 1.00 | | | | | | Satd. Flow (perm) | | 4214 | 3142 | | | 2110 | 3038 | | | | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.90 | 0.90 | 0.90 | 0.90 | | | | | Adj. Flow (vph) | 68 | 1147 | 626 | 500 | 111 | 994 | 278 | 711 | | | | | RTOR Reduction (vph) | 0 | 0 | 68 | 0 | 0 | 0 | 140 | 0 | | | | | Lane Group Flow (vph) | 0 | 1215 | 1058 | 0 | 0 | 1105 | 849 | 0 | | | | | Confl. Peds. (#/hr) | 70 | | | 45 | | | | | | | | | Heavy Vehicles (%) | 14% | 6% | 4% | 3% | 5% | 6% | 7% | 4% | | | | | Turn Type | Perm | Split | | | pm+pt | | | | | | | | Protected Phases | | 6 | 6 | | 3 | 8 | 4 | | | | | | Permitted Phases | 6 | | | | 8 | | | | | | | | Actuated Green, G (s) | | 36.0 | 36.0 | | | 62.0 | 62.0 | | | | | | Effective Green, g (s) | | 36.0 | 36.0 | | | 62.0 | 62.0 | | | | | | Actuated g/C Ratio | | 0.32 | 0.32 | | | 0.55 | 0.55 | | | | | | Clearance Time (s) | | 6.0 | 6.0 | | | 8.0 | 8.0 | | | | | | Vehicle Extension (s) | | 3.0 | 3.0 | | | 3.0 | 3.0 | | | | | | Lane Grp Cap (vph) | | 1355 | 1010 | | | 1168 | 1682 | | | | | | v/s Ratio Prot | | | c0.34 | | | | 0.28 | | | | | | v/s Ratio Perm | | 0.29 | | | | c0.52 | | | | | | | v/c Ratio | | 0.90 | 1.05 | | | 0.95 | 0.50 | | | | | | Uniform Delay, d1 | | 36.2 | 38.0 | | | 23.4 | 15.5 | | | | | | Progression Factor | | 0.23 | 0.16 | | | 0.77 | 1.00 | | | | | | Incremental Delay, d2 | | 1.0 | 24.5 | | | 10.1 | 0.2 | | | | | | Delay (s) | | 9.4 | 30.6 | | | 28.1 | 15.7 | | | | | | Level of Service | | Α | С | | | С | В | | | | | | Approach Delay (s) | | | 19.6 | | | 28.1 | 15.7 | | | | | | Approach LOS | | | В | | | С | В | | | | | | Intersection Summary | | | | | | | | | | | | | HCM Average Control Delay | | | 20.9 | Н | CM Level | of Service | | | С | | | | HCM Volume to Capacity ratio | | | 0.98 | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | S | um of lost | time (s) | | | 14.0 | | | | Intersection Capacity Utilizatio | n | | 106.9% | IC | CU Level o | of Service | | | G | | | | Analysis Period (min) | | | 15 | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | ۶ | - | • | • | ← | • | 4 | † | <i>></i> | / | ţ | 1 | |-----------------------------------|------|------|-------|------|-------------|------------|-------|----------|-------------|----------|----------|--------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | | | | नाक | | ň | ^ | | | † | 77 | | Volume (vph) | 0 | 0 | 0 | 160 | 2005 | 210 | 145 | 675 | 0 | 0 | 245 | 265 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | | | | 7.0 | | 7.0 | 7.0 | | | 7.0 | 7.0 | | Lane Util. Factor | | | | | 0.86 | | 1.00 | 0.95 | | | 1.00 | 0.88 | | Frpb, ped/bikes | | | | | 0.99 | | 1.00 | 1.00 | | | 1.00 | 1.00 | | Flpb, ped/bikes | | | | | 1.00 | | 0.70 | 1.00 | | | 1.00 | 1.00 | | Frt | | | | | 0.99 | | 1.00 | 1.00 | | | 1.00 | 0.85 | | Fit Protected | | | | | 1.00 | | 0.95 | 1.00 | | | 1.00 | 1.00 | | Satd. Flow (prot) | | | | | 6004 | | 1173 | 3400 | | | 1634 | 2703 | | FIt Permitted | | | | | 1.00 | | 0.51 | 1.00 | | | 1.00 | 1.00 | | Satd. Flow (perm) | | | | | 6004 | | 629 | 3400 | | | 1634 | 2703 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.95 | 0.95 | 0.95 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 0 | 0 | 0 | 168 | 2111 | 221 | 161 | 750 | 0 | 0 | 272 | 294 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 213 | | Lane Group Flow (vph) | 0 | 0 | 0 | 0 | 2486 | 0 | 161 | 750 | 0 | 0 | 272 | 81 | | Confl. Peds. (#/hr) | | | | 35 | | 125 | 1405 | | | | | 1405 | | Heavy Vehicles (%) | 0% | 0% | 0% | 12% | 4% | 3% | 6% | 5% | 0% | 0% | 15% | 4% | | Turn Type | | | | Perm | | | Perm | | | | | custom | | Protected Phases | | | | | 6 | | | 8 | | | 4 | 3 | | Permitted Phases | | | | 6 | | | 8 | | | | | | | Actuated Green, G (s) | | | | | 36.0 | | 62.0 | 62.0 | | | 24.0 | 31.0 | | Effective Green, g (s) | | | | | 36.0 | | 62.0 | 62.0 | | | 24.0 | 31.0 | | Actuated g/C Ratio | | | | | 0.32 | | 0.55 | 0.55 | | | 0.21 | 0.28 | | Clearance Time (s) | | | | | 7.0 | | 7.0 | 7.0 | | | 7.0 | 7.0 | | Vehicle Extension (s) | | | | | 3.0 | | 3.0 | 3.0 | | | 3.0 | 3.0 | | Lane Grp Cap (vph) | | | | | 1930 | | 348 | 1882 | | | 350 | 748 | | v/s Ratio Prot | | | | | | | | 0.22 | | | c0.17 | 0.03 | | v/s Ratio Perm | | | | | 0.41 | | c0.26 | | | | | | | v/c Ratio | | | | | 1.29 | | 0.46 | 0.40 | | | 0.78 | 0.11 | | Uniform Delay, d1 | | | | | 38.0 | | 15.0 | 14.3 | | | 41.5 | 30.2 | | Progression Factor | | | | | 0.36 | | 0.44 | 0.41 | | | 1.00 | 1.00 | | Incremental Delay, d2 | | | | | 130.0 | | 8.0 | 0.1 | | | 10.4 | 0.3 | | Delay (s) | | | | | 143.7 | | 7.4 | 6.0 | | | 51.8 | 30.5 | | Level of Service | | | | | F | | Α | Α | | | D | С | | Approach Delay (s) | | 0.0 | | | 143.7 | | | 6.3 | | | 40.8 | | | Approach LOS | | Α | | | F | | | Α | | | D | | | Intersection Summary | | | | | | | | | _ | | | | | HCM Average Control Delay | | | 97.6 | - | ICM Level | of Service | е | | F | | | | | HCM Volume to Capacity ratio | | | 0.82 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | Sum of lost | | | | 14.0 | | | | | Intersection Capacity Utilization | | | 87.2% | [(| CU Level of | of Service | | | Е | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | • | • | ← | 4 | 1 | † | ~ | / | † | ✓ | |---------------------------------------|------|----------|--------|------|--------------|------------|-------------|--------------|------|----------|--------------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | | | | 4 ↑ ₽ | | 7 | ^ | | | Φ₽ | | | Volume (vph) | 0 | 0
| 0 | 105 | 2060 | 300 | 110 | 1170 | 0 | 0 | 135 | 225 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | | | | 7.0 | | 4.0 | 7.0 | | | 7.0 | | | Lane Util. Factor | | | | | 0.91 | | 1.00 | 0.95 | | | 0.95 | | | Frpb, ped/bikes | | | | | 0.98 | | 1.00 | 1.00 | | | 0.80 | | | Flpb, ped/bikes | | | | | 1.00 | | 0.93 | 1.00 | | | 1.00 | | | Frt | | | | | 0.98 | | 1.00 | 1.00 | | | 0.91 | | | Flt Protected | | | | | 1.00 | | 0.95 | 1.00 | | | 1.00 | | | Satd. Flow (prot) | | | | | 4747 | | 1569 | 3433 | | | 2377 | | | Flt Permitted | | | | | 1.00 | | 0.44 | 1.00 | | | 1.00 | | | Satd. Flow (perm) | | | | | 4747 | | 732 | 3433 | | | 2377 | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.95 | 0.95 | 0.95 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 0 | 0 | 0 | 111 | 2168 | 316 | 122 | 1300 | 0 | 0 | 150 | 250 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 39 | 0 | | Lane Group Flow (vph) | 0 | 0 | 0 | 0 | 2593 | 0 | 122 | 1300 | 0 | 0 | 361 | 0 | | Confl. Peds. (#/hr) | 00/ | 00/ | 00/ | 130 | 40/ | 165 | 435 | 40/ | 290 | 290 | 440/ | 435 | | Heavy Vehicles (%) | 0% | 0% | 0% | 2% | 4% | 3% | 6% | 4% | 0% | 0% | 11% | 8% | | Turn Type | | | | Perm | • | | pm+pt | • | | | 4 | | | Protected Phases | | | | ^ | 6 | | 3 | 8 | | | 4 | | | Permitted Phases | | | | 6 | 47.0 | | 8 | 54.0 | | | 44.0 | | | Actuated Green, G (s) | | | | | 47.0 | | 51.0 | 51.0 | | | 41.0 | | | Effective Green, g (s) | | | | | 47.0 | | 51.0 | 51.0
0.46 | | | 41.0
0.37 | | | Actuated g/C Ratio Clearance Time (s) | | | | | 0.42
7.0 | | 0.46
4.0 | 7.0 | | | 7.0 | | | Vehicle Extension (s) | | | | | 3.0 | | 3.0 | 3.0 | | | 3.0 | | | | | | | | 1992 | | 378 | 1563 | | | 870 | | | Lane Grp Cap (vph) v/s Ratio Prot | | | | | 1992 | | 0.02 | c0.38 | | | 0.15 | | | v/s Ratio Perm | | | | | 0.55 | | 0.02 | 00.30 | | | 0.15 | | | v/c Ratio | | | | | 1.30 | | 0.13 | 0.83 | | | 0.42 | | | Uniform Delay, d1 | | | | | 32.5 | | 18.2 | 26.7 | | | 26.5 | | | Progression Factor | | | | | 1.00 | | 0.33 | 0.37 | | | 1.00 | | | Incremental Delay, d2 | | | | | 139.6 | | 0.33 | 2.7 | | | 0.3 | | | Delay (s) | | | | | 172.1 | | 6.4 | 12.5 | | | 26.9 | | | Level of Service | | | | | F | | Α | 12.3
B | | | 20.5
C | | | Approach Delay (s) | | 0.0 | | | 172.1 | | ,, | 12.0 | | | 26.9 | | | Approach LOS | | A | | | F | | | В | | | C | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 107.4 | Н | CM Level | of Servic | е | | F | | | | | HCM Volume to Capacity ratio | | | 1.06 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | um of lost | | | | 14.0 | | | | | Intersection Capacity Utilization | | | 164.3% | 10 | CU Level of | of Service | | | Н | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | • | • | • | • | • | † | / | / | ţ | 4 | |-----------------------------------|--------|-----------------|------------|-----------|------------|------------|------|----------|----------|----------|--------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | ተተ _ጉ | | | | | | ^ | | | 4₽ | | | Volume (vph) | 0 | 1215 | 30 | 0 | 0 | 0 | 0 | 1015 | 0 | 155 | 190 | 0 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.6 | 3.5 | 3.5 | 3.5 | 3.5 | | Total Lost time (s) | | 6.0 | | | | | | 8.0 | | | 8.0 | | | Lane Util. Factor | | 0.91 | | | | | | 0.95 | | | 0.95 | | | Frpb, ped/bikes | | 1.00 | | | | | | 1.00 | | | 1.00 | | | Flpb, ped/bikes | | 1.00 | | | | | | 1.00 | | | 1.00 | | | Frt | | 1.00 | | | | | | 1.00 | | | 1.00 | | | Flt Protected | | 1.00 | | | | | | 1.00 | | | 0.98 | | | Satd. Flow (prot) | | 4860 | | | | | | 3610 | | | 3240 | | | Flt Permitted | | 1.00 | | | | | | 1.00 | | | 0.54 | | | Satd. Flow (perm) | | 4860 | | | | | | 3610 | | | 1792 | | | Peak-hour factor, PHF | 0.94 | 0.94 | 0.94 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 0 | 1293 | 32 | 0 | 0 | 0 | 0 | 1128 | 0 | 172 | 211 | 0 | | RTOR Reduction (vph) | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Lane Group Flow (vph) | 0 | 1323 | 0 | 0 | 0 | 0 | 0 | 1128 | 0 | 0 | 383 | 0 | | Confl. Peds. (#/hr) | 30 | | 30 | | | | | | | 55 | | | | Heavy Vehicles (%) | 17% | 5% | 8% | 2% | 2% | 2% | 0% | 0% | 0% | 8% | 7% | 0% | | Turn Type | | | | | | | | | | pm+pt | | | | Protected Phases | | 2 | | | | | | 8 | | 7 | 4 | | | Permitted Phases | | | | | | | | | | 4 | | | | Actuated Green, G (s) | | 53.8 | | | | | | 44.2 | | | 44.2 | | | Effective Green, g (s) | | 53.8 | | | | | | 44.2 | | | 44.2 | | | Actuated g/C Ratio | | 0.48 | | | | | | 0.39 | | | 0.39 | | | Clearance Time (s) | | 6.0 | | | | | | 8.0 | | | 8.0 | | | Vehicle Extension (s) | | 3.0 | | | | | | 3.0 | | | 3.0 | | | Lane Grp Cap (vph) | | 2335 | | | | | | 1425 | | | 707 | | | v/s Ratio Prot | | c0.27 | | | | | | c0.31 | | | | | | v/s Ratio Perm | | | | | | | | | | | 0.21 | | | v/c Ratio | | 0.57 | | | | | | 0.79 | | | 2.36dl | | | Uniform Delay, d1 | | 20.8 | | | | | | 29.8 | | | 26.1 | | | Progression Factor | | 0.38 | | | | | | 1.00 | | | 0.81 | | | Incremental Delay, d2 | | 0.8 | | | | | | 3.1 | | | 0.7 | | | Delay (s) | | 8.6 | | | | | | 32.9 | | | 22.0 | | | Level of Service | | A | | | | | | C | | | C | | | Approach Delay (s) | | 8.6 | | | 0.0 | | | 32.9 | | | 22.0 | | | Approach LOS | | А | | | А | | | С | | | С | | | • • | | | | | | | | | | | | | | Intersection Summary | | | 00.4 | | OM 1 | | | | | | | | | HCM Average Control Delay | | | 20.1 | Н | Civi Level | of Service | 3 | | С | | | | | HCM Volume to Capacity ratio | | | 0.67 | | | 41ma = / \ | | | 440 | | | | | Actuated Cycle Length (s) | | | 112.0 | | um of lost | | | | 14.0 | | | | | Intersection Capacity Utilization | | | 88.6% | IC | U Level (| of Service | | | E | | | | | Analysis Period (min) | | Ala a control | 15 | . ft 1= | | | | | | | | | | dl Defacto Left Lane. Recode | with 1 | ınough la | ne as a le | ert lane. | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | † | <i>></i> | / | ļ | / | 4 | | | | |--------------------------------|------------|----------|----------|-------------|------------|-----------|--------|--------|------|--|--| | Movement | EBL | EBT | NBT | NBR | SBL | SBT | NER | NER2 | | | | | Lane Configurations | ሻ | 414 | ተተኈ | | ሻ | ^ | 7 | 7 | | | | | Volume (vph) | 820 | 1075 | 340 | 25 | 175 | 275 | 605 | 180 | | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | | Total Lost time (s) | 7.0 | 7.0 | 7.0 | | 7.0 | 7.0 | 7.0 | 7.0 | | | | | Lane Util. Factor | 0.91 | 0.91 | 0.91 | | 1.00 | 0.95 | 1.00 | 1.00 | | | | | Frpb, ped/bikes | 1.00 | 1.00 | 0.98 | | 1.00 | 1.00 | 1.00 | 1.00 | | | | | Flpb, ped/bikes | 1.00 | 1.00 | 1.00 | | 0.85 | 1.00 | 1.00 | 1.00 | | | | | Frt | 1.00 | 1.00 | 0.99 | | 1.00 | 1.00 | 0.85 | 0.85 | | | | | Flt Protected | 0.95 | 0.99 | 1.00 | | 0.95 | 1.00 | 1.00 | 1.00 | | | | | Satd. Flow (prot) | 1557 | 3209 | 4759 | | 1415 | 3159 | 1566 | 1566 | | | | | FIt Permitted | 0.95 | 0.99 | 1.00 | | 0.50 | 1.00 | 1.00 | 1.00 | | | | | Satd. Flow (perm) | 1557 | 3209 | 4759 | | 751 | 3159 | 1566 | 1566 | | | | | Peak-hour factor, PHF | 0.94 | 0.94 | 0.90 | 0.90 | 0.90 | 0.90 | 0.94 | 0.94 | | | | | Adj. Flow (vph) | 872 | 1144 | 378 | 28 | 194 | 306 | 644 | 191 | | | | | RTOR Reduction (vph) | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 105 | | | | | Lane Group Flow (vph) | 654 | 1362 | 399 | 0 | 194 | 306 | 644 | 86 | | | | | Confl. Peds. (#/hr) | 5 | | | 310 | 310 | | | | | | | | Heavy Vehicles (%) | 4% | 6% | 5% | 0% | 7% | 13% | 2% | 2% | | | | | Turn Type | Perm | | | | Perm | | custom | custom | | | | | Protected Phases | | 2 | 8! | | | 4! | | | | | | | Permitted Phases | 2 | | | | 4 | | 8! | 8 | | | | | Actuated Green, G (s) | 59.0 | 59.0 | 39.0 | | 39.0 | 39.0 | 39.0 | 39.0 | | | | | Effective Green, g (s) | 59.0 | 59.0 | 39.0 | | 39.0 | 39.0 | 39.0 | 39.0 | | | | | Actuated g/C Ratio | 0.53 | 0.53 | 0.35 | | 0.35 | 0.35 | 0.35 | 0.35 | | | | | Clearance Time (s) | 7.0 | 7.0 | 7.0 | | 7.0 | 7.0 | 7.0 | 7.0 | | | | | Vehicle Extension (s) | 3.0 | 3.0 | 3.0 | | 3.0 | 3.0 | 3.0 | 3.0 | | | | | Lane Grp Cap (vph) | 820 | 1690 | 1657 | | 262 | 1100 | 545 | 545 | | | | | v/s Ratio Prot | | | 0.08 | | | 0.10 | | | | | | | v/s Ratio Perm | 0.42 | 0.42 | | | 0.26 | | c0.41 | 0.05 | | | | | v/c Ratio | 0.80 | 0.81 | 0.24 | | 0.74 | 0.28 | 1.18 | 0.16 | | | | | Uniform Delay, d1 | 21.6 | 21.8 | 26.0 | | 32.1 | 26.3 | 36.5 | 25.2 | | | | | Progression Factor | 0.45 | 0.44 | 1.00 | | 1.39 | 1.43 | 1.00 | 1.00 | | | | | Incremental Delay, d2 | 7.5 | 4.0 | 0.1 | | 5.5 | 0.1 | 99.4 | 0.1 | | | | | Delay (s) | 17.1 | 13.5 | 26.0 | | 50.1 | 37.8 | 135.9 | 25.3 | | | | | Level of Service | В | B | С | | D | D | F | С | | | | | Approach LOC | | 14.7 | 26.0 | | | 42.6 | | | | | | | Approach LOS | | В | С | | | D | | | | | | | Intersection Summary | | | | | | | | | | | | | HCM Average Control Delay | | | 40.9 | H | CM Level | of Servi | ce | | D | | | | HCM Volume to Capacity rat | tio | | 0.96 | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | ım of lost | | | | 14.0 | | | | Intersection Capacity Utilizat | ion | | 138.7% | IC | U Level c | f Service | • | | Н | | | | Analysis Period (min) | | | 15 | | | | | | | | | | ! Phase conflict between la | ne groups. | | | | | | | | | | | c Critical Lane Group | | *1 | † | ۴ | ₩ | + | لر | * | × | 4 | 4 | × | t | |-----------------------------------|------|------------|--------|----------|------------|-----------|----------|------|------|------|------|------| | Movement | NBL | NBT | NBR |
SBL | SBT | SBR | NEL | NET | NER | SWL | SWT | SWR | | Lane Configurations | | ∱ ⊅ | | | ^ | | ሻ | 4₽ | | | | | | Volume (vph) | 0 | 170 | 245 | 0 | 240 | 0 | 1100 | 705 | 0 | 0 | 0 | 0 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | 7.0 | | | 7.0 | | 7.0 | 7.0 | | | | | | Lane Util. Factor | | 0.95 | | | 0.95 | | 0.91 | 0.91 | | | | | | Frpb, ped/bikes | | 0.99 | | | 1.00 | | 1.00 | 1.00 | | | | | | Flpb, ped/bikes | | 1.00 | | | 1.00 | | 1.00 | 1.00 | | | | | | Frt | | 0.91 | | | 1.00 | | 1.00 | 1.00 | | | | | | Flt Protected | | 1.00 | | | 1.00 | | 0.95 | 0.98 | | | | | | Satd. Flow (prot) | | 2943 | | | 3336 | | 1562 | 3150 | | | | | | Flt Permitted | | 1.00 | | | 1.00 | | 0.95 | 0.98 | | | | | | Satd. Flow (perm) | | 2943 | | | 3336 | | 1562 | 3150 | | | | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.94 | 0.94 | 0.94 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 0 | 189 | 272 | 0 | 267 | 0 | 1170 | 750 | 0 | 0 | 0 | 0 | | RTOR Reduction (vph) | 0 | 90 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Lane Group Flow (vph) | 0 | 371 | 0 | 0 | 267 | 0 | 632 | 1288 | 0 | 0 | 0 | 0 | | Confl. Peds. (#/hr) | | | 15 | | | | | | | | | | | Heavy Vehicles (%) | 0% | 12% | 7% | 0% | 7% | 0% | 4% | 8% | 0% | 0% | 0% | 0% | | Turn Type | | | | | | | Perm | | | | | | | Protected Phases | | 8 | | | 4 | | | 2 | | | | | | Permitted Phases | | | | | | | 2 | | | | | | | Actuated Green, G (s) | | 43.0 | | | 43.0 | | 55.0 | 55.0 | | | | | | Effective Green, g (s) | | 43.0 | | | 43.0 | | 55.0 | 55.0 | | | | | | Actuated g/C Ratio | | 0.38 | | | 0.38 | | 0.49 | 0.49 | | | | | | Clearance Time (s) | | 7.0 | | | 7.0 | | 7.0 | 7.0 | | | | | | Vehicle Extension (s) | | 3.0 | | | 3.0 | | 3.0 | 3.0 | | | | | | Lane Grp Cap (vph) | | 1130 | | | 1281 | | 767 | 1547 | | | | | | v/s Ratio Prot | | c0.13 | | | 0.08 | | | | | | | | | v/s Ratio Perm | | | | | | | 0.40 | 0.41 | | | | | | v/c Ratio | | 0.33 | | | 0.21 | | 0.82 | 0.83 | | | | | | Uniform Delay, d1 | | 24.3 | | | 23.1 | | 24.4 | 24.5 | | | | | | Progression Factor | | 1.00 | | | 1.07 | | 0.96 | 0.96 | | | | | | Incremental Delay, d2 | | 0.2 | | | 0.0 | | 4.1 | 2.2 | | | | | | Delay (s) | | 24.5 | | | 24.7 | | 27.6 | 25.8 | | | | | | Level of Service | | С | | | С | | С | С | | | | | | Approach Delay (s) | | 24.5 | | | 24.7 | | | 26.4 | | | 0.0 | | | Approach LOS | | С | | | С | | | С | | | Α | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 25.9 | Н | CM Level | of Servic | е | | С | | | | | HCM Volume to Capacity ratio | | | 0.61 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | S | um of lost | time (s) | | | 14.0 | | | | | Intersection Capacity Utilization | | | 164.3% | | CU Level o | | | | Н | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | • | • | ← | • | • | † | / | / | Ţ | 4 | |---|--------------|--------------|---------|------|------------|------------|------|--------------|----------|-------------|--------------|---------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | 44 | ↑ ↑ | | | | | | ∱ ∱ | | ሻ | ^ | | | Volume (vph) | 825 | 2095 | 150 | 0 | 0 | 0 | 0 | 200 | 25 | 280 | 40 | 0 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 7.0 | 7.0 | | | | | | 7.0 | | 6.0 | 7.0 | | | Lane Util. Factor | 0.97 | 0.91 | | | | | | 0.95 | | 1.00 | 0.95 | | | Frpb, ped/bikes | 1.00 | 0.99 | | | | | | 1.00 | | 1.00 | 1.00 | | | Flpb, ped/bikes | 1.00 | 1.00 | | | | | | 1.00 | | 1.00 | 1.00 | | | Frt | 1.00 | 0.99 | | | | | | 0.98 | | 1.00 | 1.00 | | | Flt Protected | 0.95 | 1.00 | | | | | | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (prot) | 3395 | 4949 | | | | | | 3347 | | 1750 | 3400
1.00 | | | Flt Permitted | 0.95
3395 | 1.00
4949 | | | | | | 1.00
3347 | | 0.44
819 | 3400 | | | Satd. Flow (perm) | | | 0.00 | 0.05 | 0.05 | 0.05 | 0.05 | | 0.05 | | | 0.05 | | Peak-hour factor, PHF | 0.93 | 0.93 | 0.93 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 887 | 2253 | 161 | 0 | 0 | 0 | 0 | 211 | 26 | 295 | 42 | 0 | | RTOR Reduction (vph) | 0
887 | 7
2407 | 0 | 0 | 0 | 0 | 0 | 8
229 | 0 | 0
295 | 0
42 | 0 | | Lane Group Flow (vph) Confl. Peds. (#/hr) | | 2407 | 0
60 | 60 | U | 0 | 15 | 229 | U | 295 | 42 | 0
15 | | Heavy Vehicles (%) | 1
2% | 2% | 3% | 0% | 0% | 0% | 0% | 5% | 4% | 2% | 5% | 2% | | | | Z 70 | 370 | 070 | 070 | 0 % | 0% | 3% | 4 70 | | 3% | Z 70 | | Turn Type Protected Phases | Split
2 | 2 | | | | | | 8 | | pm+pt
7 | 4 | | | Permitted Phases | 2 | Z | | | | | | 0 | | 4 | 4 | | | Actuated Green, G (s) | 57.5 | 57.5 | | | | | | 17.0 | | 40.5 | 40.5 | | | Effective Green, g (s) | 57.5 | 57.5 | | | | | | 17.0 | | 40.5 | 40.5 | | | Actuated g/C Ratio | 0.51 | 0.51 | | | | | | 0.15 | | 0.36 | 0.36 | | | Clearance Time (s) | 7.0 | 7.0 | | | | | | 7.0 | | 6.0 | 7.0 | | | Vehicle Extension (s) | 3.0 | 3.0 | | | | | | 3.0 | | 3.0 | 3.0 | | | Lane Grp Cap (vph) | 1743 | 2541 | | | | | | 508 | | 442 | 1229 | | | v/s Ratio Prot | 0.26 | c0.49 | | | | | | 0.07 | | c0.10 | 0.01 | | | v/s Ratio Perm | 0.20 | 00.43 | | | | | | 0.01 | | c0.10 | 0.01 | | | v/c Ratio | 0.51 | 0.95 | | | | | | 0.45 | | 0.67 | 0.03 | | | Uniform Delay, d1 | 17.9 | 25.8 | | | | | | 43.2 | | 27.7 | 23.1 | | | Progression Factor | 1.00 | 1.00 | | | | | | 1.00 | | 1.00 | 1.00 | | | Incremental Delay, d2 | 1.1 | 9.2 | | | | | | 0.6 | | 3.8 | 0.0 | | | Delay (s) | 19.0 | 35.0 | | | | | | 43.9 | | 31.5 | 23.1 | | | Level of Service | В | С | | | | | | D | | C | C | | | Approach Delay (s) | | 30.7 | | | 0.0 | | | 43.9 | | | 30.4 | | | Approach LOS | | С | | | Α | | | D | | | С | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 31.5 | H | CM Level | of Service | 9 | | С | | | | | HCM Volume to Capacity ratio | | | 0.81 | | | | | | 10.0 | | | | | Actuated Cycle Length (s) | | | 112.0 | | um of lost | ٠, | | | 13.0 | | | | | Intersection Capacity Utilizatio | n | | 147.1% | IC | U Level o | of Service | | | Н | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | • | • | *_ | • | ሻ | † | / | / | ţ | ≽ J | |--------------------------------|-------|----------|--------|------|------------|------------|------|----------|------|----------|----------|------------| | Movement | EBL | EBT | EBR | WBL | WBR | WBR2 | NBL | NBT | NBR | SBL | SBT | SBR2 | | Lane Configurations | 77 | ተተኈ | | ሻ | 776 | | 7 | f) | | Ť | ↑ | 7 | | Volume (vph) | 260 | 2110 | 30 | 25 | 1815 | 135 | 25 | 65 | 110 | 460 | 115 | 30 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 6.0 | 6.0 | | 6.0 | 6.0 | | 8.0 | 8.0 | | 5.0 | 8.0 | 8.0 | | Lane Util. Factor | 0.97 | 0.91 | | 1.00 | *0.91 | | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | | Frpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 0.97 | | 1.00 | 0.93 | | 1.00 | 1.00 | 0.82 | | Flpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 1.00 | | 0.86 | 1.00 | | 0.97 | 1.00 | 1.00 | | Frt | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 0.91 | | 1.00 | 1.00 | 0.85 | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | 1.00 | | Satd. Flow (prot) | 3429 | 5015 | | 1653 | 4869 | | 1473 | 1577 | | 1689 | 1756 | 1277 | | Flt Permitted | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.68 | 1.00 | | 0.51 | 1.00 | 1.00 | | Satd. Flow (perm) | 3429 | 5015 | | 1653 | 4869 | | 1053 | 1577 | | 903 | 1756 | 1277 | | Peak-hour factor, PHF | 0.93 | 0.93 | 0.93 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 280 | 2269 | 32 | 26 | 1911 | 142 | 26 | 68 | 116 | 484 | 121 | 32 | | RTOR Reduction (vph) | 0 | 1 | 0 | 0 | 8 | 0 | 0 | 55 | 0 | 0 | 0 | 19 | | Lane Group Flow (vph) | 280 | 2300 | 0 | 26 | 2045 | 0 | 26 | 129 | 0 | 484 | 121 | 13 | | Confl. Peds. (#/hr) | 5 | | 25 | 25 | | 5 | 135 | | 85 | 85 | | 135 | | Heavy Vehicles (%) | 1% | 2% | 0% | 8% | 2% | 5% | 4% | 0% | 0% | 2% | 7% | 3% | | Turn Type | Prot | | | Prot | custom | | Perm | | | pm+pt | | Perm | | Protected Phases | 5 | 2 | | 1 | | | | 8 | | 7 | 4 | | | Permitted Phases | | | | | 6 | | 8 | | | 4 | | 4 | | Actuated Green, G (s) | 11.4 | 42.4 | | 3.6 | 34.6 | | 27.0 | 27.0 | | 46.0 | 46.0 | 46.0 | | Effective Green, g (s) | 11.4 | 42.4 | | 3.6 | 34.6 | | 27.0 | 27.0 | | 46.0 | 46.0 | 46.0 | | Actuated g/C Ratio | 0.10 | 0.38 | | 0.03 | 0.31 | | 0.24 | 0.24 | | 0.41 | 0.41 | 0.41 | | Clearance Time (s) | 6.0 | 6.0 | | 6.0 | 6.0 | | 8.0 | 8.0 | | 5.0 | 8.0 | 8.0 | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | 3.0 | 3.0 | | Lane Grp Cap (vph) | 349 | 1899 | | 53 | 1504 | | 254 | 380 | | 469 | 721 | 524 | | v/s Ratio Prot | c0.08 | c0.46 | | 0.02 | | | | 0.08 | | c0.13 | 0.07 | | | v/s Ratio Perm | | | | | c0.42 | | 0.02 | | | c0.29 | | 0.01 | | v/c Ratio | 0.80 | 1.21 | | 0.49 | 1.36 | | 0.10 | 0.34 | | 1.03 | 0.17 | 0.03 | | Uniform Delay, d1 | 49.2 | 34.8 | | 53.3 | 38.7 | | 33.1 | 35.1 | | 31.5 | 20.9 | 19.6 | | Progression Factor | 0.81 | 0.55 | | 0.73 | 0.36 | | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | | Incremental Delay, d2 | 5.4 | 97.1 | | 1.7 | 163.0 | | 0.2 | 0.5 | | 50.0 | 0.1 | 0.0 | | Delay (s) | 45.1 | 116.3 | | 40.4 | 177.0 | | 33.2 | 35.7 | | 81.5 | 21.0 | 19.7 | | Level of Service | D | F | | D | F | | С | D | | F | С | В | | Approach Delay (s) | | 108.6 | | | | | | 35.4 | | | 66.9 | | | Approach LOS | | F | | | | | | D | | | Е | | | Intersection Summary | | | 100.1 | | | | | | _ | | | | | HCM Average Control Delay | | | 126.1 | H | ICM Leve
| of Service | е | | F | | | | | HCM Volume to Capacity rat | tio | | 1.02 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | Sum of los | | | | 11.0 | | | | | Intersection Capacity Utilizat | tion | | 107.1% | 10 | CU Level | of Service | | | G | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | • | 1 | † | / | / | ↓ | 4 | | t | | |-----------------------------------|------|------------|--------|------|------------|------------|----------|----------|------|--------|------|--| | Movement | EBL2 | EBT | EBR | NBL | NBT | NBR2 | SBL | SBT | SBR | SWR | SWR2 | | | Lane Configurations | ř | ∱ ∱ | | 7 | ↑ | | 7 | ₽ | | ママ だ | | | | Volume (vph) | 85 | 1065 | 50 | 80 | 80 | 60 | 140 | 60 | 75 | 1820 | 125 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | 6.0 | 6.0 | | 7.0 | 7.0 | | 7.0 | 7.0 | | 6.0 | | | | Lane Util. Factor | 1.00 | 0.95 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 0.76 | | | | Frpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 0.98 | | 1.00 | 0.90 | | 0.96 | | | | Flpb, ped/bikes | 1.00 | 1.00 | | 0.85 | 1.00 | | 0.98 | 1.00 | | 1.00 | | | | Frt | 1.00 | 0.99 | | 1.00 | 0.94 | | 1.00 | 0.92 | | 1.00 | | | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | | 1.00 | | | | Satd. Flow (prot) | 1750 | 3437 | | 1523 | 1691 | | 1664 | 1375 | | 4023 | | | | Flt Permitted | 0.95 | 1.00 | | 0.67 | 1.00 | | 0.66 | 1.00 | | 1.00 | | | | Satd. Flow (perm) | 1750 | 3437 | | 1069 | 1691 | | 1158 | 1375 | | 4023 | | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | | Adj. Flow (vph) | 89 | 1121 | 53 | 84 | 84 | 63 | 147 | 63 | 79 | 1916 | 132 | | | RTOR Reduction (vph) | 0 | 3 | 0 | 0 | 24 | 0 | 0 | 40 | 0 | 6 | 0 | | | Lane Group Flow (vph) | 89 | 1171 | 0 | 84 | 123 | 0 | 147 | 102 | 0 | 2042 | 0 | | | Confl. Peds. (#/hr) | 20 | | 15 | 170 | | 25 | 25 | | 170 | | 20 | | | Heavy Vehicles (%) | 2% | 3% | 3% | 0% | 4% | 0% | 5% | 5% | 18% | 2% | 5% | | | Turn Type | Prot | | | Perm | | | Perm | | | custom | | | | Protected Phases | 5 | 2 | | | 8 | | | 4 | | | | | | Permitted Phases | | | | 8 | | | 4 | | | 6 | | | | Actuated Green, G (s) | 7.0 | 67.0 | | 32.0 | 32.0 | | 32.0 | 32.0 | | 54.0 | | | | Effective Green, g (s) | 7.0 | 67.0 | | 32.0 | 32.0 | | 32.0 | 32.0 | | 54.0 | | | | Actuated g/C Ratio | 0.06 | 0.60 | | 0.29 | 0.29 | | 0.29 | 0.29 | | 0.48 | | | | Clearance Time (s) | 6.0 | 6.0 | | 7.0 | 7.0 | | 7.0 | 7.0 | | 6.0 | | | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | | | | Lane Grp Cap (vph) | 109 | 2056 | | 305 | 483 | | 331 | 393 | | 1940 | | | | v/s Ratio Prot | 0.05 | c0.34 | | | 0.07 | | | 0.07 | | | | | | v/s Ratio Perm | | | | 80.0 | | | c0.13 | | | c0.51 | | | | v/c Ratio | 0.82 | 0.57 | | 0.28 | 0.25 | | 0.44 | 0.26 | | 1.05 | | | | Uniform Delay, d1 | 51.9 | 13.7 | | 31.0 | 30.8 | | 32.7 | 30.9 | | 29.0 | | | | Progression Factor | 0.58 | 1.76 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 0.26 | | | | Incremental Delay, d2 | 4.4 | 0.1 | | 0.5 | 0.3 | | 1.0 | 0.4 | | 25.3 | | | | Delay (s) | 34.2 | 24.3 | | 31.5 | 31.1 | | 33.7 | 31.2 | | 32.8 | | | | Level of Service | С | С | | С | С | | С | С | | С | | | | Approach Delay (s) | | 25.0 | | | 31.2 | | | 32.5 | | | | | | Approach LOS | | С | | | С | | | С | | | | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 30.1 | H | CM Level | of Servic | е | | С | | | | | HCM Volume to Capacity ratio | | | 0.83 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | um of lost | | | | 19.0 | | | | | Intersection Capacity Utilization | 1 | | 113.3% | IC | U Level | of Service | | | Н | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | • | F | ← | • | * | † | ļ | 4 | | |-----------------------------------|----------|----------|------------|------------|------------|------------|------------|------|------| | Movement | WBL2 | WBL | WBT | WBR | NBL2 | NBT | SBT | SBR2 | | | Lane Configurations | | ሽኘሻ | ↑ ↑ | | ሻ | † | ∱ } | | | | Volume (vph) | 50 | 1870 | 655 | 85 | 160 | 620 | 585 | 790 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | | 6.0 | 6.0 | | 8.0 | 8.0 | 8.0 | | | | Lane Util. Factor | | 0.94 | 0.95 | | 1.00 | 1.00 | 0.95 | | | | Frpb, ped/bikes | | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | | | | Flpb, ped/bikes | | 0.90 | 1.00 | | 1.00 | 1.00 | 1.00 | | | | Frt | | 1.00 | 0.98 | | 1.00 | 1.00 | 0.91 | | | | Flt Protected | | 0.95 | 1.00 | | 0.95 | 1.00 | 1.00 | | | | Satd. Flow (prot) | | 4447 | 3385 | | 1750 | 1807 | 3150 | | | | Flt Permitted | | 0.95 | 1.00 | | 0.08 | 1.00 | 1.00 | | | | Satd. Flow (perm) | | 4447 | 3385 | | 150 | 1807 | 3150 | | | | Peak-hour factor, PHF | 0.93 | 0.93 | 0.93 | 0.93 | 0.95 | 0.95 | 0.95 | 0.95 | | | Adj. Flow (vph) | 54 | 2011 | 704 | 91 | 168 | 653 | 616 | 832 | | | RTOR Reduction (vph) | 0 | 0 | 9 | 0 | 0 | 0 | 74 | 0 | | | Lane Group Flow (vph) | 0 | 2065 | 786 | 0 | 168 | 653 | 1374 | 0 | | | Confl. Peds. (#/hr) | 45 | | | | | | | | | | Heavy Vehicles (%) | 13% | 1% | 4% | 1% | 2% | 4% | 3% | 4% | | | Turn Type | Perm | Split | | | Perm | | | | | | Protected Phases | | 6 | 6 | | | 8 | 4 | | | | Permitted Phases | 6 | | | | 8 | | | | | | Actuated Green, G (s) | | 49.0 | 49.0 | | 49.0 | 49.0 | 49.0 | | | | Effective Green, g (s) | | 49.0 | 49.0 | | 49.0 | 49.0 | 49.0 | | | | Actuated g/C Ratio | | 0.44 | 0.44 | | 0.44 | 0.44 | 0.44 | | | | Clearance Time (s) | | 6.0 | 6.0 | | 8.0 | 8.0 | 8.0 | | | | Vehicle Extension (s) | | 3.0 | 3.0 | | 3.0 | 3.0 | 3.0 | | | | Lane Grp Cap (vph) | | 1946 | 1481 | | 66 | 791 | 1378 | | | | v/s Ratio Prot | | | 0.23 | | | 0.36 | 0.44 | | | | v/s Ratio Perm | | 0.46 | | | c1.12 | | | | | | v/c Ratio | | 1.06 | 0.53 | | 2.55 | 0.83 | 1.10dr | | | | Uniform Delay, d1 | | 31.5 | 23.1 | | 31.5 | 27.7 | 31.4 | | | | Progression Factor | | 0.20 | 0.20 | | 1.37 | 1.14 | 1.00 | | | | Incremental Delay, d2 | | 31.6 | 0.4 | | 720.7 | 4.2 | 23.4 | | | | Delay (s) | | 38.0 | 5.1 | | 763.9 | 35.9 | 54.9 | | | | Level of Service | | D | Α | | F | D | D | | | | Approach Delay (s) | | | 28.9 | | | 184.8 | 54.9 | | | | Approach LOS | | | С | | | F | D | | | | Intersection Summary | | | | | | | | | | | HCM Average Control Delay | | | 61.2 | H | CM Level | of Service | ce | | E | | HCM Volume to Capacity ratio |) | | 1.81 | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | S | um of los | t time (s) | | | 14.0 | | Intersection Capacity Utilization | n | | 105.3% | | CU Level | |) | | G | | Analysis Period (min) | | | 15 | | | | | | | | dr Defacto Right Lane. Rec | ode with | 1 though | lane as a | right lane |) . | | | | | | | ۶ | → | • | • | ← | • | 1 | † | / | / | ļ | 4 | |---------------------------------------|------|----------|-------|------|--------------|------------|--------------|--------------|----------|----------|--------------|--------------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | | | | नाा | | 7 | ^ | | | ^ | 77 | | Volume (vph) | 0 | 0 | 0 | 90 | 2220 | 150 | 115 | 525 | 0 | 0 | 335 | 455 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | | | | 7.0 | | 7.0 | 7.0 | | | 7.0 | 7.0 | | Lane Util. Factor | | | | | 0.86 | | 1.00 | 0.95 | | | 1.00 | 0.88 | | Frpb, ped/bikes | | | | | 0.99 | | 1.00 | 1.00 | | | 1.00 | 1.00 | | Flpb, ped/bikes | | | | | 1.00 | | 0.76 | 1.00 | | | 1.00 | 1.00 | | Frt | | | | | 0.99 | | 1.00 | 1.00 | | | 1.00 | 0.85 | | Flt Protected | | | | | 1.00 | | 0.95 | 1.00 | | | 1.00 | 1.00 | | Satd. Flow (prot) | | | | | 6102 | | 1352 | 3336 | | | 1773 | 2729 | | Flt Permitted | | | | | 1.00 | | 0.41 | 1.00 | | | 1.00 | 1.00 | | Satd. Flow (perm) | 2.05 | 2.05 | 2.05 | | 6102 | 2.00 | 578 | 3336 | 2.05 | 2.05 | 1773 | 2729 | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.93 | 0.93 | 0.93 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 0 | 0 | 0 | 97 | 2387 | 161 | 121 | 553 | 0 | 0 | 353 | 479 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 396 | | Lane Group Flow (vph) | 0 | 0 | 0 | 0 | 2637 | 0 | 121 | 553 | 0 | 0 | 353 | 83 | | Confl. Peds. (#/hr) | 00/ | 00/ | 00/ | 30 | 20/ | 135 | 1370 | 70/ | 445 | 00/ | C 0/ | 1370 | | Heavy Vehicles (%) | 0% | 0% | 0% | 4% | 3% | 5% | 1% | 7% | 0% | 0% | 6% | 3% | | Turn Type | | | | Perm | ^ | | Perm | 0 | | | | custom | | Protected Phases | | | | _ | 6 | | 0 | 8 | | | 4 | 3 | | Permitted Phases | | | | 6 | 45.0 | | 8 | E2 0 | | | 06.5 | 10 E | | Actuated Green, G (s) | | | | | 45.0
45.0 | | 53.0
53.0 | 53.0
53.0 | | | 26.5
26.5 | 19.5
19.5 | | Effective Green, g (s) | | | | | 0.40 | | 0.47 | 0.47 | | | 0.24 | 0.17 | | Actuated g/C Ratio Clearance Time (s) | | | | | 7.0 | | 7.0 | 7.0 | | | 7.0 | 7.0 | | Vehicle Extension (s) | | | | | 3.0 | | 3.0 | 3.0 | | | 3.0 | 3.0 | | | | | | | 2452 | | 274 | 1579 | | | 420 | 475 | | Lane Grp Cap (vph) v/s Ratio Prot | | | | | 2452 | | 214 | 0.17 | | | c0.20 | 0.03 | | v/s Ratio Prot
v/s Ratio Perm | | | | | 0.43 | | c0.21 | 0.17 | | | 00.20 | 0.03 | | v/c Ratio | | | | | 1.08 | | 0.44 | 0.35 | | | 0.84 | 0.18 | | Uniform Delay, d1 | | | | | 33.5 | | 19.6 | 18.6 | | | 40.7 | 39.4 | | Progression Factor | | | | | 0.51 | | 0.36 | 0.35 | | | 1.00 | 1.00 | | Incremental Delay, d2 | | | | | 37.4 | | 0.6 | 0.55 | | | 14.0 | 0.8 | | Delay (s) | | | | | 54.5 | | 7.7 | 6.5 | | | 54.8 | 40.2 | | Level of Service | | | | | D-1.0 | | Α | A | | | D 7.0 | 70.2
D | | Approach Delay (s) | | 0.0 | | | 54.5 | | ,, | 6.7 | | | 46.4 | |
 Approach LOS | | A | | | D | | | A | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 45.1 | Н | ICM Level | of Servic | е | | D | | | | | HCM Volume to Capacity ratio | | | 0.82 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | um of lost | | | | 14.0 | | | | | Intersection Capacity Utilization | | | 92.0% | 10 | CU Level of | of Service | | | F | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | • | • | — | • | 4 | † | / | / | + | 4 | |-----------------------------------|---------|------------|----------|------------|--------------|------------|-------|----------|------|----------|------------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | | | | 4 ↑ ₽ | | 7 | ^ | | | ∱ ∱ | | | Volume (vph) | 0 | 0 | 0 | 110 | 1925 | 100 | 170 | 705 | 0 | 0 | 200 | 380 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | | | | 7.0 | | 4.0 | 7.0 | | | 7.0 | | | Lane Util. Factor | | | | | 0.91 | | 1.00 | 0.95 | | | 0.95 | | | Frpb, ped/bikes | | | | | 0.99 | | 1.00 | 1.00 | | | 0.75 | | | Flpb, ped/bikes | | | | | 0.99 | | 0.97 | 1.00 | | | 1.00 | | | Frt | | | | | 0.99 | | 1.00 | 1.00 | | | 0.90 | | | Flt Protected | | | | | 1.00 | | 0.95 | 1.00 | | | 1.00 | | | Satd. Flow (prot) | | | | | 4915 | | 1669 | 3433 | | | 2255 | | | Flt Permitted | | | | | 1.00 | | 0.28 | 1.00 | | | 1.00 | | | Satd. Flow (perm) | | | | | 4915 | | 485 | 3433 | | | 2255 | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.93 | 0.93 | 0.93 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 0 | 0 | 0 | 118 | 2070 | 108 | 179 | 742 | 0 | 0 | 211 | 400 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 25 | 0 | | Lane Group Flow (vph) | 0 | 0 | 0 | 0 | 2292 | 0 | 179 | 742 | 0 | 0 | 586 | 0 | | Confl. Peds. (#/hr) | 90 | | 65 | 65 | | 90 | 490 | | 290 | 290 | | 490 | | Heavy Vehicles (%) | 0% | 0% | 0% | 0% | 2% | 7% | 4% | 4% | 0% | 0% | 11% | 5% | | Turn Type | | | | Perm | | | pm+pt | | | | | | | Protected Phases | | | | | 6 | | 3 | 8 | | | 4 | | | Permitted Phases | | | | 6 | | | 8 | | | | | | | Actuated Green, G (s) | | | | | 52.4 | | 45.6 | 45.6 | | | 35.6 | | | Effective Green, g (s) | | | | | 52.4 | | 45.6 | 45.6 | | | 35.6 | | | Actuated g/C Ratio | | | | | 0.47 | | 0.41 | 0.41 | | | 0.32 | | | Clearance Time (s) | | | | | 7.0 | | 4.0 | 7.0 | | | 7.0 | | | Vehicle Extension (s) | | | | | 3.0 | | 3.0 | 3.0 | | | 3.0 | | | Lane Grp Cap (vph) | | | | | 2300 | | 261 | 1398 | | | 717 | | | v/s Ratio Prot | | | | | | | c0.04 | 0.22 | | | c0.26 | | | v/s Ratio Perm | | | | | 0.47 | | 0.24 | | | | | | | v/c Ratio | | | | | 1.00 | | 0.69 | 0.53 | | | 1.02dr | | | Uniform Delay, d1 | | | | | 29.7 | | 26.0 | 25.1 | | | 35.2 | | | Progression Factor | | | | | 1.00 | | 0.96 | 1.04 | | | 1.00 | | | Incremental Delay, d2 | | | | | 17.9 | | 5.3 | 0.3 | | | 7.2 | | | Delay (s) | | | | | 47.6 | | 30.2 | 26.5 | | | 42.4 | | | Level of Service | | | | | D | | С | С | | | D | | | Approach Delay (s) | | 0.0 | | | 47.6 | | | 27.2 | | | 42.4 | | | Approach LOS | | Α | | | D | | | С | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 41.9 | Н | CM Level | of Service | :e | | D | | | | | HCM Volume to Capacity ratio | | | 0.91 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | S | um of lost | time (s) | | | 18.0 | | | | | Intersection Capacity Utilization | 1 | • | 138.5% | IC | CU Level o | of Service |) | | Н | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | dr Defacto Right Lane. Reco | de with | 1 though I | ane as a | right lane | €. | | | | | | | | | | ۶ | → | • | • | ← | • | 1 | † | ~ | / | ↓ | -√ | |-----------------------------------|------|-----------------|--------|------|------------|------------|------|----------|------|----------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | ተ ተጉ | | | | | | ^ | | ٦ | † | | | Volume (vph) | 0 | 1265 | 25 | 0 | 0 | 0 | 0 | 795 | 0 | 470 | 165 | 0 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.6 | 3.5 | 3.5 | 3.5 | 3.5 | | Total Lost time (s) | | 6.0 | | | | | | 8.0 | | 4.0 | 8.0 | | | Lane Util. Factor | | 0.91 | | | | | | 0.95 | | 1.00 | 1.00 | | | Frpb, ped/bikes | | 1.00 | | | | | | 1.00 | | 1.00 | 1.00 | | | Flpb, ped/bikes | | 1.00 | | | | | | 1.00 | | 1.00 | 1.00 | | | Frt | | 1.00 | | | | | | 1.00 | | 1.00 | 1.00 | | | Flt Protected | | 1.00 | | | | | | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (prot) | | 4915 | | | | | | 3471 | | 1714 | 1756 | | | FIt Permitted | | 1.00 | | | | | | 1.00 | | 0.15 | 1.00 | | | Satd. Flow (perm) | | 4915 | | | | | | 3471 | | 268 | 1756 | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 0 | 1332 | 26 | 0 | 0 | 0 | 0 | 837 | 0 | 495 | 174 | 0 | | RTOR Reduction (vph) | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Lane Group Flow (vph) | 0 | 1356 | 0 | 0 | 0 | 0 | 0 | 837 | 0 | 495 | 174 | 0 | | Confl. Peds. (#/hr) | 35 | | 15 | 15 | | 35 | 835 | | 55 | 55 | | 835 | | Heavy Vehicles (%) | 0% | 4% | 5% | 0% | 0% | 0% | 0% | 4% | 4% | 4% | 7% | 0% | | Turn Type | | | | | | | | | | pm+pt | | | | Protected Phases | | 2 | | | | | | 8 | | 7 | 4 | | | Permitted Phases | | | | | | | | | | 4 | | | | Actuated Green, G (s) | | 38.0 | | | | | | 34.0 | | 60.0 | 60.0 | | | Effective Green, g (s) | | 38.0 | | | | | | 34.0 | | 60.0 | 60.0 | | | Actuated g/C Ratio | | 0.34 | | | | | | 0.30 | | 0.54 | 0.54 | | | Clearance Time (s) | | 6.0 | | | | | | 8.0 | | 4.0 | 8.0 | | | Vehicle Extension (s) | | 3.0 | | | | | | 3.0 | | 3.0 | 3.0 | | | Lane Grp Cap (vph) | | 1668 | | | | | | 1054 | | 428 | 941 | | | v/s Ratio Prot | | c0.28 | | | | | | 0.24 | | c0.23 | 0.10 | | | v/s Ratio Perm | | | | | | | | | | c0.39 | | | | v/c Ratio | | 0.81 | | | | | | 0.79 | | 1.16 | 0.18 | | | Uniform Delay, d1 | | 33.8 | | | | | | 35.8 | | 29.9 | 13.4 | | | Progression Factor | | 0.47 | | | | | | 1.00 | | 1.45 | 0.21 | | | Incremental Delay, d2 | | 3.9 | | | | | | 4.2 | | 73.1 | 0.0 | | | Delay (s) | | 19.9 | | | | | | 40.0 | | 116.4 | 2.8 | | | Level of Service | | В | | | | | | D | | F | Α | | | Approach Delay (s) | | 19.9 | | | 0.0 | | | 40.0 | | | 86.9 | | | Approach LOS | | В | | | Α | | | D | | | F | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 41.4 | H | CM Level | of Service |) | | D | | | | | HCM Volume to Capacity ratio | | | 0.97 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | um of lost | | | | 10.0 | | | | | Intersection Capacity Utilization | | | 101.0% | IC | U Level o | of Service | | | G | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | 0.111 0 | | | | | | | | | | | | | | | ٠ | → | † | <i>></i> | \ | ļ | <i>></i> | 4 | | | | |---------------------------------|------|----------|----------|-------------|------------|------------|-------------|--------|------|--|--| | Movement | EBL | EBT | NBT | NBR | SBL | SBT | NER | NER2 | | | | | Lane Configurations | ሻ | 414 | ተተኈ | | ሻ | ^ | 7 | 7 | | | | | Volume (vph) | 870 | 1215 | 400 | 75 | 275 | 140 | 695 | 75 | | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | | Total Lost time (s) | 7.0 | 7.0 | 7.0 | | 7.0 | 7.0 | 7.0 | 7.0 | | | | | Lane Util. Factor | 0.91 | 0.91 | 0.91 | | 1.00 | 0.95 | 1.00 | 1.00 | | | | | Frpb, ped/bikes | 1.00 | 1.00 | 0.97 | | 1.00 | 1.00 | 1.00 | 0.76 | | | | | Flpb, ped/bikes | 0.98 | 1.00 | 1.00 | | 0.91 | 1.00 | 1.00 | 1.00 | | | | | Frt | 1.00 | 1.00 | 0.98 | | 1.00 | 1.00 | 0.85 | 0.85 | | | | | Flt Protected | 0.95 | 0.99 | 1.00 | | 0.95 | 1.00 | 1.00 | 1.00 | | | | | Satd. Flow (prot) | 1548 | 3289 | 4431 | | 1556 | 3275 | 1536 | 1177 | | | | | Flt Permitted | 0.95 | 0.99 | 1.00 | | 0.46 | 1.00 | 1.00 | 1.00 | | | | | Satd. Flow (perm) | 1548 | 3289 | 4431 | | 751 | 3275 | 1536 | 1177 | | | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | | | | Adj. Flow (vph) | 916 | 1279 | 421 | 79 | 289 | 147 | 732 | 79 | | | | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 38 | | | | | Lane Group Flow (vph) | 714 | 1481 | 500 | 0 | 289 | 147 | 732 | 41 | | | | | Confl. Peds. (#/hr) | 10 | | | 290 | 290 | | | 125 | | | | | Heavy Vehicles (%) | 3% | 3% | 10% | 7% | 4% | 9% | 4% | 3% | | | | | Turn Type | Perm | | | | Perm | | custom | custom | | | | | Protected Phases | _ | 2 | 8 | | | 4 | _ | _ | | | | | Permitted Phases | 2 | | | | 4 | | 2 | 2 | | | | | Actuated Green, G (s) | 46.0 | 46.0 | 52.0 | | 52.0 | 52.0 | 46.0 | 46.0 | | | | | Effective Green, g (s) | 46.0 | 46.0 | 52.0 | | 52.0 | 52.0 | 46.0 | 46.0 | | | | | Actuated g/C Ratio | 0.41 | 0.41 | 0.46 | | 0.46 | 0.46 | 0.41 | 0.41 | | | | | Clearance Time (s) | 7.0 | 7.0 | 7.0 | | 7.0 | 7.0 | 7.0 | 7.0 | | | | | Vehicle Extension (s) | 3.0 | 3.0 | 3.0 | | 3.0 | 3.0 | 3.0 | 3.0 | | | | | Lane Grp Cap (vph) | 636 | 1351 | 2057 | | 349 | 1521 | 631 | 483 | | | | | v/s Ratio Prot | | | 0.11 | | | 0.04 | | | | | | | v/s Ratio Perm | 0.46 | 0.45 | | | c0.38 | | c0.48 | 0.03 | | | | | v/c Ratio | 1.12 | 1.10 | 0.24 | | 0.83 | 0.10 | 1.16 | 0.08 | | | | | Uniform Delay, d1 | 33.0 | 33.0 | 18.1 | | 26.1 | 16.8 | 33.0 | 20.1 | | | | | Progression Factor | 0.58 | 0.59 | 1.00 | | 1.34 | 1.14 | 1.00 | 1.00 | | | | | Incremental Delay, d2 | 68.6 | 51.5 | 0.1 | | 7.8 | 0.0 | 88.8 | 0.3 | | | | | Delay (s) | 87.9 | 70.8 | 18.2 | | 42.7 | 19.3 | 121.8
| 20.5 | | | | | Level of Service | F | E 70.4 | B | | D | B | F | С | | | | | Approach Delay (s) | | 76.4 | 18.2 | | | 34.8 | | | | | | | Approach LOS | | Е | В | | | С | | | | | | | Intersection Summary | | | | | | • | | | | | | | HCM Average Control Delay | | | 71.7 | Н | CM Level | of Servi | ce | | Е | | | | HCM Volume to Capacity rati | 0 | | 0.98 | _ | | | | | 44.5 | | | | Actuated Cycle Length (s) | | | 112.0 | | ım of lost | | | | 14.0 | | | | Intersection Capacity Utilizati | on | | 164.2% | IC | U Level o | of Service | 9 | | Н | | | | Analysis Period (min) | | | 15 | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | A | † | * | 4 | ţ | لِر | • | × | 4 | 4 | × | t | |-----------------------------------|----------|------------|----------|------------|------------|------------|------|------|------|------|------|------| | Movement | NBL | NBT | NBR | SBL | SBT | SBR | NEL | NET | NER | SWL | SWT | SWR | | Lane Configurations | | ∱ ⊅ | | | ^ | | 7 | 41₽ | | | | | | Volume (vph) | 0 | 110 | 305 | 0 | 300 | 0 | 750 | 1390 | 0 | 0 | 0 | 0 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | 7.0 | | | 7.0 | | 7.0 | 7.0 | | | | | | Lane Util. Factor | | 0.95 | | | 0.95 | | 0.91 | 0.91 | | | | | | Frpb, ped/bikes | | 0.93 | | | 1.00 | | 1.00 | 1.00 | | | | | | Flpb, ped/bikes | | 1.00 | | | 1.00 | | 1.00 | 1.00 | | | | | | Frt | | 0.89 | | | 1.00 | | 1.00 | 1.00 | | | | | | Flt Protected | | 1.00 | | | 1.00 | | 0.95 | 1.00 | | | | | | Satd. Flow (prot) | | 2809 | | | 3570 | | 1547 | 3248 | | | | | | Flt Permitted | | 1.00 | | | 1.00 | | 0.95 | 1.00 | | | | | | Satd. Flow (perm) | | 2809 | | | 3570 | | 1547 | 3248 | | | | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 0 | 116 | 321 | 0 | 316 | 0 | 789 | 1463 | 0 | 0 | 0 | 0 | | RTOR Reduction (vph) | 0 | 33 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Lane Group Flow (vph) | 0 | 404 | 0 | 0 | 316 | 0 | 710 | 1542 | 0 | 0 | 0 | 0 | | Confl. Peds. (#/hr) | 90 | | 65 | 65 | | 90 | | | | | | | | Heavy Vehicles (%) | 0% | 6% | 5% | 0% | 0% | 0% | 5% | 5% | 0% | 0% | 0% | 0% | | Turn Type | | | | | | | Perm | | | | | | | Protected Phases | | 8 | | | 4 | | | 2 | | | | | | Permitted Phases | | | | | | | 2 | | | | | | | Actuated Green, G (s) | | 26.4 | | | 26.4 | | 71.6 | 71.6 | | | | | | Effective Green, g (s) | | 26.4 | | | 26.4 | | 71.6 | 71.6 | | | | | | Actuated g/C Ratio | | 0.24 | | | 0.24 | | 0.64 | 0.64 | | | | | | Clearance Time (s) | | 7.0 | | | 7.0 | | 7.0 | 7.0 | | | | | | Vehicle Extension (s) | | 3.0 | | | 3.0 | | 3.0 | 3.0 | | | | | | Lane Grp Cap (vph) | | 662 | | | 842 | | 989 | 2076 | | | | | | v/s Ratio Prot | | c0.14 | | | 0.09 | | | | | | | | | v/s Ratio Perm | | | | | | | 0.46 | 0.47 | | | | | | v/c Ratio | | 0.86dr | | | 0.38 | | 0.72 | 0.74 | | | | | | Uniform Delay, d1 | | 38.2 | | | 35.9 | | 13.5 | 13.9 | | | | | | Progression Factor | | 1.00 | | | 1.06 | | 0.27 | 0.25 | | | | | | Incremental Delay, d2 | | 1.7 | | | 0.2 | | 0.4 | 0.2 | | | | | | Delay (s) | | 39.9 | | | 38.4 | | 4.1 | 3.7 | | | | | | Level of Service | | D | | | D | | Α | Α | | | | | | Approach Delay (s) | | 39.9 | | | 38.4 | | | 3.8 | | | 0.0 | | | Approach LOS | | D | | | D | | | Α | | | Α | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 12.7 | H | CM Level | of Service | e | | В | | | | | HCM Volume to Capacity ratio | | | 0.71 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | Sı | um of lost | time (s) | | | 14.0 | | | | | Intersection Capacity Utilization | | | 138.5% | | U Level c | | | | Н | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | dr Defacto Right Lane. Reco | de with | 1 though | ane as a | right lane | | | | | | | | | ## **C3** Centre Transit | | • | → | ← | • | \ | 4 | | |---|---------|----------|----------|----------|----------|---------------|------| | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | | Lane Configurations | ሻ | † | † | 7 | * | 7 | | | Volume (vph) | 70 | 580 | 355 | 90 | 120 | 60 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | otal Lost time (s) | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | | ₋ane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | Frpb, ped/bikes | 1.00 | 1.00 | 1.00 | 0.78 | 1.00 | 0.88 | | | -lpb, ped/bikes | 1.00 | 1.00 | 1.00 | 1.00 | 0.73 | 1.00 | | | -rt | 1.00 | 1.00 | 1.00 | 0.85 | 1.00 | 0.85 | | | Flt Protected | 0.95 | 1.00 | 1.00 | 1.00 | 0.95 | 1.00 | | | Satd. Flow (prot) | 1530 | 1626 | 1610 | 1092 | 1089 | 1215 | | | Fit Permitted | 0.95 | 1.00 | 1.00 | 1.00 | 0.95 | 1.00 | | | Satd. Flow (perm) | 1530 | 1626 | 1610 | 1092 | 1089 | 1215 | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | Adj. Flow (vph) | 78 | 644 | 394 | 100 | 133 | 67
51 | | | RTOR Reduction (vph) | 0
78 | 0
644 | 0
394 | 62
38 | 133 | 51
16 | | | .ane Group Flow (vph) Confl. Peds. (#/hr) | 190 | 044 | 394 | 190 | 130 | 50 | | | Heavy Vehicles (%) | 5% | 4% | 5% | 3% | 8% | 4% | | | urn Type | Prot | 7 /0 | J /0 | Perm | 0 70 | custom | | | Protected Phases | 5 | 25 | 6 | ı Giiii | | GUGIOIII | | | Permitted Phases | - 0 | 20 | 0 | 6 | 4 | 4 | | | actuated Green, G (s) | 10.2 | 69.4 | 52.2 | 52.2 | 33.0 | 33.0 | | | Effective Green, g (s) | 10.2 | 69.4 | 52.2 | 52.2 | 33.0 | 33.0 | | | actuated g/C Ratio | 0.07 | 0.51 | 0.38 | 0.38 | 0.24 | 0.24 | | | Clearance Time (s) | 7.0 | | 7.0 | 7.0 | 7.0 | 7.0 | | | ehicle Extension (s) | 3.0 | | 3.0 | 3.0 | 3.0 | 3.0 | | | ane Grp Cap (vph) | 115 | 830 | 618 | 419 | 264 | 295 | | | /s Ratio Prot | 0.05 | c0.40 | 0.24 | | | | | | //s Ratio Perm | | | | 0.04 | c0.12 | 0.01 | | | ı/c Ratio | 0.68 | 0.78 | 0.64 | 0.09 | 0.50 | 0.06 | | | Jniform Delay, d1 | 61.3 | 27.0 | 34.2 | 26.8 | 44.4 | 39.5 | | | Progression Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | ncremental Delay, d2 | 14.7 | 4.6 | 5.0 | 0.4 | 1.5 | 0.1 | | | Delay (s) | 76.0 | 31.6 | 39.2 | 27.2 | 45.9 | 39.6 | | | evel of Service | E | C | D | С | D | D | | | Approach Delay (s) | | 36.4 | 36.7 | | 43.8 | | | | pproach LOS | | D | D | | D | | | | tersection Summary | | | | | | | | | ICM Average Control Delay | | | 37.6 | H | CM Leve | el of Service | D | | CM Volume to Capacity rat | io | | 0.69 | | | | | | Actuated Cycle Length (s) | | | 136.0 | | | st time (s) | 33.6 | | Intersection Capacity Utilizati | ion | | 80.1% | IC | U Level | of Service | D | | Analysis Period (min) | | | 15 | | | | | | Critical Lane Group | | | | | | | | | | ၨ | → | ← | • | > | 4 | | | |-----------------------------------|------|----------|-------------|------|-------------|-------------|----------|--| | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | | | Lane Configurations | ች | † | ↑ 1> | | | 7 | | | | Volume (vph) | 25 | 675 | 375 | 5 | 0 | 70 | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | Total Lost time (s) | 6.0 | 6.0 | 7.0 | | | 6.0 | | | | Lane Util. Factor | 1.00 | 1.00 | 0.95 | | | 1.00 | | | | Frt | 1.00 | 1.00 | 1.00 | | | 0.86 | | | | FIt Protected | 0.95 | 1.00 | 1.00 | | | 1.00 | | | | Satd. Flow (prot) | 1606 | 1610 | 3084 | | | 1463 | | | | FIt Permitted | 0.95 | 1.00 | 1.00 | | | 1.00 | | | | Satd. Flow (perm) | 1606 | 1610 | 3084 | | | 1463 | | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | | Adj. Flow (vph) | 28 | 750 | 417 | 6 | 0 | 78 | | | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 0 | 57 | | | | Lane Group Flow (vph) | 28 | 750 | 423 | 0 | 0 | 21 | | | | Heavy Vehicles (%) | 0% | 5% | 4% | 0% | 0% | 0% | | | | Turn Type | Prot | | | | | custom | | | | Protected Phases | | 2 4 9 10 | 8 | | | 5 9 10 | | | | Permitted Phases | | | | | | | | | | Actuated Green, G (s) | 6.2 | 100.0 | 60.4 | | | 26.6 | | | | Effective Green, g (s) | 6.2 | 93.0 | 60.4 | | | 26.6 | | | | Actuated g/C Ratio | 0.06 | 0.93 | 0.60 | | | 0.27 | | | | Clearance Time (s) | 6.0 | | 7.0 | | | | | | | Vehicle Extension (s) | 3.0 | | 3.0 | | | | | | | Lane Grp Cap (vph) | 100 | 1497 | 1863 | | | 389 | | | | v/s Ratio Prot | 0.02 | c0.47 | 0.14 | | | 0.01 | | | | v/s Ratio Perm | | | V | | | | | | | v/c Ratio | 0.28 | 0.50 | 0.23 | | | 0.05 | | | | Uniform Delay, d1 | 44.8 | 0.5 | 9.1 | | | 27.3 | | | | Progression Factor | 1.00 | 1.00 | 0.34 | | | 1.00 | | | | Incremental Delay, d2 | 1.5 | 0.3 | 0.3 | | | 0.1 | | | | Delay (s) | 46.3 | 0.7 | 3.3 | | | 27.4 | | | | Level of Service | D | А | A | | | C | | | | Approach Delay (s) | | 2.4 | 3.3 | | 27.4 | - | | | | Approach LOS | | Α | А | | С | | | | | Intersection Summary | | | | | | | | | | HCM Average Control Delay | | | 4.2 | Ш, | 2M Lovel | of Service | A | | | HCM Volume to Capacity ratio | | | 0.50 | П | OIVI LEVEI | OI SEIVICE | - А | | | Actuated Cycle Length (s) | | | 100.0 | Ç, | um of lost | time (c) | 6.0 | | | Intersection Capacity Utilization | 1 | | 44.5% | | | of Service | 6.0
A | | | Analysis Period (min) | I | | 15 | IC | O LEVEL | JI OCI VICE | Λ | | | c Critical Lane Group | | | 13 | | | | | | | | ۶ | - | \rightarrow | • | ← | • | 4 | † | ~ | > | ţ | 4 | |-----------------------------------|------|-------|---------------|------|------------|------------|------|----------|------|-------------|-------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | Ť | f) | | ħ | f) | | | 4 | | | 4 | | | Volume (vph) | 0 | 670 | 0 | 0 | 370 | 20 | 0 | 0 | 0 | 10 | 0 | 10 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | 6.0 | | | 6.0 | | | | | | 7.0 | | | Lane Util. Factor | | 1.00 | | | 1.00 | | | | | | 1.00 | | |
Frt | | 1.00 | | | 0.99 | | | | | | 0.93 | | | Flt Protected | | 1.00 | | | 1.00 | | | | | | 0.98 | | | Satd. Flow (prot) | | 1610 | | | 1614 | | | | | | 1472 | | | FIt Permitted | | 1.00 | | | 1.00 | | | | | | 0.84 | | | Satd. Flow (perm) | | 1610 | | | 1614 | | | | | | 1270 | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 0 | 744 | 0 | 0 | 411 | 22 | 0 | 0 | 0 | 11 | 0 | 11 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 11 | 0 | | Lane Group Flow (vph) | 0 | 744 | 0 | 0 | 432 | 0 | 0 | 0 | 0 | 0 | 11 | 0 | | Heavy Vehicles (%) | 5% | 5% | 50% | 50% | 4% | 4% | 50% | 50% | 50% | 5% | 5% | 4% | | Turn Type | Prot | | | Prot | | | Perm | | | Perm | | | | Protected Phases | 5 | 2 | | 1 | 6 | | | 8 | | | 4 | | | Permitted Phases | | | | | | | 8 | | | 4 | | | | Actuated Green, G (s) | | 83.0 | | | 83.0 | | | | | | 4.0 | | | Effective Green, g (s) | | 83.0 | | | 83.0 | | | | | | 4.0 | | | Actuated g/C Ratio | | 0.83 | | | 0.83 | | | | | | 0.04 | | | Clearance Time (s) | | 6.0 | | | 6.0 | | | | | | 7.0 | | | Vehicle Extension (s) | | 3.0 | | | 3.0 | | | | | | 3.0 | | | Lane Grp Cap (vph) | | 1336 | | | 1340 | | | | | | 51 | | | v/s Ratio Prot | | c0.46 | | | 0.27 | | | | | | | | | v/s Ratio Perm | | | | | | | | | | | c0.01 | | | v/c Ratio | | 0.56 | | | 0.32 | | | | | | 0.22 | | | Uniform Delay, d1 | | 2.7 | | | 2.0 | | | | | | 46.5 | | | Progression Factor | | 0.89 | | | 0.16 | | | | | | 1.00 | | | Incremental Delay, d2 | | 1.5 | | | 0.5 | | | | | | 2.2 | | | Delay (s) | | 3.9 | | | 0.9 | | | | | | 48.7 | | | Level of Service | | Α | | | Α | | | | | | D | | | Approach Delay (s) | | 3.9 | | | 0.9 | | | 0.0 | | | 48.7 | | | Approach LOS | | Α | | | Α | | | Α | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 3.6 | H | CM Level | of Service | е | | Α | | | | | HCM Volume to Capacity ratio | | | 0.54 | | | | | | | | | | | Actuated Cycle Length (s) | | | 100.0 | Sı | um of lost | time (s) | | | 13.0 | | | | | Intersection Capacity Utilization | | | 58.3% | IC | U Level c | of Service | | | В | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | | • | → | • | • | ← | • | 4 | † | / | / | ↓ | 4 | |-------------------------------|-------------|----------|-------|------|------------|------------|------|----------|----------|----------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | 4î | | ሻ | ₽ | | | 4 | | ሻ | † | | | Volume (vph) | 85 | 580 | 15 | 20 | 330 | 75 | 10 | 15 | 10 | 45 | 10 | 50 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 7.0 | 6.0 | | 7.0 | 6.0 | | | 7.0 | | 7.0 | 7.0 | | | Lane Util. Factor | 1.00 | 1.00 | | 1.00 | 1.00 | | | 1.00 | | 1.00 | 1.00 | | | Frpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 0.97 | | | 0.96 | | 1.00 | 0.94 | | | Flpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 1.00 | | | 0.99 | | 0.88 | 1.00 | | | Frt | 1.00 | 1.00 | | 1.00 | 0.97 | | | 0.96 | | 1.00 | 0.87 | | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | | 0.99 | | 0.95 | 1.00 | | | Satd. Flow (prot) | 1591 | 1603 | | 1460 | 1516 | | | 1377 | | 1180 | 1384 | | | Flt Permitted | 0.95 | 1.00 | | 0.95 | 1.00 | | | 0.93 | | 0.73 | 1.00 | | | Satd. Flow (perm) | 1591 | 1603 | | 1460 | 1516 | | | 1303 | | 909 | 1384 | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 94 | 644 | 17 | 22 | 367 | 83 | 11 | 17 | 11 | 50 | 11 | 56 | | RTOR Reduction (vph) | 0 | 1 | 0 | 0 | 8 | 0 | 0 | 8 | 0 | 0 | 39 | 0 | | Lane Group Flow (vph) | 94 | 660 | 0 | 22 | 442 | 0 | 0 | 31 | 0 | 50 | 28 | 0 | | Confl. Peds. (#/hr) | 110 | -01 | 50 | 50 | -0/ | 110 | 35 | | 75 | 75 | 221 | 35 | | Heavy Vehicles (%) | 1% | 5% | 0% | 10% | 5% | 8% | 15% | 7% | 10% | 20% | 0% | 0% | | Turn Type | Prot | | | Prot | | | Perm | | | Perm | | | | Protected Phases | 5 | 2 | | 1 | 6 | | _ | 8 | | _ | 4 | | | Permitted Phases | | | | | | | 8 | | | 4 | | | | Actuated Green, G (s) | 7.0 | 47.2 | | 2.8 | 43.0 | | | 30.0 | | 30.0 | 30.0 | | | Effective Green, g (s) | 7.0 | 47.2 | | 2.8 | 43.0 | | | 30.0 | | 30.0 | 30.0 | | | Actuated g/C Ratio | 0.07 | 0.47 | | 0.03 | 0.43 | | | 0.30 | | 0.30 | 0.30 | | | Clearance Time (s) | 7.0 | 6.0 | | 7.0 | 6.0 | | | 7.0 | | 7.0 | 7.0 | | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | | | 3.0 | | 3.0 | 3.0 | | | Lane Grp Cap (vph) | 111 | 757 | | 41 | 652 | | | 391 | | 273 | 415 | | | v/s Ratio Prot | c0.06 | c0.41 | | 0.02 | 0.29 | | | | | | 0.02 | | | v/s Ratio Perm | | | | | | | | 0.02 | | c0.06 | | | | v/c Ratio | 0.85 | 0.87 | | 0.54 | 0.68 | | | 0.08 | | 0.18 | 0.07 | | | Uniform Delay, d1 | 46.0 | 23.7 | | 48.0 | 22.9 | | | 25.1 | | 25.9 | 25.0 | | | Progression Factor | 0.83 | 1.34 | | 1.17 | 0.46 | | | 0.60 | | 1.00 | 1.00 | | | Incremental Delay, d2 | 37.8 | 11.8 | | 10.7 | 4.7 | | | 0.4 | | 1.5 | 0.3 | | | Delay (s) | 76.0 | 43.4 | | 67.0 | 15.2 | | | 15.5 | | 27.4 | 25.3 | | | Level of Service | E | D | | E | В | | | В | | С | С | | | Approach Delay (s) | | 47.5 | | | 17.6 | | | 15.5 | | | 26.2 | | | Approach LOS | | D | | | В | | | В | | | С | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 34.6 | Н | CM Level | of Servic | е | | С | | | | | HCM Volume to Capacity ra | tio | | 0.66 | | | | | | | | | | | Actuated Cycle Length (s) | | | 100.0 | | um of lost | | | | 20.0 | | | | | Intersection Capacity Utiliza | tion | | 83.3% | IC | U Level o | of Service | | | Е | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | Description: Queen's Quay / | / Rees / Ra | disson W | est | | | | | | | | | | | | • | - | • | F | • | ← | • | • | † | / | > | ţ | |-----------------------------------|----------|-----------|------------|--------|-----------|------------|------|------|----------|------|-------------|------| | Movement | EBL | EBT | EBR | WBU | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | | Lane Configurations | | ₽ | | | Ä | 1> | | ሻ | 1• | | ሻ | Þ | | Volume (vph) | 40 | 590 | 0 | 30 | 55 | 390 | 25 | 5 | 0 | 5 | 55 | 35 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 7.0 | 6.0 | | | 7.0 | 6.0 | | 7.0 | 7.0 | | 7.0 | 7.0 | | Lane Util. Factor | 1.00 | 1.00 | | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | Frpb, ped/bikes | 1.00 | 1.00 | | | 1.00 | 0.99 | | 1.00 | 1.00 | | 1.00 | 0.97 | | Flpb, ped/bikes | 1.00 | 1.00 | | | 1.00 | 1.00 | | 1.00 | 1.00 | | 0.83 | 1.00 | | Frt | 1.00 | 1.00 | | | 1.00 | 0.99 | | 1.00 | 0.85 | | 1.00 | 0.93 | | Flt Protected | 0.95 | 1.00 | | | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | | Satd. Flow (prot) | 1545 | 1610 | | | 1559 | 1525 | | 1575 | 1409 | | 1315 | 1509 | | Flt Permitted | 0.95 | 1.00 | | | 0.95 | 1.00 | | 0.71 | 1.00 | | 0.75 | 1.00 | | Satd. Flow (perm) | 1545 | 1610 | | | 1559 | 1525 | | 1177 | 1409 | | 1043 | 1509 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 44 | 656 | 0 | 33 | 61 | 433 | 28 | 6 | 0 | 6 | 61 | 39 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 4 | 0 | 0 | 23 | | Lane Group Flow (vph) | 44 | 656 | 0 | 0 | 94 | 459 | 0 | 6 | 2 | 0 | 61 | 49 | | Confl. Peds. (#/hr) | 140 | | | | | | 140 | | | | 100 | | | Heavy Vehicles (%) | 4% | 5% | 2% | 5% | 2% | 9% | 4% | 2% | 2% | 2% | 2% | 2% | | Turn Type | Prot | | | Prot | Prot | | | Perm | | | Perm | | | Protected Phases | 5 | 2 | | 1 | 1 | 6 | | | 8 | | | 4 | | Permitted Phases | | | | | | | | 8 | | | 4 | | | Actuated Green, G (s) | 4.2 | 43.0 | | | 7.0 | 45.8 | | 30.0 | 30.0 | | 30.0 | 30.0 | | Effective Green, g (s) | 4.2 | 43.0 | | | 7.0 | 45.8 | | 30.0 | 30.0 | | 30.0 | 30.0 | | Actuated g/C Ratio | 0.04 | 0.43 | | | 0.07 | 0.46 | | 0.30 | 0.30 | | 0.30 | 0.30 | | Clearance Time (s) | 7.0 | 6.0 | | | 7.0 | 6.0 | | 7.0 | 7.0 | | 7.0 | 7.0 | | Vehicle Extension (s) | 3.0 | 3.0 | | | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | 3.0 | | Lane Grp Cap (vph) | 65 | 692 | | | 109 | 698 | | 353 | 423 | | 313 | 453 | | v/s Ratio Prot | 0.03 | c0.41 | | | c0.06 | c0.30 | | | 0.00 | | | 0.03 | | v/s Ratio Perm | | | | | | | | 0.01 | | | c0.06 | | | v/c Ratio | 0.68 | 0.95 | | | 0.86 | 0.66 | | 0.02 | 0.00 | | 0.19 | 0.11 | | Uniform Delay, d1 | 47.2 | 27.4 | | | 46.0 | 21.0 | | 24.6 | 24.5 | | 26.0 | 25.3 | | Progression Factor | 0.81 | 1.07 | | | 0.57 | 1.54 | | 1.00 | 1.00 | | 1.00 | 1.00 | | Incremental Delay, d2 | 17.1 | 17.9 | | | 35.7 | 3.4 | | 0.0 | 0.0 | | 1.4 | 0.5 | | Delay (s) | 55.4 | 47.2 | | | 61.8 | 35.8 | | 24.6 | 24.5 | | 27.4 | 25.8 | | Level of Service | Е | D | | | Е | D | | С | С | | С | С | | Approach Delay (s) | | 47.7 | | | | 40.2 | | | 24.6 | | | 26.5 | | Approach LOS | | D | | | | D | | | С | | | С | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 42.5 | Н | CM Level | of Service |) | | D | | | | | HCM Volume to Capacity ratio | | | 0.71 | | | | | | | | | | | Actuated Cycle Length (s) | | | 100.0 | S | um of los | t time (s) | | | 26.0 | | | | | Intersection Capacity Utilization | n | | 83.3% | | | of Service | | | Е | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | Description: Queen's Quay / Lo | ower Sin | ncoe / Ha | rbourfront | t East | | | | | | | | | | | ۶ | → | • | • | ← | 4 | 1 | † | ~ | / | | √ | |--------------------------------|-------|----------|-------|------|------------|------------|------|----------|------|----------|--------------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | f) | | ሻ | ↑ | 7 | | 4 | | ሻ | • | 7 | | Volume
(vph) | 110 | 545 | 20 | 15 | 450 | 150 | 20 | 40 | 10 | 100 | 10 | 110 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 7.0 | 6.0 | | 7.0 | 6.0 | 6.0 | | 7.0 | | 7.0 | 7.0 | 7.0 | | Lane Util. Factor | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | | 1.00 | | 1.00 | 1.00 | 1.00 | | Frpb, ped/bikes | 1.00 | 0.99 | | 1.00 | 1.00 | 0.67 | | 0.98 | | 1.00 | 1.00 | 0.37 | | Flpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | | 0.83 | | 0.88 | 1.00 | 1.00 | | Frt | 1.00 | 0.99 | | 1.00 | 1.00 | 0.85 | | 0.98 | | 1.00 | 1.00 | 0.85 | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | 1.00 | | 0.99 | | 0.95 | 1.00 | 1.00 | | Satd. Flow (prot) | 1501 | 1552 | | 1606 | 1595 | 931 | | 1322 | | 1360 | 1691 | 532 | | Flt Permitted | 0.95 | 1.00 | | 0.95 | 1.00 | 1.00 | | 0.93 | | 0.71 | 1.00 | 1.00 | | Satd. Flow (perm) | 1501 | 1552 | | 1606 | 1595 | 931 | | 1248 | | 1012 | 1691 | 532 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 122 | 606 | 22 | 17 | 500 | 167 | 22 | 44 | 11 | 111 | 11 | 122 | | RTOR Reduction (vph) | 0 | 1 | 0 | 0 | 0 | 58 | 0 | 6 | 0 | 0 | 0 | 83 | | Lane Group Flow (vph) | 122 | 627 | 0 | 17 | 500 | 109 | 0 | 71 | 0 | 111 | 11 | 39 | | Confl. Peds. (#/hr) | 150 | | 170 | 170 | | 150 | 655 | | 85 | 85 | | 655 | | Heavy Vehicles (%) | 7% | 7% | 6% | 0% | 6% | 4% | 0% | 0% | 0% | 4% | 0% | 1% | | Turn Type | Prot | | | Prot | | Perm | Perm | | | Perm | | Perm | | Protected Phases | 5 | 2 | | 1 | 6 | | | 8 | | | 4 | | | Permitted Phases | | | | | | 6 | 8 | | | 4 | | 4 | | Actuated Green, G (s) | 10.0 | 45.2 | | 2.8 | 38.0 | 38.0 | | 32.0 | | 32.0 | 32.0 | 32.0 | | Effective Green, g (s) | 10.0 | 45.2 | | 2.8 | 38.0 | 38.0 | | 32.0 | | 32.0 | 32.0 | 32.0 | | Actuated g/C Ratio | 0.10 | 0.45 | | 0.03 | 0.38 | 0.38 | | 0.32 | | 0.32 | 0.32 | 0.32 | | Clearance Time (s) | 7.0 | 6.0 | | 7.0 | 6.0 | 6.0 | | 7.0 | | 7.0 | 7.0 | 7.0 | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | 3.0 | | 3.0 | | 3.0 | 3.0 | 3.0 | | Lane Grp Cap (vph) | 150 | 702 | | 45 | 606 | 354 | | 399 | | 324 | 541 | 170 | | v/s Ratio Prot | c0.08 | c0.40 | | 0.01 | 0.31 | | | | | | 0.01 | | | v/s Ratio Perm | | | | | | 0.12 | | 0.06 | | c0.11 | | 0.07 | | v/c Ratio | 0.81 | 0.89 | | 0.38 | 0.83 | 0.31 | | 0.18 | | 0.34 | 0.02 | 0.23 | | Uniform Delay, d1 | 44.1 | 25.2 | | 47.7 | 28.0 | 21.8 | | 24.5 | | 26.0 | 23.3 | 25.0 | | Progression Factor | 1.12 | 0.50 | | 1.25 | 0.55 | 0.45 | | 1.00 | | 1.00 | 1.00 | 1.00 | | Incremental Delay, d2 | 15.1 | 8.8 | | 3.8 | 9.0 | 1.6 | | 1.0 | | 2.9 | 0.1 | 3.1 | | Delay (s) | 64.4 | 21.5 | | 63.3 | 24.4 | 11.5 | | 25.5 | | 28.8 | 23.3 | 28.1 | | Level of Service | E | С | | E | С | В | | С | | С | С | С | | Approach Delay (s) | | 28.5 | | | 22.2 | | | 25.5 | | | 28.2 | | | Approach LOS | | С | | | С | | | С | | | С | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 25.9 | H | CM Level | of Service | | | С | | | | | HCM Volume to Capacity rat | tio | | 0.72 | | | | | | | | | | | Actuated Cycle Length (s) | | | 100.0 | | um of lost | | | | 20.0 | | | | | Intersection Capacity Utilizat | tion | | 94.6% | IC | U Level o | of Service | | | F | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | - | • | • | ← | • | 1 | † | <i>></i> | / | + | √ | |-----------------------------------|-------|-------|-------|------|------------|------------|----------|-------|-------------|----------|----------|----------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | f) | | ň | † | 7 | | 4 | | | 4 | | | Volume (vph) | 45 | 605 | 10 | 15 | 560 | 320 | 45 | 0 | 30 | 20 | 0 | 15 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 7.0 | 6.0 | | 7.0 | 6.0 | 6.0 | | 7.0 | | | 7.0 | | | Lane Util. Factor | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | | 1.00 | | | 1.00 | | | Frpb, ped/bikes | 1.00 | 0.99 | | 1.00 | 1.00 | 0.73 | | 0.98 | | | 0.98 | | | Flpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | | 0.99 | | | 0.99 | | | Frt | 1.00 | 1.00 | | 1.00 | 1.00 | 0.85 | | 0.95 | | | 0.94 | | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | 1.00 | | 0.97 | | | 0.97 | | | Satd. Flow (prot) | 1606 | 1580 | | 1422 | 1595 | 1056 | | 1495 | | | 1506 | | | FIt Permitted | 0.95 | 1.00 | | 0.95 | 1.00 | 1.00 | | 0.81 | | | 0.84 | | | Satd. Flow (perm) | 1606 | 1580 | | 1422 | 1595 | 1056 | | 1245 | | | 1295 | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 50 | 672 | 11 | 17 | 622 | 356 | 50 | 0 | 33 | 22 | 0 | 17 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 0 | 182 | 0 | 25 | 0 | 0 | 13 | 0 | | Lane Group Flow (vph) | 50 | 683 | 0 | 17 | 622 | 174 | 0 | 58 | 0 | 0 | 26 | 0 | | Confl. Peds. (#/hr) | 85 | | 185 | 185 | | 85 | 10 | | 15 | 15 | | 10 | | Heavy Vehicles (%) | 0% | 6% | 0% | 13% | 6% | 0% | 2% | 0% | 0% | 0% | 0% | 0% | | Turn Type | Prot | | | Prot | | Perm | Perm | | | Perm | | | | Protected Phases | 5 | 2 | | 1 | 6 | | | 8 | | | 4 | | | Permitted Phases | | | | | | 6 | 8 | | | 4 | | | | Actuated Green, G (s) | 5.6 | 51.6 | | 2.8 | 48.8 | 48.8 | | 25.6 | | | 25.6 | | | Effective Green, g (s) | 5.6 | 51.6 | | 2.8 | 48.8 | 48.8 | | 25.6 | | | 25.6 | | | Actuated g/C Ratio | 0.06 | 0.52 | | 0.03 | 0.49 | 0.49 | | 0.26 | | | 0.26 | | | Clearance Time (s) | 7.0 | 6.0 | | 7.0 | 6.0 | 6.0 | | 7.0 | | | 7.0 | | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | 3.0 | | 3.0 | | | 3.0 | | | Lane Grp Cap (vph) | 90 | 815 | | 40 | 778 | 515 | | 319 | | | 332 | | | v/s Ratio Prot | c0.03 | c0.43 | | 0.01 | 0.39 | | | | | | | | | v/s Ratio Perm | | | | | | 0.16 | | c0.05 | | | 0.02 | | | v/c Ratio | 0.56 | 0.84 | | 0.42 | 0.80 | 0.34 | | 0.18 | | | 0.08 | | | Uniform Delay, d1 | 46.0 | 20.6 | | 47.8 | 21.5 | 15.7 | | 29.0 | | | 28.3 | | | Progression Factor | 1.30 | 0.47 | | 1.00 | 1.00 | 1.00 | | 1.00 | | | 1.00 | | | Incremental Delay, d2 | 4.9 | 6.9 | | 7.1 | 8.4 | 1.8 | | 0.3 | | | 0.1 | | | Delay (s) | 64.7 | 16.6 | | 54.9 | 29.9 | 17.5 | | 29.3 | | | 28.4 | | | Level of Service | E | В | | D | С | В | | С | | | С | | | Approach Delay (s) | | 19.8 | | | 25.9 | | | 29.3 | | | 28.4 | | | Approach LOS | | В | | | С | | | С | | | С | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 23.7 | H | CM Level | of Service | : | | С | | | | | HCM Volume to Capacity ration | 0 | | 0.64 | | | | | | | | | | | Actuated Cycle Length (s) | | | 100.0 | | um of lost | ٠, | | | 20.0 | | | | | Intersection Capacity Utilization | on | | 67.9% | IC | U Level of | of Service | | | С | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ٠ | → | • | • | ← | 4 | 4 | † | / | / | ↓ | 4 | |---------------------------------|--------------|----------------|-------|--------------|--------------|--------------|--------------|--------------|----------|-------------|--------------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | (î | | Ť | † | 7 | 7 | ₽ | | Ť | f) | | | Volume (vph) | 115 | 520 | 20 | 50 | 675 | 210 | 5 | 65 | 50 | 80 | 10 | 340 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 6.0 | 6.0 | | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | | 6.0 | 6.0 | | | Lane Util. Factor | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | 1.00 | 1.00 | | | Frpb, ped/bikes | 1.00 | 0.99 | | 1.00 | 1.00 | 0.81 | 1.00 | 0.81 | | 1.00 | 0.69 | | | Flpb, ped/bikes | 1.00 | 1.00 | | 0.89 | 1.00 | 1.00 | 0.85 | 1.00 | | 0.64 | 1.00 | | | Frt
Flt Protected | 1.00 | 0.99
1.00 | | 1.00
0.95 | 1.00
1.00 | 0.85
1.00 | 1.00 | 0.93
1.00 | | 1.00 | 0.85
1.00 | | | Satd. Flow (prot) | 0.95
1575 | 1559 | | 1431 | 1595 | 1122 | 0.95
1369 | 1277 | | 0.95
993 | 980 | | | Flt Permitted | 0.09 | 1.00 | | 0.38 | 1.00 | 1.00 | 0.34 | 1.00 | | 0.67 | 1.00 | | | Satd. Flow (perm) | 151 | 1559 | | 578 | 1595 | 1122 | 494 | 1277 | | 705 | 980 | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 128 | 578 | 22 | 56 | 750 | 233 | 6 | 72 | 56 | 89 | 11 | 378 | | RTOR Reduction (vph) | 0 | 1 | 0 | 0 | 0 | 58 | 0 | 31 | 0 | 0 | 82 | 0 | | Lane Group Flow (vph) | 128 | 599 | 0 | 56 | 750 | 175 | 6 | 97 | 0 | 89 | 307 | 0 | | Confl. Peds. (#/hr) | 180 | 000 | 165 | 165 | 100 | 180 | 200 | O1 | 275 | 275 | 001 | 200 | | Heavy Vehicles (%) | 2% | 7% | 0% | 0% | 6% | 4% | 0% | 0% | 0% | 4% | 0% | 1% | | Turn Type | pm+pt | . , , | | Perm | | Perm | Perm | 7,7 | | Perm | | .,,, | | Protected Phases | 5 | 2 | | | 6 | | | 8 | | | 4 | | | Permitted Phases | 2 | | | 6 | | 6 | 8 | | | 4 | | | | Actuated Green, G (s) | 48.2 | 48.2 | | 38.0 | 38.0 | 38.0 | 29.8 | 29.8 | | 29.8 | 29.8 | | | Effective Green, g (s) | 48.2 | 48.2 | | 38.0 | 38.0 | 38.0 | 29.8 | 29.8 | | 29.8 | 29.8 | | | Actuated g/C Ratio | 0.54 | 0.54 | | 0.42 | 0.42 | 0.42 | 0.33 | 0.33 | | 0.33 | 0.33 | | | Clearance Time (s) | 6.0 | 6.0 | | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | | 6.0 | 6.0 | | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | 3.0 | 3.0 | | | Lane Grp Cap (vph) | 147 | 835 | | 244 | 673 | 474 | 164 | 423 | | 233 | 324 | | | v/s Ratio Prot | 0.04 | c0.38 | | | c0.47 | | | 0.08 | | | c0.31 | | | v/s Ratio Perm | 0.43 | | | 0.10 | | 0.16 | 0.01 | | | 0.13 | | | | v/c Ratio | 0.87 | 0.72 | | 0.23 | 1.11 | 0.37 | 0.04 | 0.23 | | 0.38 | 0.95 | | | Uniform Delay, d1 | 19.4 | 15.8 | | 16.6 |
26.0 | 17.8 | 20.4 | 21.8 | | 23.0 | 29.4 | | | Progression Factor | 1.00 | 1.00 | | 0.85 | 0.64 | 0.71 | 1.00 | 1.00 | | 1.00 | 1.00 | | | Incremental Delay, d2 | 39.1 | 5.2 | | 1.7 | 66.8 | 1.7 | 0.1 | 0.3 | | 1.0 | 36.2 | | | Delay (s) | 58.5 | 21.0 | | 15.9 | 83.5 | 14.3 | 20.5 | 22.1 | | 24.1 | 65.5 | | | Level of Service | E | C | | В | F | В | С | C | | С | E | | | Approach Delay (s) Approach LOS | | 27.6
C | | | 64.4
E | | | 22.0
C | | | 57.8
E | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Dela | У | | 49.4 | Н | CM Level | of Service | e | | D | | | | | HCM Volume to Capacity ra | • | | 1.06 | | | | | | | | | | | Actuated Cycle Length (s) | | | 90.0 | Sı | um of lost | time (s) | | | 18.0 | | | | | Intersection Capacity Utiliza | ation | | 93.1% | | | of Service | | | F | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | , | |-------------------------------|-------|----------|------------|------|------------|-------------| | | • | - | • | • | - | 4 | | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | Lane Configurations | ኝ | † | ↑ ↑ | | * | 7 | | Volume (vph) | 200 | 400 | 735 | 115 | 95 | 240 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 4.0 | 6.0 | 6.0 | | 6.0 | 6.0 | | Lane Util. Factor | 1.00 | 1.00 | 0.95 | | 1.00 | 1.00 | | Frpb, ped/bikes | 1.00 | 1.00 | 0.99 | | 1.00 | 0.93 | | Flpb, ped/bikes | 1.00 | 1.00 | 1.00 | | 1.00 | 1.00 | | Frt | 1.00 | 1.00 | 0.98 | | 1.00 | 0.85 | | Flt Protected | 0.95 | 1.00 | 1.00 | | 0.95 | 1.00 | | Satd. Flow (prot) | 1542 | 1595 | 2920 | | 1545 | 1304 | | Flt Permitted | 0.19 | 1.00 | 1.00 | | 0.95 | 1.00 | | Satd. Flow (perm) | 309 | 1595 | 2920 | | 1545 | 1304 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 222 | 444 | 817 | 128 | 106 | 267 | | RTOR Reduction (vph) | 0 | 0 | 14 | 0 | 0 | 134 | | Lane Group Flow (vph) | 222 | 444 | 931 | 0 | 106 | 133 | | Confl. Peds. (#/hr) | 85 | | | 85 | 60 | 55 | | Heavy Vehicles (%) | 4% | 6% | 6% | 12% | 4% | 3% | | Turn Type | pm+pt | | | | | Perm | | Protected Phases | 5 | 2 | 6 | | 4 | | | Permitted Phases | 2 | | | | | 4 | | Actuated Green, G (s) | 51.0 | 51.0 | 41.0 | | 27.0 | 27.0 | | Effective Green, g (s) | 51.0 | 51.0 | 41.0 | | 27.0 | 27.0 | | Actuated g/C Ratio | 0.57 | 0.57 | 0.46 | | 0.30 | 0.30 | | Clearance Time (s) | 4.0 | 6.0 | 6.0 | | 6.0 | 6.0 | | Vehicle Extension (s) | 3.0 | 3.0 | 3.0 | | 3.0 | 3.0 | | Lane Grp Cap (vph) | 257 | 904 | 1330 | | 464 | 391 | | v/s Ratio Prot | c0.06 | 0.28 | 0.32 | | 0.07 | | | v/s Ratio Perm | c0.43 | | | | | c0.10 | | v/c Ratio | 0.86 | 0.49 | 0.70 | | 0.23 | 0.34 | | Uniform Delay, d1 | 13.9 | 11.7 | 19.6 | | 23.7 | 24.5 | | Progression Factor | 1.61 | 0.65 | 1.00 | | 1.00 | 1.00 | | Incremental Delay, d2 | 19.9 | 1.5 | 3.1 | | 0.3 | 0.5 | | Delay (s) | 42.2 | 9.1 | 22.7 | | 23.9 | 25.1 | | Level of Service | D | A | C | | C | C | | Approach Delay (s) | _ | 20.1 | 22.7 | | 24.7 | | | Approach LOS | | С | C | | С | | | Intersection Summary | | | | | | | | HCM Average Control Delay | | | 22.2 | H | CM Level | of Service | | HCM Volume to Capacity ra | | | 0.65 | 110 | C/41 E0401 | 31 331 1100 | | Actuated Cycle Length (s) | | | 90.0 | Sı | um of lost | time (s) | | Intersection Capacity Utiliza | tion | | 82.3% | | | of Service | | Analysis Period (min) | | | 15 | | 5 257010 | | | c Critical Lane Group | | | 10 | | | | | o Ontion Lane Oroup | | | | | | | | | ۶ | → | + | • | / | 4 | |---------------------------------|------|----------|----------|------|----------|---------------| | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | Lane Configurations | * | † | † | 7 | ሻ | 7 | | Volume (vph) | 70 | 645 | 580 | 155 | 95 | 95 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Frpb, ped/bikes | 1.00 | 1.00 | 1.00 | 0.73 | 1.00 | 0.93 | | Flpb, ped/bikes | 1.00 | 1.00 | 1.00 | 1.00 | 0.92 | 1.00 | | Frt | 1.00 | 1.00 | 1.00 | 0.85 | 1.00 | 0.85 | | Flt Protected | 0.95 | 1.00 | 1.00 | 1.00 | 0.95 | 1.00 | | Satd. Flow (prot) | 1606 | 1642 | 1674 | 1032 | 1424 | 1304 | | Flt Permitted | 0.95 | 1.00 | 1.00 | 1.00 | 0.95 | 1.00 | | Satd. Flow (perm) | 1606 | 1642 | 1674 | 1032 | 1424 | 1304 | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 74 | 679 | 611 | 163 | 100 | 100 | | RTOR Reduction (vph) | 0 | 0 | 0 | 74 | 0 | 76 | | Lane Group Flow (vph) | 74 | 679 | 611 | 89 | 100 | 24 | | Confl. Peds. (#/hr) | 243 | | | 243 | 38 | 27 | | Heavy Vehicles (%) | 0% | 3% | 1% | 1% | 4% | 2% | | Turn Type | Prot | | | Perm | | custom | | Protected Phases | 5 | 25 | 6 | | | | | Permitted Phases | | | | 6 | 4 | 4 | | Actuated Green, G (s) | 10.4 | 69.4 | 52.0 | 52.0 | 33.0 | 33.0 | | Effective Green, g (s) | 10.4 | 69.4 | 52.0 | 52.0 | 33.0 | 33.0 | | Actuated g/C Ratio | 0.08 | 0.51 | 0.38 | 0.38 | 0.24 | 0.24 | | Clearance Time (s) | 7.0 | | 7.0 | 7.0 | 7.0 | 7.0 | | Vehicle Extension (s) | 3.0 | | 3.0 | 3.0 | 3.0 | 3.0 | | Lane Grp Cap (vph) | 123 | 838 | 640 | 395 | 346 | 316 | | v/s Ratio Prot | 0.05 | c0.41 | c0.36 | | | | | v/s Ratio Perm | | | | 0.09 | c0.07 | 0.02 | | v/c Ratio | 0.60 | 0.81 | 0.95 | 0.23 | 0.29 | 0.08 | | Uniform Delay, d1 | 60.8 | 27.8 | 40.9 | 28.4 | 41.9 | 39.7 | | Progression Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Incremental Delay, d2 | 8.0 | 6.0 | 26.0 | 1.3 | 0.5 | 0.1 | | Delay (s) | 68.8 | 33.8 | 66.9 | 29.7 | 42.4 | 39.8 | | Level of Service | Е | С | Е | С | D | D | | Approach Delay (s) | | 37.2 | 59.1 | | 41.1 | | | Approach LOS | | D | Е | | D | | | Intersection Summary | | | | | | | | HCM Average Control Delay | | | 47.5 | H | CM Leve | el of Service | | HCM Volume to Capacity rati | io | | 0.75 | | | | | Actuated Cycle Length (s) | | | 136.0 | | | st time (s) | | Intersection Capacity Utilizati | ion | | 83.2% | IC | U Level | of Service | | Analysis Period (min) | | | 15 | | | | | c Critical Lane Group | | | | | | | | | ۶ | → | ← | • | > | 4 | |-----------------------------------|-----------|----------|-------------|------|-------------|------------| | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | Lane Configurations | 7 | † | ↑ 1≽ | | | 7 | | Volume (vph) | 45 | 695 | 685 | 10 | 0 | 50 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 6.0 | 6.0 | 7.0 | | | 6.0 | | Lane Util. Factor | 1.00 | 1.00 | 0.95 | | | 1.00 | | Frt | 1.00 | 1.00 | 1.00 | | | 0.86 | | Flt Protected | 0.95 | 1.00 | 1.00 | | | 1.00 | | Satd. Flow (prot) | 1606 | 1642 | 3144 | | | 1463 | | Flt Permitted | 0.95 | 1.00 | 1.00 | | | 1.00 | | Satd. Flow (perm) | 1606 | 1642 | 3144 | | | 1463 | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 47 | 732 | 721 | 11 | 0 | 53 | | RTOR Reduction (vph) | 0 | 0 | 1 | 0 | 0 | 38 | | Lane Group Flow (vph) | 47 | 732 | 731 | 0 | 0 | 15 | | Heavy Vehicles (%) | 0% | 3% | 2% | 0% | 0% | 0% | | Turn Type | Prot | | | 2,0 | | custom | | Protected Phases | | 2 4 9 10 | 8 | | | 5 9 10 | | Permitted Phases | J . | _ 10 10 | <u> </u> | | | | | Actuated Green, G (s) | 7.3 | 100.0 | 59.3 | | | 27.7 | | Effective Green, g (s) | 7.3 | 93.0 | 59.3 | | | 27.7 | | Actuated g/C Ratio | 0.07 | 0.93 | 0.59 | | | 0.28 | | Clearance Time (s) | 6.0 | 0.00 | 7.0 | | | 0.20 | | Vehicle Extension (s) | 3.0 | | 3.0 | | | | | Lane Grp Cap (vph) | 117 | 1527 | 1864 | | | 405 | | v/s Ratio Prot | 0.03 | c0.45 | 0.23 | | | 0.01 | | v/s Ratio Perm | 0.00 | 60.40 | 0.23 | | | 0.01 | | v/c Ratio | 0.40 | 0.48 | 0.39 | | | 0.04 | | Uniform Delay, d1 | 44.3 | 0.48 | 10.8 | | | 26.4 | | Progression Factor | 1.00 | 1.00 | 1.14 | | | 1.00 | | Incremental Delay, d2 | 2.3 | 0.2 | 0.4 | | | 0.0 | | Delay (s) | 46.5 | 0.2 | 12.7 | | | 26.4 | | Level of Service | 40.5
D | 0.7
A | 12.7
B | | | 20.4
C | | Approach Delay (s) | U | 3.4 | 12.7 | | 26.4 | C | | Approach LOS | | 3.4
A | 12.7
B | | 20.4
C | | | | | A | Б | | U | | | Intersection Summary | | | | | | | | HCM Average Control Delay | | | 8.5 | H | CM Level | of Service | | HCM Volume to Capacity ratio | | | 0.47 | | | | | Actuated Cycle Length (s) | | | 100.0 | | um of lost | | | Intersection Capacity Utilization | 1 | | 45.6% | IC | U Level o | of Service | | Analysis Period (min) | | | 15 | | | | | c Critical Lane Group | | | | | | | | | ۶ | → | • | • | — | • | 4 | † | / | > | ţ | 1 | |-----------------------------------|------|----------|-------|------|-------------|------------|------|----------|------|-------------|-------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | × | £ | | Ţ | f) | | | 4 | | | 4 | | | Volume (vph) | 5 | 680 | 0 | 0 | 700 | 30 | 0 | 0 | 0 | 10 | 0 | 20 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 7.0 | 6.0 | | | 6.0 | | | | | | 7.0 | | | Lane Util. Factor | 1.00 | 1.00 | | | 1.00 | | | | | | 1.00 | | | Frt | 1.00 | 1.00 | | | 0.99 | | | | | | 0.91 | | | Flt Protected | 0.95 | 1.00 | | | 1.00 | | | | | | 0.98 | | | Satd. Flow (prot) | 1606 | 1642 | | | 1649 | | | | | | 1515 | | | Flt Permitted | 0.95 | 1.00 | | | 1.00 | | | | | | 0.93 | | | Satd. Flow (perm) | 1606 | 1642 | | | 1649 | | | | | | 1427 | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 5 | 716 | 0 | 0 | 737 | 32 | 0 | 0 | 0 | 11 | 0 | 21 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 16 | 0 | | Lane Group Flow (vph) | 5 | 716 | 0 | 0 | 768 | 0 | 0 | 0 | 0 | 0 | 16 | 0 | | Heavy
Vehicles (%) | 0% | 3% | 0% | 0% | 2% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | | Turn Type | Prot | | | Prot | | | Perm | | | Perm | | | | Protected Phases | 5 | 2 | | 1 | 6 | | | 8 | | | 4 | | | Permitted Phases | | | | | | | 8 | | | 4 | | | | Actuated Green, G (s) | 1.4 | 64.6 | | | 56.2 | | | | | | 22.4 | | | Effective Green, g (s) | 1.4 | 64.6 | | | 56.2 | | | | | | 22.4 | | | Actuated g/C Ratio | 0.01 | 0.65 | | | 0.56 | | | | | | 0.22 | | | Clearance Time (s) | 7.0 | 6.0 | | | 6.0 | | | | | | 7.0 | | | Vehicle Extension (s) | 3.0 | 3.0 | | | 3.0 | | | | | | 3.0 | | | Lane Grp Cap (vph) | 22 | 1061 | | | 927 | | | | | | 320 | | | v/s Ratio Prot | 0.00 | c0.44 | | | c0.47 | | | | | | | | | v/s Ratio Perm | | | | | | | | | | | c0.01 | | | v/c Ratio | 0.23 | 0.67 | | | 0.83 | | | | | | 0.05 | | | Uniform Delay, d1 | 48.8 | 11.1 | | | 17.9 | | | | | | 30.4 | | | Progression Factor | 1.00 | 1.00 | | | 1.36 | | | | | | 1.00 | | | Incremental Delay, d2 | 4.8 | 3.1 | | | 4.1 | | | | | | 0.1 | | | Delay (s) | 53.5 | 14.2 | | | 28.5 | | | | | | 30.5 | | | Level of Service | D | В | | | С | | | | | | С | | | Approach Delay (s) | | 14.5 | | | 28.5 | | | 0.0 | | | 30.5 | | | Approach LOS | | В | | | С | | | Α | | | С | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 21.9 | Н | CM Level | of Service | е | | С | | | | | HCM Volume to Capacity ratio | | | 0.64 | | | | | | | | | | | Actuated Cycle Length (s) | | | 100.0 | S | um of lost | time (s) | | | 19.0 | | | | | Intersection Capacity Utilization | | | 62.1% | IC | CU Level of | of Service | | | В | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | c Critical Lane Group | | ٠ | → | • | • | ← | • | 4 | † | / | \ | ↓ | 4 | |---------------------------------|--------------|--------------|-------|--------------|--------------|------------|------|--------------|-----------|--------------|--------------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | 4î | | Ť | f) | | | ₩ | | Ť | ₽ | | | Volume (vph) | 110 | 570 | 10 | 30 | 610 | 65 | 15 | 25 | 15 | 50 | 15 | 105 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 7.0 | 6.0 | | 7.0 | 6.0 | | | 7.0 | | 7.0 | 7.0 | | | Lane Util. Factor | 1.00 | 1.00 | | 1.00 | 1.00 | | | 1.00 | | 1.00 | 1.00 | | | Frpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 0.98 | | | 0.95 | | 1.00 | 0.87 | | | Flpb, ped/bikes
Frt | 1.00
1.00 | 1.00
1.00 | | 1.00
1.00 | 1.00
0.99 | | | 0.97
0.96 | | 0.84
1.00 | 1.00
0.87 | | | FIt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | | 0.90 | | 0.95 | 1.00 | | | Satd. Flow (prot) | 1591 | 1591 | | 1606 | 1601 | | | 1476 | | 1256 | 1272 | | | Flt Permitted | 0.95 | 1.00 | | 0.95 | 1.00 | | | 0.91 | | 0.72 | 1.00 | | | Satd. Flow (perm) | 1591 | 1591 | | 1606 | 1601 | | | 1366 | | 951 | 1272 | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 116 | 600 | 11 | 32 | 642 | 68 | 16 | 26 | 16 | 53 | 16 | 111 | | RTOR Reduction (vph) | 0 | 1 | 0 | 0 | 4 | 0 | 0 | 11 | 0 | 0 | 78 | 0 | | Lane Group Flow (vph) | 116 | 610 | 0 | 32 | 706 | 0 | 0 | 47 | 0 | 53 | 49 | 0 | | Confl. Peds. (#/hr) | 184 | | 40 | 40 | | 184 | 82 | ••• | 101 | 101 | | 82 | | Heavy Vehicles (%) | 1% | 6% | 0% | 0% | 2% | 0% | 0% | 0% | 0% | 8% | 0% | 0% | | Turn Type | Prot | | | Prot | | | Perm | | | Perm | | | | Protected Phases | 5 | 2 | | 1 | 6 | | | 8 | | | 4 | | | Permitted Phases | | | | | | | 8 | | | 4 | | | | Actuated Green, G (s) | 7.0 | 45.8 | | 4.2 | 43.0 | | | 30.0 | | 30.0 | 30.0 | | | Effective Green, g (s) | 7.0 | 45.8 | | 4.2 | 43.0 | | | 30.0 | | 30.0 | 30.0 | | | Actuated g/C Ratio | 0.07 | 0.46 | | 0.04 | 0.43 | | | 0.30 | | 0.30 | 0.30 | | | Clearance Time (s) | 7.0 | 6.0 | | 7.0 | 6.0 | | | 7.0 | | 7.0 | 7.0 | | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | | | 3.0 | | 3.0 | 3.0 | | | Lane Grp Cap (vph) | 111 | 729 | | 67 | 688 | | | 410 | | 285 | 382 | | | v/s Ratio Prot | c0.07 | c0.38 | | 0.02 | c0.44 | | | | | | 0.04 | | | v/s Ratio Perm | | | | | | | | 0.03 | | c0.06 | | | | v/c Ratio | 1.05 | 0.84 | | 0.48 | 1.03 | | | 0.11 | | 0.19 | 0.13 | | | Uniform Delay, d1 | 46.5 | 23.8 | | 46.8 | 28.5 | | | 25.4 | | 25.9 | 25.5 | | | Progression Factor | 1.31 | 0.42 | | 1.21 | 0.58 | | | 0.79 | | 1.00 | 1.00 | | | Incremental Delay, d2 | 87.2 | 8.7 | | 1.7 | 26.4 | | | 0.1 | | 0.3 | 0.2 | | | Delay (s) | 148.3 | 18.7 | | 58.5 | 42.8 | | | 20.3 | | 26.3 | 25.6 | | | Level of Service | F | B
39.4 | | E | D
43.4 | | | C
20.3 | | С | C
25.8 | | | Approach Delay (s) Approach LOS | | 39.4
D | | | 43.4
D | | | 20.3
C | | | 25.6
C | | | Intersection Summary | | _ | | | _ | | | | | | | | | HCM Average Control Dela | nv | | 39.1 | Н | CM Level | of Service | | | D | | | | | HCM Volume to Capacity ra | • | | 0.77 | | OIVI LEVEI | OI OCIVIC | | | D | | | | | Actuated Cycle Length (s) | ado | | 100.0 | S | um of lost | time (s) | | | 26.0 | | | | | Intersection Capacity Utiliza | ation | | 89.2% | | CU Level | . , | | | 20.0
E | | | | | Analysis Period (min) | | | 15 | | 2 20101 | | | | | | | | | Description: Queen's Quay | / Rees / Ra | disson W | | | | | | | | | | | | 2 111 11 2 | | | | | | | | | | | | | | | ۶ | → | • | F | • | ← | • | 1 | † | / | / | \ | |--|--------------|--------------|-----------|------|--------------|--------------|------|--------------|--------------|------|--------------|--------------| | Movement | EBL | EBT | EBR | WBU | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | | Lane Configurations | ሻ | f) | | | ă | f) | | ሻ | f. | | ሻ | ĵ. | | Volume (vph) | 65 | 585 | 0 | 50 | 20 | 650 | 80 | 15 | 45 | 35 | 65 | 5 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 7.0 | 6.0 | | | 7.0 | 6.0 | | 7.0 | 7.0 | | 7.0 | 7.0 | | Lane Util. Factor | 1.00 | 1.00 | | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | Frpb, ped/bikes | 1.00 | 1.00 | | | 1.00 | 0.98 | | 1.00 | 1.00 | | 1.00 | 0.94 | | Flpb, ped/bikes
Frt | 1.00
1.00 | 1.00
1.00 | | | 1.00
1.00 | 1.00
0.98 | | 1.00
1.00 | 1.00 | | 0.85
1.00 | 1.00
0.86 | | FIt Protected | 0.95 | 1.00 | | | 0.95 | 1.00 | | 0.95 | 0.93
1.00 | | 0.95 | 1.00 | | Satd. Flow (prot) | 1560 | 1610 | | | 1542 | 1601 | | 1575 | 1549 | | 1302 | 1332 | | Flt Permitted | 0.95 | 1.00 | | | 0.95 | 1.00 | | 0.72 | 1.00 | | 0.70 | 1.00 | | Satd. Flow (perm) | 1560 | 1610 | | | 1542 | 1601 | | 1199 | 1549 | | 959 | 1332 | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.90 | 0.90 | 0.90 | 0.95 | 0.95 | 0.90 | 0.90 | 0.90 | 0.95 | 0.95 | | Adj. Flow (vph) | 68 | 616 | 0.30 | 56 | 22 | 684 | 84 | 17 | 50 | 39 | 68 | 5 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 27 | 0 | 0 | 33 | | Lane Group Flow (vph) | 68 | 616 | 0 | 0 | 78 | 764 | 0 | 17 | 62 | 0 | 68 | 19 | | Confl. Peds. (#/hr) | 138 | 0.0 | | · · | , 0 | , , , | 138 | • • • | 02 | · · | 101 | | | Heavy Vehicles (%) | 3% | 5% | 2% | 5% | 2% | 2% | 1% | 2% | 2% | 2% | 5% | 2% | | Turn Type | Prot | | | Prot | Prot | | | Perm | | | Perm | | | Protected Phases | 5 | 2 | | 1 | 1 | 6 | | | 8 | | | 4 | | Permitted Phases | | | | | | | | 8 | | | 4 | | | Actuated Green, G (s) | 5.6 | 44.4 | | | 5.6 | 44.4 | | 30.0 | 30.0 | | 30.0 | 30.0 | | Effective Green, g (s) | 5.6 | 44.4 | | | 5.6 | 44.4 | | 30.0 | 30.0 | | 30.0 | 30.0 | | Actuated g/C Ratio | 0.06 | 0.44 | | | 0.06 | 0.44 | | 0.30 | 0.30 | | 0.30 | 0.30 | | Clearance Time (s) | 7.0 | 6.0 | | | 7.0 | 6.0 | | 7.0 | 7.0 | | 7.0 | 7.0 | | Vehicle Extension (s) | 3.0 | 3.0 | | | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | 3.0 | | Lane Grp Cap (vph) | 87 | 715 | | | 86 | 711 | | 360 | 465 | | 288 | 400 | | v/s Ratio Prot | 0.04 | 0.38 | | | c0.05 | c0.48 | | | 0.04 | | | 0.01 | | v/s Ratio Perm | | | | | | | | 0.01 | | | c0.07 | | | v/c Ratio | 0.78 | 0.86 | | | 0.91 | 1.07 | | 0.05 | 0.13 | | 0.24 | 0.05 | | Uniform Delay, d1 | 46.6 | 25.0 | | | 46.9 | 27.8 | | 24.9 | 25.5 | | 26.4 | 24.9 | | Progression Factor | 0.71 | 1.48 | | | 1.07 | 0.79 | | 1.00 | 1.00 | | 1.00 | 1.00 | | Incremental Delay, d2 | 26.9 | 9.6 | | | 37.2 | 44.5 | | 0.1 | 0.1 | | 1.9 | 0.2 | | Delay (s) | 59.8 | 46.7 | | | 87.4
F | 66.4 | | 24.9 | 25.6 | | 28.3 | 25.1 | | Level of Service
Approach Delay (s) | E | D
48.0 | | | Г | E
68.3 | | С | C
25.5 | | С | 26.9 | | Approach LOS | | 40.0
D | | | | 00.5
E | | | 25.5
C | | | 20.9
C | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 55.0 | Н | CM Level | of Service |) | | D | | | | | HCM Volume to Capacity rat | | | 0.75 | • • | | | | | _ | | | | | Actuated Cycle Length (s) | | | 100.0 | Sı | um of lost | t time (s) | | | 20.0 | | | | | Intersection Capacity Utilizat | ion | | 91.7% | | | of Service | | | F | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | Description: Queen's Quay / | Lower Sim | coe / Hai | bourfront | East | | | | | | | | | | | ۶ | → | * | • | ← | 4 | 1 | † | ~ | / | † | 4 | |--------------------------------|-------|----------|--------|------|-------------|------------|------|----------|------|----------|----------|-------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | f) | | ሻ | † | 7 | | 4 | | ሻ | | 7 | | Volume (vph) | 90 | 625 | 15 | 5 | 705 | 265 | 10 | 15 | 15 | 55 | 20 | 115 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 7.0 | 6.0 | | 7.0 | 6.0 | 6.0 | | 7.0 | | 7.0 | 7.0 | 7.0 | | Lane Util. Factor | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | | 1.00 | |
1.00 | 1.00 | 1.00 | | Frpb, ped/bikes | 1.00 | 0.99 | | 1.00 | 1.00 | 0.78 | | 0.94 | | 1.00 | 1.00 | 0.40 | | Flpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | | 0.85 | | 0.86 | 1.00 | 1.00 | | Frt | 1.00 | 1.00 | | 1.00 | 1.00 | 0.85 | | 0.95 | | 1.00 | 1.00 | 0.85 | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | 1.00 | | 0.99 | | 0.95 | 1.00 | 1.00 | | Satd. Flow (prot) | 1606 | 1592 | | 1606 | 1674 | 1117 | | 1269 | | 1342 | 1691 | 574 | | Flt Permitted | 0.95 | 1.00 | | 0.95 | 1.00 | 1.00 | | 0.95 | | 0.73 | 1.00 | 1.00 | | Satd. Flow (perm) | 1606 | 1592 | | 1606 | 1674 | 1117 | | 1216 | | 1030 | 1691 | 574 | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 95 | 658 | 16 | 5 | 742 | 279 | 11 | 16 | 16 | 58 | 21 | 121 | | RTOR Reduction (vph) | 0 | 1 | 0 | 0 | 0 | 67 | 0 | 11 | 0 | 0 | 0 | 86 | | Lane Group Flow (vph) | 95 | 673 | 0 | 5 | 742 | 212 | 0 | 32 | 0 | 58 | 21 | 35 | | Confl. Peds. (#/hr) | 170 | | 333 | 333 | | 170 | 559 | | 86 | 86 | | 559 | | Heavy Vehicles (%) | 0% | 5% | 0% | 0% | 1% | 0% | 0% | 0% | 0% | 3% | 0% | 0% | | Turn Type | Prot | | | Prot | | Perm | Perm | | | Perm | | Perm | | Protected Phases | 7 | 4 | | 3 | 8 | | | 2 | | | 6 | | | Permitted Phases | | | | | | 8 | 2 | | | 6 | | 6 | | Actuated Green, G (s) | 7.0 | 49.6 | | 1.4 | 44.0 | 44.0 | | 29.0 | | 29.0 | 29.0 | 29.0 | | Effective Green, g (s) | 7.0 | 49.6 | | 1.4 | 44.0 | 44.0 | | 29.0 | | 29.0 | 29.0 | 29.0 | | Actuated g/C Ratio | 0.07 | 0.50 | | 0.01 | 0.44 | 0.44 | | 0.29 | | 0.29 | 0.29 | 0.29 | | Clearance Time (s) | 7.0 | 6.0 | | 7.0 | 6.0 | 6.0 | | 7.0 | | 7.0 | 7.0 | 7.0 | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | 3.0 | | 3.0 | | 3.0 | 3.0 | 3.0 | | Lane Grp Cap (vph) | 112 | 790 | | 22 | 737 | 491 | | 353 | | 299 | 490 | 166 | | v/s Ratio Prot | c0.06 | c0.42 | | 0.00 | c0.44 | | | | | | 0.01 | | | v/s Ratio Perm | | | | | | 0.19 | | 0.03 | | 0.06 | | c0.06 | | v/c Ratio | 0.85 | 0.85 | | 0.23 | 1.01 | 0.43 | | 0.09 | | 0.19 | 0.04 | 0.21 | | Uniform Delay, d1 | 46.0 | 22.0 | | 48.8 | 28.0 | 19.4 | | 25.9 | | 26.7 | 25.5 | 26.9 | | Progression Factor | 1.09 | 0.95 | | 1.17 | 0.65 | 0.45 | | 1.00 | | 1.00 | 1.00 | 1.00 | | Incremental Delay, d2 | 38.8 | 7.9 | | 2.3 | 23.7 | 1.2 | | 0.5 | | 1.4 | 0.2 | 2.9 | | Delay (s) | 89.0 | 28.7 | | 59.5 | 42.0 | 9.9 | | 26.4 | | 28.2 | 25.7 | 29.7 | | Level of Service | F | С | | E | D | Α | | С | | С | С | С | | Approach Delay (s) | | 36.2 | | | 33.4 | | | 26.4 | | | 28.8 | | | Approach LOS | | D | | | С | | | С | | | С | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 33.8 | Н | CM Level | of Service | | | С | | | | | HCM Volume to Capacity rate | tio | | 0.78 | | | | | | | | | | | Actuated Cycle Length (s) | | | 100.0 | | um of lost | | | | 26.0 | | | | | Intersection Capacity Utilizat | tion | | 106.2% | IC | CU Level of | of Service | | | G | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | • | • | — | • | • | † | <i>></i> | / | + | ✓ | |-----------------------------------|------|----------|-------|-------|------------|------------|----------|------|-------------|----------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | Ť | f) | | 7 | † | 7 | | 4 | | | 4 | | | Volume (vph) | 15 | 660 | 20 | 20 | 810 | 30 | 10 | 0 | 20 | 175 | 0 | 135 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 7.0 | 6.0 | | 7.0 | 6.0 | 6.0 | | 7.0 | | | 7.0 | | | Lane Util. Factor | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | | 1.00 | | | 1.00 | | | Frpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 1.00 | 0.83 | | 0.97 | | | 0.97 | | | Flpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | | 0.99 | | | 0.99 | | | Frt | 1.00 | 1.00 | | 1.00 | 1.00 | 0.85 | | 0.91 | | | 0.94 | | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | 1.00 | | 0.98 | | | 0.97 | | | Satd. Flow (prot) | 1606 | 1585 | | 1606 | 1674 | 1190 | | 1459 | | | 1484 | | | FIt Permitted | 0.95 | 1.00 | | 0.95 | 1.00 | 1.00 | | 0.87 | | | 0.81 | | | Satd. Flow (perm) | 1606 | 1585 | | 1606 | 1674 | 1190 | | 1293 | | | 1232 | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 16 | 695 | 21 | 21 | 853 | 32 | 11 | 0 | 21 | 184 | 0 | 142 | | RTOR Reduction (vph) | 0 | 1 | 0 | 0 | 0 | 13 | 0 | 16 | 0 | 0 | 28 | 0 | | Lane Group Flow (vph) | 16 | 715 | 0 | 21 | 853 | 19 | 0 | 16 | 0 | 0 | 298 | 0 | | Confl. Peds. (#/hr) | 143 | | 109 | 109 | | 143 | 24 | | 14 | 14 | | 24 | | Heavy Vehicles (%) | 0% | 6% | 0% | 0% | 1% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | | Turn Type | Prot | | | Prot | | Perm | Perm | | | Perm | | | | Protected Phases | 5 | 2 | | 1 | 6 | | | 8 | | | 4 | | | Permitted Phases | | | | | | 6 | 8 | | | 4 | | | | Actuated Green, G (s) | 2.8 | 51.8 | | 2.8 | 51.8 | 51.8 | | 25.4 | | | 25.4 | | | Effective Green, g (s) | 2.8 | 51.8 | | 2.8 | 51.8 | 51.8 | | 25.4 | | | 25.4 | | | Actuated g/C Ratio | 0.03 | 0.52 | | 0.03 | 0.52 | 0.52 | | 0.25 | | | 0.25 | | | Clearance Time (s) | 7.0 | 6.0 | | 7.0 | 6.0 | 6.0 | | 7.0 | | | 7.0 | | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | 3.0 | | 3.0 | | | 3.0 | | | Lane Grp Cap (vph) | 45 | 821 | | 45 | 867 | 616 | | 328 | | | 313 | | | v/s Ratio Prot | 0.01 | 0.45 | | c0.01 | c0.51 | | | | | | | | | v/s Ratio Perm | | | | | | 0.02 | | 0.01 | | | c0.24 | | | v/c Ratio | 0.36 | 0.87 | | 0.47 | 0.98 | 0.03 | | 0.05 | | | 0.95 | | | Uniform Delay, d1 | 47.7 | 21.2 | | 47.9 | 23.7 | 11.8 | | 28.2 | | | 36.7 | | | Progression Factor | 1.30 | 0.48 | | 1.00 | 1.00 | 1.00 | | 1.00 | | | 1.00 | | | Incremental Delay, d2 | 3.3 | 8.9 | | 7.5 | 26.9 | 0.1 | | 0.1 | | | 37.8 | | | Delay (s) | 65.4 | 19.1 | | 55.3 | 50.6 | 11.9 | | 28.2 | | | 74.5 | | | Level of Service | Е | В | | Ε | D | В | | С | | | Е | | | Approach Delay (s) | | 20.1 | | | 49.3 | | | 28.2 | | | 74.5 | | | Approach LOS | | С | | | D | | | С | | | Е | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 42.4 | Н | CM Level | of Service | <u> </u> | | D | | | | | HCM Volume to Capacity ratio |) | | 0.96 | | | | | | | | | | | Actuated Cycle Length (s) | | | 100.0 | | um of lost | | | | 20.0 | | | | | Intersection Capacity Utilization | on | | 85.8% | IC | CU Level | of Service | | | E | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | * | • | ← | 4 | 1 | † | / | / | † | ✓ | |---------------------------------|-------|-----------|--------|------|------------|------------|------|-----------|------|----------|-----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | 7 | £ | | Ť | ^ | 7 | | 4 | | Ť | f) | | | Volume (vph) | 185 | 720 | 0 | 50 | 675 | 240 | 5 | 20 | 30 | 95 | 30 | 120 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 6.0 | 7.0 | | 7.0 | 7.0 | 7.0 | | 7.0 | | 7.0 | 7.0 | | | Lane Util. Factor | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | | 1.00 | | 1.00 | 1.00 | | | Frpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 1.00 | 0.87 | | 0.87 | | 1.00 | 0.75 | | | Flpb, ped/bikes | 1.00 | 1.00 | | 0.94 | 1.00 | 1.00 | | 0.98 | | 0.80 | 1.00 | | | Frt | 1.00 | 1.00 | | 1.00 | 1.00 | 0.85 | | 0.93 | | 1.00 | 0.88 | | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | 1.00 | | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (prot) | 1591 | 1610 | | 1518 | 1674 | 1217 | | 1327 | | 1231 | 1109 | | | Flt Permitted | 0.10 | 1.00 | | 0.24 | 1.00 | 1.00 | | 0.98 | | 0.72 | 1.00 | | | Satd. Flow (perm) | 159 | 1610 | | 381 | 1674 | 1217 | | 1302 | | 932 | 1109 | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 195 | 758 | 0 | 53 | 711 | 253 | 5 | 21 | 32 | 100 | 32 | 126 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 0 | 152 | 0 | 22 | 0 | 0 | 85 | 0 | | Lane Group Flow (vph) | 195 | 758 | 0 | 53 | 711 | 101 | 0 | 36 | 0 | 100 | 73 | 0 | | Confl. Peds. (#/hr) | 118 | | 126 | 126 | | 118 | 197 | | 142 | 142 | | 197 | | Heavy Vehicles (%) | 1% | 5% | 0% | 0% | 1% | 3% | 0% | 0% | 0% | 4% | 0% | 0% | | Turn Type | pm+pt | | | Perm | | Perm | Perm | | | Perm | | | | Protected Phases | 7 | 4 | | _ | 8 | _ | _ | 2 | | _ | 6 | | | Permitted Phases | 4 | | | 8 | | 8 | 2 | | | 6 | | | | Actuated Green, G (s) | 47.0 | 47.0 | | 36.0 | 36.0 | 36.0 | | 29.0 | | 29.0 | 29.0 | | | Effective Green, g (s) | 47.0 | 47.0 | | 36.0 | 36.0 | 36.0 | | 29.0 | | 29.0 | 29.0 | | | Actuated g/C Ratio | 0.52 | 0.52 | | 0.40 | 0.40 | 0.40 | | 0.32 | | 0.32 | 0.32 | | | Clearance Time (s) | 6.0 | 7.0 | | 7.0 | 7.0 | 7.0 | | 7.0 | | 7.0 | 7.0 | | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | 3.0 | | 3.0 | | 3.0 | 3.0 | | | Lane Grp Cap (vph) | 163 | 841 | | 152 | 670 | 487 | | 420 | | 300 | 357 | | | v/s Ratio Prot | 0.07 | c0.47 | | | 0.42 | | | | | | 0.07 | | | v/s Ratio Perm | c0.56 | | | 0.14 | 4.00 | 0.08 | | 0.03 | | c0.11 | | | | v/c Ratio | 1.20 | 0.90 | | 0.35 | 1.06 | 0.21 | | 0.09 | | 0.33 | 0.20 | | | Uniform Delay, d1 | 20.0 | 19.4 | | 18.8 | 27.0 | 17.7 | | 21.3 | | 23.2 | 22.1 | | | Progression Factor | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | | 1.00 | | 1.00 | 1.00 | | | Incremental Delay, d2 | 133.0 | 14.7 | | 6.2 | 52.1 | 1.0 | | 0.1 | | 0.7 | 0.3 | | | Delay (s) | 153.0 | 34.1 | | 25.0 | 79.1 | 18.6 | | 21.4 | | 23.8 | 22.4 | | | Level of Service | F | C | | С | E | В | | C | | С | C | | | Approach Delay (s) Approach LOS | | 58.4
E | | | 61.3
E | | | 21.4
C | | | 23.0
C | | | | | | | | | | | C | | | C | | | Intersection Summary |
 | | | | | | | | | | | | HCM Average Control Dela | | | 54.7 | H | CM Level | of Service | ! | | D | | | | | HCM Volume to Capacity ra | atio | | 0.84 | | | | | | 440 | | | | | Actuated Cycle Length (s) | | | 90.0 | | um of lost | | | | 14.0 | | | | | Intersection Capacity Utiliza | ition | | 106.3% | IC | U Level o | of Service | | | G | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | • | → | ← | • | \ | 4 | | |-------------------------------|-------|----------|----------|------|------------|------------|-----| | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | | Lane Configurations | ሻ | † | ħβ | | ሻ | 7 | | | Volume (vph) | 185 | 625 | 645 | 200 | 155 | 355 | | | deal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | 6.0 | 6.0 | 6.0 | | 6.0 | 6.0 | | | Lane Util. Factor | 1.00 | 1.00 | 0.95 | | 1.00 | 1.00 | | | Frpb, ped/bikes | 1.00 | 1.00 | 0.98 | | 1.00 | 0.94 | | | Flpb, ped/bikes | 1.00 | 1.00 | 1.00 | | 1.00 | 1.00 | | | Frt | 1.00 | 1.00 | 0.96 | | 1.00 | 0.85 | | | FIt Protected | 0.95 | 1.00 | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (prot) | 1556 | 1595 | 2959 | | 1516 | 1351 | | | FIt Permitted | 0.20 | 1.00 | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (perm) | 331 | 1595 | 2959 | | 1516 | 1351 | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | | Adj. Flow (vph) | 195 | 658 | 679 | 211 | 163 | 374 | | | RTOR Reduction (vph) | 0 | 0 | 33 | 0 | 0 | 120 | | | Lane Group Flow (vph) | 195 | 658 | 857 | 0 | 163 | 254 | | | Confl. Peds. (#/hr) | 106 | | | 106 | 42 | 49 | | | Heavy Vehicles (%) | 3% | 6% | 2% | 5% | 6% | 0% | | | urn Type | pm+pt | | | | | Perm | | | Protected Phases | 7 | 4 | 8 | | 6 | | | | Permitted Phases | 4 | | | | | 6 | | | Actuated Green, G (s) | 51.0 | 51.0 | 41.0 | | 27.0 | 27.0 | | | Effective Green, g (s) | 51.0 | 51.0 | 41.0 | | 27.0 | 27.0 | | | Actuated g/C Ratio | 0.57 | 0.57 | 0.46 | | 0.30 | 0.30 | | | Clearance Time (s) | 6.0 | 6.0 | 6.0 | | 6.0 | 6.0 | | | Lane Grp Cap (vph) | 242 | 904 | 1348 | | 455 | 405 | | | v/s Ratio Prot | 0.04 | c0.41 | 0.29 | | 0.11 | | | | v/s Ratio Perm | c0.42 | | | | | c0.19 | | | v/c Ratio | 0.81 | 0.73 | 0.64 | | 0.36 | 0.63 | | | Uniform Delay, d1 | 16.0 | 14.4 | 18.8 | | 24.7 | 27.2 | | | Progression Factor | 1.00 | 1.00 | 1.00 | | 1.00 | 1.00 | | | Incremental Delay, d2 | 24.2 | 5.1 | 2.3 | | 2.2 | 7.2 | | | Delay (s) | 40.2 | 19.5 | 21.1 | | 26.9 | 34.4 | | | Level of Service | D | В | С | | С | С | | | Approach Delay (s) | | 24.2 | 21.1 | | 32.1 | | | | Approach LOS | | С | С | | С | | | | ntersection Summary | | | | | | | | | HCM Average Control Dela | | | 24.8 | H | CM Level | of Service | (| | HCM Volume to Capacity ra | atio | | 0.74 | | | | | | Actuated Cycle Length (s) | | | 90.0 | | um of lost | | 12. | | Intersection Capacity Utiliza | ation | | 83.1% | IC | U Level o | of Service | l | | Analysis Period (min) | | | 15 | | | | | | | ۶ | → | • | • | — | • | 1 | † | / | / | + | ✓ | |---------------------------------|-------|-------------|--------|------|------------|------------|--------------|------------|-----------|----------|-----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻሻ | ↑ ↑₽ | | | | | | ∱ ∱ | | ሻ | ^ | | | Volume (vph) | 1520 | 2530 | 65 | 0 | 0 | 0 | 0 | 70 | 90 | 165 | 115 | 0 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 7.0 | 7.0 | | | | | | 7.0 | | 6.0 | 7.0 | | | Lane Util. Factor | 0.97 | 0.91 | | | | | | 0.95 | | 1.00 | 0.95 | | | Frpb, ped/bikes | 1.00 | 1.00 | | | | | | 1.00 | | 1.00 | 1.00 | | | Flpb, ped/bikes | 1.00 | 1.00 | | | | | | 1.00 | | 1.00 | 1.00 | | | Frt | 1.00 | 1.00 | | | | | | 0.92 | | 1.00 | 1.00 | | | Flt Protected | 0.95 | 1.00 | | | | | | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (prot) | 3395 | 4912 | | | | | | 3084 | | 1767 | 3433 | | | Flt Permitted | 0.95 | 1.00 | | | | | | 1.00 | | 0.47 | 1.00 | | | Satd. Flow (perm) | 3395 | 4912 | | | | | | 3084 | | 879 | 3433 | | | Peak-hour factor, PHF | 0.97 | 0.97 | 0.97 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 1567 | 2608 | 67 | 0 | 0 | 0 | 0 | 78 | 100 | 183 | 128 | 0 | | RTOR Reduction (vph) | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 41 | 0 | 0 | 0 | 0 | | Lane Group Flow (vph) | 1567 | 2673 | 0 | 0 | 0 | 0 | 0 | 137 | 0 | 183 | 128 | 0 | | Confl. Peds. (#/hr) | 201 | 10/ | 20 | 201 | 201 | 201 | 201 | 201 | 201 | 10/ | 10/ | 201 | | Heavy Vehicles (%) | 2% | 4% | 3% | 0% | 0% | 0% | 0% | 6% | 6% | 1% | 4% | 0% | | Turn Type | Split | | | | | | | | | pm+pt | | | | Protected Phases | 2 | 2 | | | | | | 8 | | 7 | 4 | | | Permitted Phases | | | | | | | | | | 4 | | | | Actuated Green, G (s) | 92.5 | 92.5 | | | | | | 17.0 | | 37.5 | 37.5 | | | Effective Green, g (s) | 92.5 | 92.5 | | | | | | 17.0 | | 37.5 | 37.5 | | | Actuated g/C Ratio | 0.64 | 0.64 | | | | | | 0.12 | | 0.26 | 0.26 | | | Clearance Time (s) | 7.0 | 7.0 | | | | | | 7.0 | | 6.0 | 7.0 | | | Vehicle Extension (s) | 3.0 | 3.0 | | | | | | 3.0 | | 3.0 | 3.0 | | | Lane Grp Cap (vph) | 2181 | 3155 | | | | | | 364 | | 318 | 894 | | | v/s Ratio Prot | 0.46 | c0.54 | | | | | | 0.04 | | c0.06 | 0.04 | | | v/s Ratio Perm | 0.70 | 0.05 | | | | | | 0.00 | | c0.09 | 0.44 | | | v/c Ratio | 0.72 | 0.85 | | | | | | 0.38 | | 0.58 | 0.14 | | | Uniform Delay, d1 | 17.1 | 20.2 | | | | | | 58.6 | | 44.1 | 40.9 | | | Progression Factor | 1.00 | 1.00 | | | | | | 1.00 | | 1.00 | 1.00 | | | Incremental Delay, d2 | 2.1 | 3.0 | | | | | | 0.7 | | 2.5 | 0.1 | | | Delay (s) | 19.2 | 23.2 | | | | | | 59.3 | | 46.6 | 41.0 | | | Level of Service | В | C | | | 0.0 | | | E | | D | D | | | Approach Delay (s) Approach LOS | | 21.7
C | | | 0.0
A | | | 59.3
E | | | 44.3
D | | | Intersection Summary | | | | | , , | | | _ | | | | | | HCM Average Control Delay | | | 24.6 | Ш | CM Lovel | of Service | <u> </u> | | С | | | | | HCM Volume to Capacity rati | | | 0.76 | П | CIVI LEVEI | OI SEIVICE | , | | U | | | | | Actuated Cycle Length (s) | 10 | | 144.0 | C | um of lost | time (c) | | | 13.0 | | | | | Intersection Capacity Utilizati | on | | 137.7% | | | of Service | | | 13.0
H | | | | | Analysis Period (min) | UII | | 157.7% | 10 | O LEVEL | or oervice | | | - 11 | | | | | c Critical Lane Group | | | 10 | ۶ | → | • | • | *_ | • | ሻ | † | / | / | ↓ | ₩ J | |---------------------------------|--------------|--------------|--------|--------------|--------------|-------------|--------------|--------------|----------|----------|--------------|--------------| | Movement | EBL | EBT | EBR | WBL | WBR | WBR2 | NBL | NBT | NBR | SBL | SBT | SBR2 | | Lane Configurations | ሻሻ | ↑ ↑₽ | | Ť | 777 | | ሻ | f) | | | 4₽ | 7 | | Volume (vph) | 470 | 2275 | 40 | 10 | 940 | 135 | 10 | 65 | 100 | 190 | 55 | 10 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 6.0 | 6.0 | | 6.0 | 6.0 | | 8.0 | 8.0 | | | 8.0 | 8.0 | | Lane Util. Factor | 0.97 | 0.91 | | 1.00 | 0.76 | | 1.00 | 1.00 | | | 0.95 | 1.00 | | Frpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 0.97 | | 1.00 | 0.93 | | | 1.00 | 1.00 | | Flpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | | 0.94 | 1.00 | | Frt
Flt Protected | 1.00 | 1.00
1.00 | | 1.00 | 1.00 | | 1.00 | 0.91
1.00 | | | 1.00 | 0.85 | | Satd. Flow (prot) | 0.95
3330 | 4953 | | 0.95
1785 | 1.00
4089 | | 0.95
1750 | 1554 | | | 0.96
3160 | 1.00
1566 | | Flt Permitted | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.58 | 1.00 | | | 0.66 | 1.00 | | Satd. Flow (perm) | 3330 | 4953 | | 1785 | 4089 | | 1076 | 1554 | | | 2182 | 1566 | | Peak-hour factor, PHF | 0.97 | 0.97 | 0.97 | 0.91 | 0.91 | 0.91 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 485 | 2345 | 41 | 11 | 1033 | 148 | 11 | 72 | 111 | 211 | 61 | 11 | | RTOR Reduction (vph) | 0 | 1 | 0 | 0 | 1033 | 0 | 0 | 49 | 0 | 0 | 0 | 8 | | Lane Group Flow (vph) | 485 | 2385 | 0 | 11 | 1167 | 0 | 11 | 134 | 0 | 0 | 272 | 3 | | Confl. Peds. (#/hr) | 5 | 2000 | 40 | 40 | 1101 | 5 | | 104 | 80 | 80 | 212 | U | | Heavy Vehicles (%) | 4% | 3% | 13% | 0% | 2% | 2% | 2% | 5% | 1% | 2% | 4% | 2% | | Turn Type | Prot | | 1070 | | custom | | Perm | | .,, | Perm | .,, | Perm | | Protected Phases | 5 | 2 | | 1 | 0 | | | 8 | | | 4 | | | Permitted Phases | | | | | 6 | | 8 | | | 4 | | 4 | | Actuated Green, G (s) | 26.8 | 60.6 | | 4.4 | 38.2 | | 27.0 | 27.0 | | | 27.0 | 27.0 | | Effective Green, g (s) | 26.8 | 60.6 | | 4.4 | 38.2 | | 27.0 | 27.0 | | | 27.0 | 27.0 | | Actuated g/C Ratio | 0.24 | 0.54 | | 0.04 | 0.34 | | 0.24 | 0.24 | | | 0.24 | 0.24 | | Clearance Time (s) | 6.0 | 6.0 | | 6.0 | 6.0 | | 8.0 | 8.0 | | | 8.0 | 8.0 | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | 3.0 | | | 3.0 | 3.0 | | Lane Grp Cap (vph) | 797 | 2680 | | 70 | 1395 | | 259 | 375 | | | 526 | 378 | | v/s Ratio Prot | c0.15 | c0.48 | | 0.01 | | | | 0.09 | | | | | | v/s Ratio Perm | | | | | 0.29 | | 0.01 | | | | c0.12 | 0.00 | | v/c Ratio | 0.61 | 0.89 | | 0.16 | 0.84 | | 0.04 | 0.36 | | | 0.52 | 0.01 | | Uniform Delay, d1 | 37.9 | 22.7 | | 52.0 | 34.0 | | 32.6 | 35.3 | | | 36.8 | 32.3 | | Progression Factor | 1.00 | 1.00 | | 1.08 | 0.31 | | 1.00 | 1.00 | | | 1.00 | 1.00 | | Incremental Delay, d2 | 1.3 | 4.9 | | 0.9 | 5.0 | | 0.1 | 0.6 | | | 0.9 | 0.0 | | Delay (s) | 39.3 | 27.7 | | 56.9 | 15.5 | | 32.7 | 35.9 | | | 37.7 | 32.3 | | Level of Service | D | C | | E | В | | С | D
35.7 | | | D | С | | Approach Delay (s) Approach LOS | | 29.6
C | | | | | | 35.7
D | | | 37.5
D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | у | | 26.8 | F |
HCM Leve | l of Servic | е | | С | | | | | HCM Volume to Capacity ra | itio | | 0.74 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | 5 | Sum of los | t time (s) | | | 14.0 | | | | | Intersection Capacity Utiliza | tion | | 113.4% | | | of Service | | | Н | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | • | 1 | † | / | / | ļ | 4 | </th <th>t</th> <th></th> | t | | |-------------------------------|-------|------------|-------|------|----------|-------------|----------|----------------|------|---------------------------|------|--| | Movement | EBL2 | EBT | EBR | NBL | NBT | NBR2 | SBL | SBT | SBR | SWR | SWR2 | | | Lane Configurations | Ĭ | ∱ ⊅ | | Ŋ | f) | | Ŋ | (Î | | 772 | | | | Volume (vph) | 85 | 1130 | 95 | 25 | 30 | 10 | 95 | 25 | 50 | 1010 | 115 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | 6.0 | 6.0 | | 7.0 | 7.0 | | 7.0 | 7.0 | | 6.0 | | | | Lane Util. Factor | 1.00 | 0.95 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 0.76 | | | | Frpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 0.99 | | 1.00 | 0.94 | | 0.97 | | | | Flpb, ped/bikes | 1.00 | 1.00 | | 0.93 | 1.00 | | 0.97 | 1.00 | | 1.00 | | | | Frt | 1.00 | 0.99 | | 1.00 | 0.96 | | 1.00 | 0.90 | | 1.00 | | | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | | 1.00 | | | | Satd. Flow (prot) | 1648 | 3390 | | 1603 | 1724 | | 1732 | 1204 | | 3951 | | | | FIt Permitted | 0.95 | 1.00 | | 0.70 | 1.00 | | 0.73 | 1.00 | | 1.00 | | | | Satd. Flow (perm) | 1648 | 3390 | | 1186 | 1724 | | 1328 | 1204 | | 3951 | | | | Peak-hour factor, PHF | 0.94 | 0.94 | 0.94 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.91 | 0.91 | | | Adj. Flow (vph) | 90 | 1202 | 101 | 28 | 33 | 11 | 106 | 28 | 56 | 1110 | 126 | | | RTOR Reduction (vph) | 0 | 6 | 0 | 0 | 8 | 0 | 0 | 40 | 0 | 10 | 0 | | | Lane Group Flow (vph) | 90 | 1297 | 0 | 28 | 36 | 0 | 106 | 44 | 0 | 1226 | 0 | | | Confl. Peds. (#/hr) | 5 | | 10 | 80 | | 30 | 30 | | 80 | | 5 | | | Heavy Vehicles (%) | 8% | 4% | 2% | 3% | 5% | 0% | 0% | 15% | 40% | 6% | 3% | | | Turn Type | pm+pt | | | Perm | | | Perm | | | custom | | | | Protected Phases | 5 | 2 | | | 8 | | | 4 | | | | | | Permitted Phases | 2 | | | 8 | | | 4 | | | 6 | | | | Actuated Green, G (s) | 67.0 | 67.0 | | 32.0 | 32.0 | | 32.0 | 32.0 | | 55.4 | | | | Effective Green, g (s) | 67.0 | 67.0 | | 32.0 | 32.0 | | 32.0 | 32.0 | | 55.4 | | | | Actuated g/C Ratio | 0.60 | 0.60 | | 0.29 | 0.29 | | 0.29 | 0.29 | | 0.49 | | | | Clearance Time (s) | 6.0 | 6.0 | | 7.0 | 7.0 | | 7.0 | 7.0 | | 6.0 | | | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | | | | Lane Grp Cap (vph) | 986 | 2028 | | 339 | 493 | | 379 | 344 | | 1954 | | | | v/s Ratio Prot | 0.00 | c0.38 | | | 0.02 | | | 0.04 | | | | | | v/s Ratio Perm | 0.05 | | | 0.02 | | | c0.08 | | | 0.31 | | | | v/c Ratio | 0.09 | 0.64 | | 80.0 | 0.07 | | 0.28 | 0.13 | | 0.63 | | | | Uniform Delay, d1 | 9.6 | 14.6 | | 29.3 | 29.2 | | 31.1 | 29.7 | | 20.7 | | | | Progression Factor | 0.93 | 1.28 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 0.27 | | | | Incremental Delay, d2 | 0.0 | 1.0 | | 0.1 | 0.1 | | 0.4 | 0.2 | | 0.6 | | | | Delay (s) | 9.0 | 19.7 | | 29.4 | 29.2 | | 31.5 | 29.8 | | 6.2 | | | | Level of Service | Α | В | | С | С | | С | С | | Α | | | | Approach Delay (s) | | 19.0 | | | 29.3 | | | 30.7 | | | | | | Approach LOS | | В | | | С | | | С | | | | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Dela | • | | 14.6 | H | CM Leve | l of Servic | е | | В | | | | | HCM Volume to Capacity ra | atio | | 0.52 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | | t time (s) | | | 13.0 | | | | | Intersection Capacity Utiliza | ation | | 99.2% | IC | U Level | of Service | | | F | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | • | / | • | • | * | † | ļ | 4 | | |---|---------|--------------|--------------|---------|------------|--------------|--------------|------|------| | Movement | WBL2 | WBL | WBT | WBR | NBL2 | NBT | SBT | SBR2 | | | Lane Configurations | | ሽኘኘ | ∱ } | | | ^ | ħβ | | | | Volume (vph) | 65 | 1090 | 595 | 475 | 100 | 895 | 250 | 640 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | | 6.0 | 6.0 | | | 8.0 | 8.0 | | | | Lane Util. Factor | | 0.94 | 0.95 | | | 0.95 | 0.95 | | | | Frpb, ped/bikes | | 1.00 | 0.98 | | | 1.00 | 1.00 | | | | Flpb, ped/bikes | | 0.89 | 1.00 | | | 1.00 | 1.00 | | | | Frt | | 1.00 | 0.93 | | | 1.00 | 0.89 | | | | Fit Protected | | 0.95 | 1.00 | | | 1.00 | 1.00 | | | | Satd. Flow (prot) | | 4214 | 3142 | | | 3354 | 3038 | | | | Fit Permitted | | 0.95
4214 | 1.00
3142 | | | 0.63
2110 | 1.00
3038 | | | | Satd. Flow (perm) | 0.05 | | | 0.05 | 0.00 | | | 0.00 | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.90 | 0.90 | 0.90 | 0.90 | | | Adj. Flow (vph) | 68 | 1147 | 626 | 500 | 111 | 994 | 278 | 711 | | | RTOR Reduction (vph) | 0 | 1015 | 68 | 0 | 0 | 0 | 140 | 0 | | | Lane Group Flow (vph) | 0
70 | 1215 | 1058 | 0
45 | U | 1105 | 849 | 0 | | | Confl. Peds. (#/hr)
Heavy Vehicles (%) | 14% | 6% | 4% | 3% | 5% | 6% | 7% | 4% | | | | | | 4 /0 | J /0 | | 0 /0 | 1 /0 | 4 /0 | | | Turn Type Protected Phases | Perm | Split
6 | 6 | | pm+pt
3 | 8 | 4 | | | | Permitted Phases | 6 | Ü | Ü | | 8 | 0 | 4 | | | | Actuated Green, G (s) | U | 36.0 | 36.0 | | U | 62.0 | 62.0 | | | | Effective Green, g (s) | | 36.0 | 36.0 | | | 62.0 | 62.0 | | | | Actuated g/C Ratio | | 0.32 | 0.32 | | | 0.55 | 0.55 | | | | Clearance Time (s) | | 6.0 | 6.0 | | | 8.0 | 8.0 | | | | Vehicle Extension (s) | | 3.0 | 3.0 | | | 3.0 | 3.0 | | | | Lane Grp Cap (vph) | | 1355 | 1010 | | | 1168 | 1682 | | | | v/s Ratio Prot | | 1000 | c0.34 | | | 1100 | 0.28 | | | | v/s Ratio Perm | | 0.29 | 00.01 | | | c0.52 | 0.20 | | | | v/c Ratio | | 0.90 | 1.05 | | | 0.95 | 0.50 | | | | Uniform Delay, d1 | | 36.2 | 38.0 | | | 23.4 | 15.5 | | | | Progression Factor | | 0.23 | 0.16 | | | 0.77 | 1.00 | | | | Incremental Delay, d2 | | 1.0 | 24.5 | | | 10.1 | 0.2 | | | | Delay (s) | | 9.5 | 30.7 | | | 28.1 | 15.7 | | | | Level of Service | | Α | С | | | С | В | | | | Approach Delay (s) | | | 19.7 | | | 28.1 | 15.7 | | | | Approach LOS | | | В | | | С | В | | | | Intersection Summary | | | | | | | | | | | HCM Average Control Delay | | | 20.9 | Н | CM Level | of Service | | | С | | HCM Volume to Capacity ratio |) | | 0.98 | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | S | um of lost | time (s) | | | 14.0 | | Intersection Capacity Utilization | n | | 106.9% | | | of Service | | | G | | Analysis Period (min) | | | 15 | | | | | | | | c Critical Lane Group | | | | | | | | | | | | ۶ | → | • | • | + | • | 1 | † | <i>></i> | / | ţ | ✓ | |--|------|----------|-------|-----------|-------------|------------|------------|----------|-------------|----------|----------|--------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | | | | सीकि | | ሻ | ^ | | | ↑ | 77 | | Volume (vph) | 0 | 0 | 0 | 160 | 2005 | 210 | 145 | 675 | 0 | 0 | 245 | 265 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | | | | 7.0 | | 7.0 | 7.0 | | | 7.0 | 7.0 | | Lane Util. Factor | | | | | 0.86 | | 1.00 | 0.95 | | | 1.00 | 0.88 | | Frpb, ped/bikes | | | | | 0.99 | | 1.00 | 1.00 | | | 1.00 | 1.00 | | Flpb, ped/bikes | | | | | 1.00 | | 0.70 | 1.00 | | | 1.00 | 1.00 | | Frt | | | | | 0.99 | | 1.00 | 1.00 | | | 1.00 | 0.85 | | Flt Protected | | | | | 1.00 | | 0.95 | 1.00 | | | 1.00 | 1.00 | | Satd. Flow (prot) | | | | | 6004 | | 1173 | 3400 | | | 1634 | 2703 | | Flt Permitted | | | | | 1.00 | | 0.51 | 1.00 | | | 1.00 | 1.00 | | Satd. Flow (perm) | | 2.00 | 2.00 | 2.05 | 6004 | | 629 | 3400 | 2.00 | 2.00 | 1634 | 2703 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.95 | 0.95 | 0.95 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 0 | 0 | 0 | 168 | 2111 | 221 | 161 | 750 | 0 | 0 | 272 | 294 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 213 | | Lane Group Flow (vph) | 0 | 0 | 0 | 0 | 2486 | 0 | 161 | 750 | 0 | 0 | 272 | 81 | | Confl. Peds. (#/hr) | 00/ | 00/ | 00/ | 35
12% | 4% | 125 | 1405
6% | E0/ | 00/ | 00/ | 15% | 1405 | | Heavy Vehicles (%) | 0% | 0% | 0% | | 4% | 3% | | 5% | 0% | 0% | | 4% | | Turn Type | | | | Perm | c | | Perm | 0 | | | | custom | | Protected Phases | | | | 6 | 6 | | 0 | 8 | | | 4 | 3 | | Permitted Phases | | | | 6 | 36.0 | | 8
62.0 | 62.0 | | | 24.0 | 31.0 | | Actuated Green, G (s) Effective Green, g (s) | | | | | 36.0 | | 62.0 | 62.0 | | | 24.0 | 31.0 | | Actuated g/C Ratio | | | | | 0.32 | | 0.55 | 0.55 | | | 0.21 | 0.28 | | Clearance Time (s) | | | | | 7.0 | | 7.0 | 7.0 | | | 7.0 | 7.0 | | Vehicle Extension (s) | | | | | 3.0 | | 3.0 | 3.0 | | | 3.0 | 3.0 | | Lane Grp Cap (vph) | | | | | 1930 | | 348 | 1882 | | | 350 | 748 | | v/s Ratio Prot | | | | | 1930 | | 340 | 0.22 | | | c0.17 | 0.03 | | v/s Ratio Perm | | | | | 0.41 | | c0.26 | 0.22 | | | 60.17 | 0.03 | | v/c Ratio | | | | | 1.29 | | 0.46 | 0.40 | | | 0.78 | 0.11 | | Uniform Delay, d1 | | | | | 38.0 | | 15.0 | 14.3 | | | 41.5 | 30.2 | | Progression Factor | | | | | 0.36 | | 0.51 | 0.48 | | | 1.00 | 1.00 | | Incremental Delay, d2 | | | | | 130.0 | | 0.7 | 0.1 | | | 10.4 | 0.3 | | Delay (s) | | | | | 143.5 | | 8.3 | 6.9 | | | 51.8 | 30.5 | | Level of Service | | | | | F | | A | A | | | D | С | | Approach Delay (s) | | 0.0 | | | 143.5 | | | 7.2 | | | 40.8 | | | Approach LOS | | Α | | | F | | | Α | | | D | | | Intersection Summary | | | | | | | | | | | | | |
HCM Average Control Delay | | | 97.6 | Н | CM Level | of Servic | е | | F | | | | | HCM Volume to Capacity ratio | | | 0.82 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | um of lost | | | | 14.0 | | | | | Intersection Capacity Utilization | | | 87.2% | IC | CU Level of | of Service | | | Е | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | • | • | ← | 4 | 1 | † | / | / | Ţ | 4 | |-----------------------------------|------|----------|--------|------|-------------|------------|-------|----------|----------|----------|------------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | | | | 414 | | ¥ | ^ | | | ∱ } | | | Volume (vph) | 0 | 0 | 0 | 105 | 2060 | 300 | 110 | 1170 | 0 | 0 | 135 | 225 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | | | | 7.0 | | 4.0 | 7.0 | | | 7.0 | | | Lane Util. Factor | | | | | 0.91 | | 1.00 | 0.95 | | | 0.95 | | | Frpb, ped/bikes | | | | | 0.98 | | 1.00 | 1.00 | | | 0.80 | | | Flpb, ped/bikes | | | | | 1.00 | | 0.93 | 1.00 | | | 1.00 | | | Frt | | | | | 0.98 | | 1.00 | 1.00 | | | 0.91 | | | Flt Protected | | | | | 1.00 | | 0.95 | 1.00 | | | 1.00 | | | Satd. Flow (prot) | | | | | 4747 | | 1569 | 3433 | | | 2377 | | | FIt Permitted | | | | | 1.00 | | 0.44 | 1.00 | | | 1.00 | | | Satd. Flow (perm) | | | | | 4747 | | 732 | 3433 | | | 2377 | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.95 | 0.95 | 0.95 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 0 | 0 | 0 | 111 | 2168 | 316 | 122 | 1300 | 0 | 0 | 150 | 250 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 39 | 0 | | Lane Group Flow (vph) | 0 | 0 | 0 | 0 | 2593 | 0 | 122 | 1300 | 0 | 0 | 361 | 0 | | Confl. Peds. (#/hr) | | | | 130 | | 165 | 435 | | 290 | 290 | | 435 | | Heavy Vehicles (%) | 0% | 0% | 0% | 2% | 4% | 3% | 6% | 4% | 0% | 0% | 11% | 8% | | Turn Type | | | | Perm | | | pm+pt | | | | | | | Protected Phases | | | | | 6 | | 3 | 8 | | | 4 | | | Permitted Phases | | | | 6 | | | 8 | | | | | | | Actuated Green, G (s) | | | | | 47.0 | | 51.0 | 51.0 | | | 41.0 | | | Effective Green, g (s) | | | | | 47.0 | | 51.0 | 51.0 | | | 41.0 | | | Actuated g/C Ratio | | | | | 0.42 | | 0.46 | 0.46 | | | 0.37 | | | Clearance Time (s) | | | | | 7.0 | | 4.0 | 7.0 | | | 7.0 | | | Vehicle Extension (s) | | | | | 3.0 | | 3.0 | 3.0 | | | 3.0 | | | Lane Grp Cap (vph) | | | | | 1992 | | 378 | 1563 | | | 870 | | | v/s Ratio Prot | | | | | | | 0.02 | c0.38 | | | 0.15 | | | v/s Ratio Perm | | | | | 0.55 | | 0.13 | | | | | | | v/c Ratio | | | | | 1.30 | | 0.32 | 0.83 | | | 0.42 | | | Uniform Delay, d1 | | | | | 32.5 | | 18.2 | 26.7 | | | 26.5 | | | Progression Factor | | | | | 1.00 | | 0.67 | 0.57 | | | 1.00 | | | Incremental Delay, d2 | | | | | 139.6 | | 0.3 | 2.7 | | | 0.3 | | | Delay (s) | | | | | 172.1 | | 12.6 | 18.0 | | | 26.9 | | | Level of Service | | | | | F | | В | В | | | С | | | Approach Delay (s) | | 0.0 | | | 172.1 | | | 17.5 | | | 26.9 | | | Approach LOS | | Α | | | F | | | В | | | С | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 109.2 | Н | ICM Level | of Service | е | | F | | | | | HCM Volume to Capacity ratio | | | 1.06 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | um of lost | | | | 14.0 | | | | | Intersection Capacity Utilization | | | 164.3% | IC | CU Level of | of Service | | | Н | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | • | • | • | • | • | † | / | / | ţ | 4 | |-----------------------------------|--------|-----------------|-------|-----------|------------|------------|-------------|----------|----------|----------|--------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | ተተ _ጉ | | | | | | ^ | | | 41₽ | | | Volume (vph) | 0 | 1215 | 30 | 0 | 0 | 0 | 0 | 1015 | 0 | 155 | 190 | 0 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.6 | 3.5 | 3.5 | 3.5 | 3.5 | | Total Lost time (s) | | 6.0 | | | | | | 8.0 | | | 8.0 | | | Lane Util. Factor | | 0.91 | | | | | | 0.95 | | | 0.95 | | | Frpb, ped/bikes | | 1.00 | | | | | | 1.00 | | | 1.00 | | | Flpb, ped/bikes | | 1.00 | | | | | | 1.00 | | | 1.00 | | | Frt | | 1.00 | | | | | | 1.00 | | | 1.00 | | | Flt Protected | | 1.00 | | | | | | 1.00 | | | 0.98 | | | Satd. Flow (prot) | | 4860 | | | | | | 3610 | | | 3240 | | | Flt Permitted | | 1.00 | | | | | | 1.00 | | | 0.54 | | | Satd. Flow (perm) | | 4860 | | | | | | 3610 | | | 1792 | | | Peak-hour factor, PHF | 0.94 | 0.94 | 0.94 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 0 | 1293 | 32 | 0 | 0 | 0 | 0 | 1128 | 0 | 172 | 211 | 0 | | RTOR Reduction (vph) | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Lane Group Flow (vph) | 0 | 1323 | 0 | 0 | 0 | 0 | 0 | 1128 | 0 | 0 | 383 | 0 | | Confl. Peds. (#/hr) | 30 | | 30 | | | | | | | 55 | | | | Heavy Vehicles (%) | 17% | 5% | 8% | 2% | 2% | 2% | 0% | 0% | 0% | 8% | 7% | 0% | | Turn Type | | | | | | | | | | pm+pt | | | | Protected Phases | | 2 | | | | | | 8 | | 7 | 4 | | | Permitted Phases | | | | | | | | | | 4 | | | | Actuated Green, G (s) | | 53.8 | | | | | | 44.2 | | | 44.2 | | | Effective Green, g (s) | | 53.8 | | | | | | 44.2 | | | 44.2 | | | Actuated g/C Ratio | | 0.48 | | | | | | 0.39 | | | 0.39 | | | Clearance Time (s) | | 6.0 | | | | | | 8.0 | | | 8.0 | | | Vehicle Extension (s) | | 3.0 | | | | | | 3.0 | | | 3.0 | | | Lane Grp Cap (vph) | | 2335 | | | | | | 1425 | | | 707 | | | v/s Ratio Prot | | c0.27 | | | | | | c0.31 | | | | | | v/s Ratio Perm | | | | | | | | | | | 0.21 | | | v/c Ratio | | 0.57 | | | | | | 0.79 | | | 2.36dl | | | Uniform Delay, d1 | | 20.8 | | | | | | 29.8 | | | 26.1 | | | Progression Factor | | 0.34 | | | | | | 1.00 | | | 0.81 | | | Incremental Delay, d2 | | 0.8 | | | | | | 3.1 | | | 0.7 | | | Delay (s) | | 8.0 | | | | | | 32.9 | | | 22.0 | | | Level of Service | | Α | | | | | | С | | | С | | | Approach Delay (s) | | 8.0 | | | 0.0 | | | 32.9 | | | 22.0 | | | Approach LOS | | А | | | Α | | | С | | | С | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 19.8 | Н | CM Level | of Service | | | В | | | | | HCM Volume to Capacity ratio | | | 0.67 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | Si | um of lost | time (s) | | | 14.0 | | | | | Intersection Capacity Utilization | | | 88.6% | | | of Service | | | E | | | | | Analysis Period (min) | | | 15 | | 2 = 3.01 | 22,00 | | | | | | | | dl Defacto Left Lane. Recode | with 1 | though la | | eft lane. | | | | | | | | | | c Critical Lane Group | ۶ | → | † | / | / | ↓ | <i>></i> | 4 | | | | |-----------------------------------|------|----------|------------|----------|------------|----------|-------------|--------|------|--|--| | Movement | EBL | EBT | NBT | NBR | SBL | SBT | NER | NER2 | | | | | Lane Configurations | * | 4₽ | ∱ } | | ٦ | ^ | 7 | 7 | | | | | Volume (vph) | 820 | 1075 | 340 | 25 | 175 | 275 | 605 | 180 | | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | | Total Lost time (s) | 7.0 | 7.0 | 7.0 | | 7.0 | 7.0 | 7.0 | 7.0 | | | | | Lane Util. Factor | 0.91 | 0.91 | 0.95 | | 1.00 | 0.95 | 1.00 | 1.00 | | | | | Frpb, ped/bikes | 1.00 | 1.00 | 0.98 | | 1.00 | 1.00 | 1.00 | 1.00 | | | | | Flpb, ped/bikes | 1.00 | 1.00 | 1.00 | | 0.85 | 1.00 | 1.00 | 1.00 | | | | | Frt | 1.00 | 1.00 | 0.99 | | 1.00 | 1.00 | 1.00 | 0.85 | | | | | Flt Protected | 0.95 | 0.99 | 1.00 | | 0.95 | 1.00 | 1.00 | 1.00 | | | | | Satd. Flow (prot) | 1557 | 3209 | 3312 | | 1424 | 3159 | 1842 | 1566 | | | | | Flt Permitted | 0.95 | 0.99 | 1.00 | | 0.48 | 1.00 | 1.00 | 1.00 | | | | | Satd. Flow (perm) | 1557 | 3209 | 3312 | | 714 | 3159 | 1842 | 1566 | | | | | Peak-hour factor, PHF | 0.94 | 0.94 | 0.90 | 0.90 | 0.90 | 0.90 | 0.94 | 0.94 | | | | | Adj. Flow (vph) | 872 | 1144 | 378 | 28 | 194 | 306 | 644 | 191 | | | | | RTOR Reduction (vph) | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 90 | | | | | Lane Group Flow (vph) | 654 | 1362 | 401 | 0 | 194 | 306 | 644 | 101 | | | | | Confl. Peds. (#/hr) | 5 | | | 310 | 310 | | | | | | | | Heavy Vehicles (%) | 4% | 6% | 5% | 0% | 7% | 13% | 2% | 2% | | | | | Turn Type | Perm | | | | Perm | | custom | custom | | | | | Protected Phases | | 2 | 8 | | | 4 | | | | | | | Permitted Phases | 2 | | | | 4 | | 2 | 2 | | | | | Actuated Green, G (s) | 59.0 | 59.0 | 39.0 | | 39.0 | 39.0 | 59.0 | 59.0 | | | | | Effective Green, g (s) | 59.0 | 59.0 | 39.0 | | 39.0 | 39.0 | 59.0 | 59.0 | | | | | Actuated g/C Ratio | 0.53 | 0.53 | 0.35 | | 0.35 | 0.35 | 0.53 | 0.53 | | | | | Clearance Time (s) | 7.0 | 7.0 | 7.0 | | 7.0 | 7.0 | 7.0 | 7.0 | | | | | Vehicle Extension (s) | 3.0 | 3.0 | 3.0 | | 3.0 | 3.0 | 3.0 | 3.0 | | | | | Lane Grp Cap (vph) | 820 | 1690 | 1153 | | 249 | 1100 | 970 | 825 | | | | | v/s Ratio Prot | | | 0.12 | | | 0.10 | | | | | | | v/s Ratio Perm | 0.42 | 0.42 | | | c0.27 | | 0.35 | 0.06 | | | | | v/c Ratio | 0.80 | 0.81 | 0.35 | | 0.78 | 0.28 | 0.66 | 0.12 | | | | | Uniform Delay, d1 | 21.6 | 21.8 | 27.1 | | 32.6 | 26.3 | 19.3 | 13.4 | | | | | Progression Factor | 0.48 | 0.47 | 1.00 | | 1.40 | 1.43 | 1.00 | 1.00 | | | | | Incremental Delay, d2 | 7.5 | 4.0 | 0.2 | | 7.4 | 0.1 | 3.6 | 0.3 | | | | | Delay (s) | 17.9 | 14.3 | 27.3 | | 53.1 | 37.7 | 22.9 | 13.7 | | | | | Level of Service | В | В | С | | D | D | С | В | | | | | Approach Delay (s) | | 15.5 | 27.3 | | | 43.6 | | | | | | | Approach LOS | | В | С | | | D | | |
| | | | Intersection Summary | | | | | | | | | | | | | HCM Average Control Delay | | | 21.7 | Н | CM Level | of Servi | ce | | С | | | | HCM Volume to Capacity ratio |) | | 0.80 | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | Sı | um of lost | time (s) | | | 14.0 | | | | Intersection Capacity Utilization | on | | 138.7% | | U Level c | | Э | | Н | | | | Analysis Period (min) | | | 15 | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | A 1 | † | 7 | ₩ | | لِر | * | × | 4 | 4 | × | t | |-----------------------------------|------------|------------|--------|----------|------------|------------|----------|------|------|------|------|------| | Movement | NBL | NBT | NBR | SBL | SBT | SBR | NEL | NET | NER | SWL | SWT | SWR | | Lane Configurations | | ↑ ↑ | | | ^ | | , N | 414 | | | | | | Volume (vph) | 0 | 170 | 245 | 0 | 240 | 0 | 1100 | 705 | 0 | 0 | 0 | 0 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | 7.0 | | | 7.0 | | 7.0 | 7.0 | | | | | | Lane Util. Factor | | 0.95 | | | 0.95 | | 0.91 | 0.91 | | | | | | Frpb, ped/bikes | | 0.99 | | | 1.00 | | 1.00 | 1.00 | | | | | | Flpb, ped/bikes | | 1.00 | | | 1.00 | | 1.00 | 1.00 | | | | | | Frt | | 0.91 | | | 1.00 | | 1.00 | 1.00 | | | | | | Flt Protected | | 1.00 | | | 1.00 | | 0.95 | 0.98 | | | | | | Satd. Flow (prot) | | 2943 | | | 3336 | | 1562 | 3150 | | | | | | Flt Permitted | | 1.00 | | | 1.00 | | 0.95 | 0.98 | | | | | | Satd. Flow (perm) | | 2943 | | | 3336 | | 1562 | 3150 | | | | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.94 | 0.94 | 0.94 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 0 | 189 | 272 | 0 | 267 | 0 | 1170 | 750 | 0 | 0 | 0 | 0 | | RTOR Reduction (vph) | 0 | 90 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Lane Group Flow (vph) | 0 | 371 | 0 | 0 | 267 | 0 | 632 | 1288 | 0 | 0 | 0 | 0 | | Confl. Peds. (#/hr) | | | 15 | | | | | | | | | | | Heavy Vehicles (%) | 0% | 12% | 7% | 0% | 7% | 0% | 4% | 8% | 0% | 0% | 0% | 0% | | Turn Type | | | | | | | Perm | | | | | | | Protected Phases | | 8 | | | 4 | | | 2 | | | | | | Permitted Phases | | - | | | - | | 2 | _ | | | | | | Actuated Green, G (s) | | 43.0 | | | 43.0 | | 55.0 | 55.0 | | | | | | Effective Green, g (s) | | 43.0 | | | 43.0 | | 55.0 | 55.0 | | | | | | Actuated g/C Ratio | | 0.38 | | | 0.38 | | 0.49 | 0.49 | | | | | | Clearance Time (s) | | 7.0 | | | 7.0 | | 7.0 | 7.0 | | | | | | Vehicle Extension (s) | | 3.0 | | | 3.0 | | 3.0 | 3.0 | | | | | | Lane Grp Cap (vph) | | 1130 | | | 1281 | | 767 | 1547 | | | | | | v/s Ratio Prot | | c0.13 | | | 0.08 | | | | | | | | | v/s Ratio Perm | | | | | | | 0.40 | 0.41 | | | | | | v/c Ratio | | 0.33 | | | 0.21 | | 0.82 | 0.83 | | | | | | Uniform Delay, d1 | | 24.3 | | | 23.1 | | 24.4 | 24.5 | | | | | | Progression Factor | | 1.00 | | | 1.02 | | 0.43 | 0.43 | | | | | | Incremental Delay, d2 | | 0.2 | | | 0.0 | | 6.5 | 3.5 | | | | | | Delay (s) | | 24.5 | | | 23.6 | | 17.0 | 14.0 | | | | | | Level of Service | | C | | | С | | В | В | | | | | | Approach Delay (s) | | 24.5 | | | 23.6 | | | 15.0 | | | 0.0 | | | Approach LOS | | С | | | С | | | В | | | Α | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 17.5 | Н | CM Level | of Servic | e | | В | | | | | HCM Volume to Capacity ratio | | | 0.61 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | Sı | um of lost | time (s) | | | 14.0 | | | | | Intersection Capacity Utilization | | | 164.3% | | | of Service | | | Н | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | • | • | ← | 4 | 1 | † | / | - | + | 4 | |----------------------------------|-------|-------------|--------|------|------------|------------|------|------------|------|-------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | 1,1 | ↑ ↑₽ | | | | | | ∱ ∱ | | ሻ | ^ | | | Volume (vph) | 825 | 2095 | 150 | 0 | 0 | 0 | 0 | 200 | 25 | 280 | 40 | 0 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 7.0 | 7.0 | | | | | | 7.0 | | 6.0 | 7.0 | | | Lane Util. Factor | 0.97 | 0.91 | | | | | | 0.95 | | 1.00 | 0.95 | | | Frpb, ped/bikes | 1.00 | 0.99 | | | | | | 1.00 | | 1.00 | 1.00 | | | Flpb, ped/bikes | 1.00 | 1.00 | | | | | | 1.00 | | 1.00 | 1.00 | | | Frt | 1.00 | 0.99 | | | | | | 0.98 | | 1.00 | 1.00 | | | FIt Protected | 0.95 | 1.00 | | | | | | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (prot) | 3395 | 4949 | | | | | | 3347 | | 1750 | 3400 | | | Flt Permitted | 0.95 | 1.00 | | | | | | 1.00 | | 0.44 | 1.00 | | | Satd. Flow (perm) | 3395 | 4949 | | | | | | 3347 | | 819 | 3400 | | | Peak-hour factor, PHF | 0.93 | 0.93 | 0.93 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 887 | 2253 | 161 | 0 | 0 | 0 | 0 | 211 | 26 | 295 | 42 | 0 | | RTOR Reduction (vph) | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | | Lane Group Flow (vph) | 887 | 2407 | 0 | 0 | 0 | 0 | 0 | 229 | 0 | 295 | 42 | 0 | | Confl. Peds. (#/hr) | 1 | | 60 | 60 | | 1 | 15 | | | | | 15 | | Heavy Vehicles (%) | 2% | 2% | 3% | 0% | 0% | 0% | 0% | 5% | 4% | 2% | 5% | 2% | | Turn Type | Split | | | | | | | | | pm+pt | | | | Protected Phases | 2 | 2 | | | | | | 8 | | 7 | 4 | | | Permitted Phases | | | | | | | | | | 4 | | | | Actuated Green, G (s) | 61.0 | 61.0 | | | | | | 17.0 | | 37.0 | 37.0 | | | Effective Green, g (s) | 61.0 | 61.0 | | | | | | 17.0 | | 37.0 | 37.0 | | | Actuated g/C Ratio | 0.54 | 0.54 | | | | | | 0.15 | | 0.33 | 0.33 | | | Clearance Time (s) | 7.0 | 7.0 | | | | | | 7.0 | | 6.0 | 7.0 | | | Vehicle Extension (s) | 3.0 | 3.0 | | | | | | 3.0 | | 3.0 | 3.0 | | | Lane Grp Cap (vph) | 1849 | 2695 | | | | | | 508 | | 387 | 1123 | | | v/s Ratio Prot | 0.26 | c0.49 | | | | | | 0.07 | | c0.10 | 0.01 | | | v/s Ratio Perm | | | | | | | | | | c0.16 | | | | v/c Ratio | 0.48 | 0.89 | | | | | | 0.45 | | 0.76 | 0.04 | | | Uniform Delay, d1 | 15.7 | 22.6 | | | | | | 43.2 | | 30.9 | 25.4 | | | Progression Factor | 1.00 | 1.00 | | | | | | 1.00 | | 1.00 | 1.00 | | | Incremental Delay, d2 | 0.9 | 5.0 | | | | | | 0.6 | | 8.6 | 0.0 | | | Delay (s) | 16.6 | 27.7 | | | | | | 43.9 | | 39.5 | 25.4 | | | Level of Service | В | С | | | | | | D | | D | С | | | Approach Delay (s) | | 24.7 | | | 0.0 | | | 43.9 | | | 37.8 | | | Approach LOS | | С | | | Α | | | D | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 27.0 | Н | CM Level | of Service |) | | С | | | | | HCM Volume to Capacity ratio | | | 0.82 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | um of lost | | | | 13.0 | | | | | Intersection Capacity Utilizatio | n | | 147.1% | IC | U Level o | of Service | | | Н | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | • | • | *_ | • | ሻ | † | ~ | / | ↓ | ₩ J | |---|--------------|--------------|--------|--------------|--------------|------------|--------------|--------------|------|--------------|--------------|--------------| | Movement | EBL | EBT | EBR | WBL | WBR | WBR2 | NBL | NBT | NBR | SBL | SBT | SBR2 | | Lane Configurations | ሻሻ | ተተሱ | | Ť | オイだ | | Ť | f) | | ሻ | ^ | 7 | | Volume (vph) | 260 | 2110 | 30 | 25 | 1815 | 135 | 25 | 65 | 110 | 460 | 115 | 30 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 6.0 | 6.0 | | 6.0 | 6.0 | | 8.0 | 8.0 | | 5.0 | 8.0 | 8.0 | | Lane Util. Factor | 0.97 | 0.91 | | 1.00 | *0.91 | | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | | Frpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 0.97 | | 1.00 | 0.93 | | 1.00 | 1.00 | 0.82 | | Flpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 1.00 | | 0.86 | 1.00 | | 0.97 | 1.00 | 1.00 | | Frt
Flt Protected | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 0.91 | | 1.00 | 1.00 | 0.85 | | Satd. Flow (prot) | 0.95
3429 | 1.00
5015 | | 0.95
1653 | 1.00
4869 | | 0.95
1473 | 1.00
1577 | | 0.95
1689 | 1.00
1756 | 1.00
1277 | | Flt Permitted | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.68 | 1.00 | | 0.51 | 1.00 | 1.00 | | Satd. Flow (perm) | 3429 | 5015 | | 1653 | 4869 | | 1053 | 1577 | | 903 | 1756 | 1277 | | Peak-hour factor, PHF | 0.93 | 0.93 | 0.93 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 280 | 2269 | 32 | 26 | 1911 | 142 | 26 | 68 | 116 | 484 | 121 | 32 | | RTOR Reduction (vph) | 0 | 1 | 0 | 0 | 7 | 0 | 0 | 55 | 0 | 0 | 0 | 19 | | Lane Group Flow (vph) | 280 | 2300 | 0 | 26 | 2046 | 0 | 26 | 129 | 0 | 484 | 121 | 13 | | Confl. Peds. (#/hr) | 5 | 2000 | 25 | 25 | 2040 | 5 | 135 | 120 | 85 | 85 | 121 | 135 | | Heavy Vehicles (%) | 1% | 2% | 0% | 8% | 2% | 5% | 4% | 0% | 0% | 2% | 7% | 3% | | Turn Type | Prot | | | | custom | | Perm | | 5,0 | pm+pt | . ,,, | Perm | | Protected Phases | 5 | 2 | | 1 | 0.0.0 | | | 8 | | 7 | 4 | | | Permitted Phases | • | | | | 6 | | 8 | - | | 4 | | 4 | | Actuated Green, G (s) | 9.4 | 42.4 | | 3.6 | 36.6 | | 27.0 | 27.0 | | 46.0 | 46.0 | 46.0 | | Effective Green, g (s) | 9.4 | 42.4 | | 3.6 | 36.6 | | 27.0 | 27.0 | | 46.0 | 46.0 | 46.0 | | Actuated g/C Ratio | 0.08 | 0.38 | | 0.03 | 0.33 | | 0.24 | 0.24 | | 0.41 | 0.41 | 0.41 | | Clearance Time (s) | 6.0 | 6.0 | | 6.0 | 6.0 | | 8.0 | 8.0 | | 5.0 | 8.0 | 8.0 | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | 3.0 | 3.0 | | Lane Grp Cap (vph) | 288 | 1899 | | 53 | 1591 | | 254 | 380 | | 469 | 721 | 524 | | v/s Ratio Prot | c0.08 | c0.46 | | 0.02 | | | | 0.08 | | c0.13 | 0.07 | | | v/s Ratio Perm | | | | | 0.42 | | 0.02 | | | c0.29 | | 0.01 | | v/c Ratio | 0.97 | 1.21 | | 0.49 | 1.29 | | 0.10 | 0.34
 | 1.03 | 0.17 | 0.03 | | Uniform Delay, d1 | 51.2 | 34.8 | | 53.3 | 37.7 | | 33.1 | 35.1 | | 31.5 | 20.9 | 19.6 | | Progression Factor | 0.86 | 0.63 | | 0.70 | 0.35 | | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | | Incremental Delay, d2 | 29.1 | 97.4 | | 1.7 | 129.8 | | 0.2 | 0.5 | | 50.0 | 0.1 | 0.0 | | Delay (s) | 73.2 | 119.2 | | 39.1 | 142.9 | | 33.2 | 35.7 | | 81.5 | 21.0 | 19.7 | | Level of Service | E | F | | D | F | | С | D | | F | C | В | | Approach Delay (s) Approach LOS | | 114.2
F | | | | | | 35.4
D | | | 66.9
E | | | · · | | Г | | | | | | U | | | | | | Intersection Summary | | | 110.1 | | 10141 | | | | | | | | | HCM Average Control Dela | , | | 116.1 | ŀ | HCM Leve | of Service | e | | F | | | | | HCM Volume to Capacity ra | atio | | 1.09 | | £ l | 44: (-) | | | 47.0 | | | | | Actuated Cycle Length (s) | -# | | 112.0 | | Sum of los | | | | 17.0 | | | | | Intersection Capacity Utiliza | auon | | 107.1% | | CU Level | of Service | | | G | | | | | Analysis Period (min) c Critical Lane Group | | | 15 | | | | | | | | | | | Contical Lane Group | | | | | | | | | | | | | | | • | → | * | • | † | / | / | + | 4 | </th <th>t</th> <th></th> | t | | |-----------------------------------|------|------------|--------|------|----------|------------|----------|----------|------|---------------------------|------|--| | Movement | EBL2 | EBT | EBR | NBL | NBT | NBR2 | SBL | SBT | SBR | SWR | SWR2 | | | Lane Configurations | Ť | ∱ } | | 7 | † | | 7 | 4Î | | ががだ | | | | Volume (vph) | 85 | 1065 | 50 | 80 | 80 | 60 | 140 | 60 | 75 | 1820 | 125 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | 6.0 | 6.0 | | 7.0 | 7.0 | | 7.0 | 7.0 | | 6.0 | | | | Lane Util. Factor | 1.00 | 0.95 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 0.76 | | | | Frpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 0.98 | | 1.00 | 0.90 | | 0.96 | | | | Flpb, ped/bikes | 1.00 | 1.00 | | 0.85 | 1.00 | | 0.98 | 1.00 | | 1.00 | | | | Frt | 1.00 | 0.99 | | 1.00 | 0.94 | | 1.00 | 0.92 | | 1.00 | | | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | | 1.00 | | | | Satd. Flow (prot) | 1750 | 3437 | | 1523 | 1691 | | 1664 | 1375 | | 4023 | | | | Flt Permitted | 0.95 | 1.00 | | 0.67 | 1.00 | | 0.66 | 1.00 | | 1.00 | | | | Satd. Flow (perm) | 1750 | 3437 | | 1069 | 1691 | | 1158 | 1375 | | 4023 | | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | | Adj. Flow (vph) | 89 | 1121 | 53 | 84 | 84 | 63 | 147 | 63 | 79 | 1916 | 132 | | | RTOR Reduction (vph) | 0 | 3 | 0 | 0 | 24 | 0 | 0 | 40 | 0 | 6 | 0 | | | Lane Group Flow (vph) | 89 | 1171 | 0 | 84 | 123 | 0 | 147 | 102 | 0 | 2042 | 0 | | | Confl. Peds. (#/hr) | 20 | | 15 | 170 | | 25 | 25 | | 170 | | 20 | | | Heavy Vehicles (%) | 2% | 3% | 3% | 0% | 4% | 0% | 5% | 5% | 18% | 2% | 5% | | | Turn Type | Prot | | | Perm | | | Perm | | | custom | | | | Protected Phases | 5 | 2 | | | 8 | | | 4 | | | | | | Permitted Phases | | | | 8 | | | 4 | | | 6 | | | | Actuated Green, G (s) | 7.0 | 67.0 | | 32.0 | 32.0 | | 32.0 | 32.0 | | 54.0 | | | | Effective Green, g (s) | 7.0 | 67.0 | | 32.0 | 32.0 | | 32.0 | 32.0 | | 54.0 | | | | Actuated g/C Ratio | 0.06 | 0.60 | | 0.29 | 0.29 | | 0.29 | 0.29 | | 0.48 | | | | Clearance Time (s) | 6.0 | 6.0 | | 7.0 | 7.0 | | 7.0 | 7.0 | | 6.0 | | | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | | | | Lane Grp Cap (vph) | 109 | 2056 | | 305 | 483 | | 331 | 393 | | 1940 | | | | v/s Ratio Prot | 0.05 | c0.34 | | | 0.07 | | | 0.07 | | | | | | v/s Ratio Perm | | | | 0.08 | | | c0.13 | | | c0.51 | | | | v/c Ratio | 0.82 | 0.57 | | 0.28 | 0.25 | | 0.44 | 0.26 | | 1.05 | | | | Uniform Delay, d1 | 51.9 | 13.7 | | 31.0 | 30.8 | | 32.7 | 30.9 | | 29.0 | | | | Progression Factor | 0.60 | 1.86 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 0.23 | | | | Incremental Delay, d2 | 4.4 | 0.1 | | 0.5 | 0.3 | | 1.0 | 0.4 | | 25.3 | | | | Delay (s) | 35.6 | 25.6 | | 31.5 | 31.1 | | 33.7 | 31.2 | | 31.9 | | | | Level of Service | D | С | | С | С | | С | С | | С | | | | Approach Delay (s) | | 26.3 | | | 31.2 | | | 32.5 | | | | | | Approach LOS | | С | | | С | | | С | | | | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 30.1 | H | CM Leve | of Servic | е | | С | | | | | HCM Volume to Capacity ratio | | | 0.83 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | | t time (s) | | | 19.0 | | | | | Intersection Capacity Utilization | 1 | | 113.3% | IC | U Level | of Service | | | Н | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | • | _ | ← | • | * | † | ţ | 4 | | | |-----------------------------------|------|----------|----------|------|------------|------------|------------|------|------|--| | Movement | WBL2 | WBL | WBT | WBR | NBL2 | NBT | SBT | SBR2 | | | | Lane Configurations | | ሽኘኘ | ħβ | | ሻ | ↑ | † Þ | | | | | Volume (vph) | 50 | 1870 | 655 | 85 | 160 | 620 | 585 | 790 | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | Total Lost time (s) | | 6.0 | 6.0 | | 6.0 | 8.0 | 8.0 | | | | | Lane Util. Factor | | 0.94 | 0.95 | | 1.00 | 1.00 | 0.95 | | | | | Frpb, ped/bikes | | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | | | | | Flpb, ped/bikes | | 0.89 | 1.00 | | 1.00 | 1.00 | 1.00 | | | | | Frt | | 1.00 | 0.98 | | 1.00 | 1.00 | 0.91 | | | | | Flt Protected | | 0.95 | 1.00 | | 0.95 | 1.00 | 1.00 | | | | | Satd. Flow (prot) | | 4399 | 3385 | | 1750 | 1807 | 3150 | | | | | Flt Permitted | | 0.95 | 1.00 | | 0.09 | 1.00 | 1.00 | | | | | Satd. Flow (perm) | | 4399 | 3385 | | 160 | 1807 | 3150 | | | | | Peak-hour factor, PHF | 0.93 | 0.93 | 0.93 | 0.93 | 0.95 | 0.95 | 0.95 | 0.95 | | | | Adj. Flow (vph) | 54 | 2011 | 704 | 91 | 168 | 653 | 616 | 832 | | | | RTOR Reduction (vph) | 0 | 0 | 9 | 0 | 0 | 000 | 128 | 032 | | | | Lane Group Flow (vph) | 0 | 2065 | 786 | 0 | 168 | 653 | 1320 | 0 | | | | Confl. Peds. (#/hr) | 45 | 2003 | 700 | U | 100 | 000 | 1320 | U | | | | Heavy Vehicles (%) | 13% | 1% | 4% | 1% | 2% | 4% | 3% | 4% | | | | | | | 4 /0 | 1 /0 | | 4 /0 | J /0 | 4 /0 | | | | Turn Type | Perm | Split | 0 | | pm+pt | 0 | 4 | | | | | Protected Phases | _ | 6 | 6 | | 3 | 8 | 4 | | | | | Permitted Phases | 6 | 40.0 | 40.0 | | 8 | F0 0 | 40.0 | | | | | Actuated Green, G (s) | | 48.0 | 48.0 | | 50.0 | 50.0 | 40.0 | | | | | Effective Green, g (s) | | 48.0 | 48.0 | | 50.0 | 50.0 | 40.0 | | | | | Actuated g/C Ratio | | 0.43 | 0.43 | | 0.45 | 0.45 | 0.36 | | | | | Clearance Time (s) | | 6.0 | 6.0 | | 6.0 | 8.0 | 8.0 | | | | | Vehicle Extension (s) | | 3.0 | 3.0 | | 3.0 | 3.0 | 3.0 | | | | | Lane Grp Cap (vph) | | 1885 | 1451 | | 128 | 807 | 1125 | | | | | v/s Ratio Prot | | | 0.23 | | 0.05 | c0.36 | 0.42 | | | | | v/s Ratio Perm | | 0.47 | | | c0.54 | | | | | | | v/c Ratio | | 1.10 | 0.54 | | 1.31 | 0.81 | 1.21dr | | | | | Uniform Delay, d1 | | 32.0 | 23.8 | | 31.5 | 26.9 | 36.0 | | | | | Progression Factor | | 0.29 | 0.22 | | 2.96 | 1.66 | 1.00 | | | | | Incremental Delay, d2 | | 47.0 | 0.6 | | 162.3 | 2.6 | 87.7 | | | | | Delay (s) | | 56.3 | 5.9 | | 255.5 | 47.3 | 123.7 | | | | | Level of Service | | Е | Α | | F | D | F | | | | | Approach Delay (s) | | | 42.3 | | | 89.9 | 123.7 | | | | | Approach LOS | | | D | | | F | F | | | | | Intersection Summary | | | | | | | | | | | | HCM Average Control Delay | | | 72.9 | H | CM Level | of Service | ce | | Е | | | HCM Volume to Capacity ratio | | | 1.17 | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | S | um of lost | time (s) | | | 14.0 | | | Intersection Capacity Utilization | 1 | | 103.6% | IC | CU Level | of Service |) | | G | | | Analysis Period (min) | | | 15 | | | | | | | | c Critical Lane Group | | ۶ | → | • | • | ← | • | 1 | † | / | / | ↓ | 4 | |-----------------------------------|------|----------|-------|------|------------|------------|-------|----------|----------|----------|----------|--------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | | | | नाा | | 7 | ^ | | | ↑ | 77 | | Volume (vph) | 0 | 0 | 0 | 90 | 2220 | 150 | 115 | 525 | 0 | 0 | 335 | 455 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | | | | 7.0 | | 7.0 | 7.0 | | | 7.0 | 7.0 | | Lane Util. Factor | | | | | 0.86 | | 1.00 | 0.95 | | | 1.00 | 0.88 | | Frpb, ped/bikes | | | | | 0.99 | | 1.00 | 1.00 | | | 1.00 | 1.00 | | Flpb, ped/bikes | | | | | 1.00 | | 0.77 | 1.00 | | | 1.00 | 1.00 | | Frt | | | | | 0.99 | | 1.00 | 1.00 | | | 1.00 | 0.85 | | Flt Protected | | | | | 1.00 | | 0.95 | 1.00 | | | 1.00 | 1.00 | | Satd. Flow (prot) | | | | | 6102 | | 1359 | 3336 | | | 1773 | 2729 | | FIt Permitted | | | | | 1.00 | | 0.39 | 1.00 | | | 1.00 | 1.00 | | Satd. Flow (perm) | | | | | 6102 | | 554 | 3336 | | | 1773 | 2729 | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.93 | 0.93 | 0.93 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 0 | 0 | 0 | 97 | 2387 | 161 | 121 | 553 | 0 | 0 | 353 | 479 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 373 | | Lane Group Flow (vph) | 0 | 0 | 0 | 0 | 2638 | 0 | 121 | 553 | 0 | 0 | 353 | 106 | | Confl. Peds. (#/hr) | | | | 30 | | 135 | 1370 | | 445 | | | 1370 | | Heavy Vehicles (%) | 0% | 0% | 0% | 4% | 3% | 5% | 1% | 7% | 0% | 0% | 6% | 3% | | Turn Type | | | | Perm | | | Perm | | | | | custom | | Protected Phases | | | | | 6 | | | 8 | | | 4 | 3 | | Permitted Phases | | | | 6 | | | 8 | | | | | | | Actuated Green, G (s) | | | | | 49.0 | | 49.0 | 49.0 | | | 24.0 | 18.0 | | Effective Green, g (s) | | | | | 49.0 | | 49.0 | 49.0 | | | 24.0 | 18.0 | | Actuated g/C Ratio | | | | | 0.44 | | 0.44 | 0.44 | | | 0.21 | 0.16 | | Clearance Time (s) | | | | | 7.0 | | 7.0 | 7.0 | | |
7.0 | 7.0 | | Vehicle Extension (s) | | | | | 3.0 | | 3.0 | 3.0 | | | 3.0 | 3.0 | | Lane Grp Cap (vph) | | | | | 2670 | | 242 | 1460 | | | 380 | 439 | | v/s Ratio Prot | | | | | | | | 0.17 | | | c0.20 | 0.04 | | v/s Ratio Perm | | | | | 0.43 | | c0.22 | | | | | | | v/c Ratio | | | | | 0.99 | | 0.50 | 0.38 | | | 0.93 | 0.24 | | Uniform Delay, d1 | | | | | 31.2 | | 22.7 | 21.2 | | | 43.2 | 41.0 | | Progression Factor | | | | | 0.55 | | 0.68 | 0.65 | | | 1.00 | 1.00 | | Incremental Delay, d2 | | | | | 8.3 | | 0.7 | 0.1 | | | 28.5 | 1.3 | | Delay (s) | | | | | 25.4 | | 16.0 | 13.9 | | | 71.7 | 42.4 | | Level of Service | | | | | С | | В | В | | | Е | D | | Approach Delay (s) | | 0.0 | | | 25.4 | | | 14.3 | | | 54.8 | | | Approach LOS | | Α | | | С | | | В | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 29.5 | Н | ICM Level | of Servic | е | | С | | | | | HCM Volume to Capacity ratio | | | 0.83 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | um of lost | | | | 14.0 | | | | | Intersection Capacity Utilization | | | 92.0% | 10 | CU Level o | of Service | | | F | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | * | • | ← | • | 1 | † | / | / | ţ | 4 | |---------------------------------------|----------|------------|----------|------------|--------------|------------|-------|----------|------|----------|--------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | | | | 4 ↑ ₽ | | 7 | ^ | | | ħβ | | | Volume (vph) | 0 | 0 | 0 | 110 | 1925 | 100 | 170 | 705 | 0 | 0 | 200 | 380 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | | | | 7.0 | | 4.0 | 7.0 | | | 7.0 | | | Lane Util. Factor | | | | | 0.91 | | 1.00 | 0.95 | | | 0.95 | | | Frpb, ped/bikes | | | | | 0.99 | | 1.00 | 1.00 | | | 0.75 | | | Flpb, ped/bikes | | | | | 0.99 | | 0.98 | 1.00 | | | 1.00 | | | Frt | | | | | 0.99 | | 1.00 | 1.00 | | | 0.90 | | | Flt Protected | | | | | 1.00 | | 0.95 | 1.00 | | | 1.00 | | | Satd. Flow (prot) | | | | | 4915 | | 1677 | 3433 | | | 2255 | | | Flt Permitted | | | | | 1.00 | | 0.24 | 1.00 | | | 1.00 | | | Satd. Flow (perm) | | | | | 4915 | | 428 | 3433 | | | 2255 | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.93 | 0.93 | 0.93 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 0 | 0 | 0 | 118 | 2070 | 108 | 179 | 742 | 0 | 0 | 211 | 400 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 17 | 0 | | Lane Group Flow (vph) | 0 | 0 | 0 | 0 | 2292 | 0 | 179 | 742 | 0 | 0 | 594 | 0 | | Confl. Peds. (#/hr) | 90 | | 65 | 65 | | 90 | 490 | | 290 | 290 | | 490 | | Heavy Vehicles (%) | 0% | 0% | 0% | 0% | 2% | 7% | 4% | 4% | 0% | 0% | 11% | 5% | | , , , , , , , , , , , , , , , , , , , | custom | | | Perm | | | pm+pt | | | | | | | Protected Phases | | | | | 6 | | 3 | 8 | | | 4 | | | Permitted Phases | 2 | | | 6 | | | 8 | | | | | | | Actuated Green, G (s) | | | | | 56.3 | | 41.7 | 41.7 | | | 30.7 | | | Effective Green, g (s) | | | | | 56.3 | | 41.7 | 41.7 | | | 30.7 | | | Actuated g/C Ratio | | | | | 0.50 | | 0.37 | 0.37 | | | 0.27 | | | Clearance Time (s) | | | | | 7.0 | | 4.0 | 7.0 | | | 7.0 | | | Vehicle Extension (s) | | | | | 3.0 | | 3.0 | 3.0 | | | 3.0 | | | Lane Grp Cap (vph) | | | | | 2471 | | 237 | 1278 | | | 618 | | | v/s Ratio Prot | | | | | | | c0.05 | 0.22 | | | c0.26 | | | v/s Ratio Perm | | | | | 0.47 | | 0.23 | | | | | | | v/c Ratio | | | | | 0.93 | | 0.76 | 0.58 | | | 1.19dr | | | Uniform Delay, d1 | | | | | 26.0 | | 28.1 | 28.1 | | | 40.1 | | | Progression Factor | | | | | 1.00 | | 0.84 | 0.88 | | | 1.00 | | | Incremental Delay, d2 | | | | | 7.6 | | 9.3 | 0.5 | | | 26.6 | | | Delay (s) | | | | | 33.5 | | 32.8 | 25.2 | | | 66.6 | | | Level of Service | | | | | С | | С | С | | | Е | | | Approach Delay (s) | | 0.0 | | | 33.5 | | | 26.7 | | | 66.6 | | | Approach LOS | | Α | | | С | | | С | | | Е | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 37.2 | Н | CM Level | of Service | е | | D | | | | | HCM Volume to Capacity ratio | | | 0.93 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | um of lost | | | | 18.0 | | | | | Intersection Capacity Utilization | n | | 90.6% | IC | CU Level o | of Service | | | Е | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | dr Defacto Right Lane. Reco | ode with | 1 though I | ane as a | right lane | Э. | | | | | | | | c Critical Lane Group | | ۶ | → | • | • | ← | • | 1 | † | ~ | \ | + | ✓ | |-----------------------------------|------|-----------------|-------|------|------------|------------|------|----------|------|----------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | ተተ _ጉ | | | | | | ^ | | ¥ | † | | | Volume (vph) | 0 | 1265 | 25 | 0 | 0 | 0 | 0 | 795 | 0 | 470 | 165 | 0 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.6 | 3.5 | 3.5 | 3.5 | 3.5 | | Total Lost time (s) | | 6.0 | | | | | | 8.0 | | 4.0 | 8.0 | | | Lane Util. Factor | | 0.91 | | | | | | 0.95 | | 1.00 | 1.00 | | | Frpb, ped/bikes | | 1.00 | | | | | | 1.00 | | 1.00 | 1.00 | | | Flpb, ped/bikes | | 1.00 | | | | | | 1.00 | | 1.00 | 1.00 | | | Frt | | 1.00 | | | | | | 1.00 | | 1.00 | 1.00 | | | Flt Protected | | 1.00 | | | | | | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (prot) | | 4914 | | | | | | 3610 | | 1716 | 1756 | | | FIt Permitted | | 1.00 | | | | | | 1.00 | | 0.12 | 1.00 | | | Satd. Flow (perm) | | 4914 | | | | | | 3610 | | 222 | 1756 | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 0 | 1332 | 26 | 0 | 0 | 0 | 0 | 837 | 0 | 495 | 174 | 0 | | RTOR Reduction (vph) | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Lane Group Flow (vph) | 0 | 1356 | 0 | 0 | 0 | 0 | 0 | 837 | 0 | 495 | 174 | 0 | | Confl. Peds. (#/hr) | 35 | | 15 | 15 | | 35 | 835 | | 55 | 55 | | 835 | | Heavy Vehicles (%) | 0% | 4% | 5% | 0% | 0% | 0% | 0% | 0% | 0% | 4% | 7% | 0% | | Turn Type | | | | | | | | | | pm+pt | | | | Protected Phases | | 2 | | | | | | 8 | | 7 | 4 | | | Permitted Phases | | | | | | | | | | 4 | | | | Actuated Green, G (s) | | 35.5 | | | | | | 28.5 | | 62.5 | 62.5 | | | Effective Green, g (s) | | 35.5 | | | | | | 28.5 | | 62.5 | 62.5 | | | Actuated g/C Ratio | | 0.32 | | | | | | 0.25 | | 0.56 | 0.56 | | | Clearance Time (s) | | 6.0 | | | | | | 8.0 | | 4.0 | 8.0 | | | Vehicle Extension (s) | | 3.0 | | | | | | 3.0 | | 3.0 | 3.0 | | | Lane Grp Cap (vph) | | 1558 | | | | | | 919 | | 524 | 980 | | | v/s Ratio Prot | | c0.28 | | | | | | 0.23 | | c0.25 | 0.10 | | | v/s Ratio Perm | | | | | | | | | | c0.27 | | | | v/c Ratio | | 0.87 | | | | | | 0.91 | | 0.94 | 0.18 | | | Uniform Delay, d1 | | 36.1 | | | | | | 40.5 | | 31.2 | 12.1 | | | Progression Factor | | 0.51 | | | | | | 1.00 | | 1.43 | 0.28 | | | Incremental Delay, d2 | | 6.0 | | | | | | 12.9 | | 4.1 | 0.0 | | | Delay (s) | | 24.4 | | | | | | 53.5 | | 48.6 | 3.5 | | | Level of Service | | С | | | | | | D | | D | Α | | | Approach Delay (s) | | 24.4 | | | 0.0 | | | 53.5 | | | 36.9 | | | Approach LOS | | С | | | Α | | | D | | | D | | | Intersection Summary | | | 0-0 | , . | 0141 | | | | | | | | | HCM Average Control Delay | | | 35.8 | H | CM Level | of Service | | | D | | | | | HCM Volume to Capacity ratio | | | 0.87 | _ | | (| | | 40.0 | | | | | Actuated Cycle Length (s) | | | 112.0 | | um of lost | | | | 10.0 | | | | | Intersection Capacity Utilization | | | 88.0% | IC | U Level o | of Service | | | E | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | | ۶ | → | † | ~ | / | ţ | <i>></i> | 4 | | | | |---------------------------------|--------------|--------------|--------------|-------|--------------|--------------|--------------|--------------|------|--|--| | Movement | EBL | EBT | NBT | NBR | SBL | SBT | NER | NER2 | | | | | Lane Configurations | * | 4₽ | ∱ } | | * | ^ | 7 | 7 | | | | | Volume (vph) | 870 | 1215 | 400 | 75 | 275 | 140 | 695 | 75 | | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | | Total Lost time (s) | 7.0 | 7.0 | 7.0 | | 6.0 | 7.0 | 7.0 | 7.0 | | | | | Lane Util. Factor | 0.91 | 0.91 | 0.95 | | 1.00 | 0.95 | 1.00 | 1.00 | | | | | Frpb, ped/bikes | 1.00 | 1.00 | 0.95 | | 1.00 | 1.00 | 1.00 | 0.76 | | | | | Flpb, ped/bikes | 0.98 | 1.00 | 1.00 | | 0.98 | 1.00 | 1.00 | 1.00 | | | | | Frt | 1.00 | 1.00 | 0.98 | | 1.00 | 1.00 | 0.85 | 0.85 | | | | | Fit Protected | 0.95 | 0.99 | 1.00 | | 0.95 | 1.00
3275 | 1.00 | 1.00 | | | | | Satd. Flow (prot) Flt Permitted | 1548
0.95 | 3289
0.99 | 3007
1.00 | | 1690
0.19 | 1.00 | 1536
1.00 | 1177
1.00 | | | | | Satd. Flow (perm) | 1548 | 3289 | 3007 | | 336 | 3275 | 1536 | 1177 | | | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | | | | Adj. Flow (vph) | 916 | 1279 | 421 | 79 | 289 | 147 | 732 | 79 | | | | | RTOR Reduction (vph) | 0 | 0 | 14 | 0 | 0 | 0 | 0 | 37 | | | | | Lane Group Flow (vph) | 714 | 1481 | 486 | 0 | 289 | 147 | 732 | 42 | | | | | Confl. Peds. (#/hr) | 10 | 1401 | 400 | 290 | 290 | 1-77 | 102 | 125 | | | | | Heavy Vehicles (%) | 3% | 3% | 10% | 7% | 4% | 9% | 4% | 3% | | | | | Turn Type | Perm | | 10,10 | . , , | pm+pt | | custom | | | | | | Protected Phases | . • | 2 | 8 | | 7 | 4 | 0.0.0 | 0.000 | | | | | Permitted Phases | 2 | | | | 4 | | 2 | 2 | | | | | Actuated Green, G (s) | 59.0 | 59.0 | 19.0 | | 39.0 | 39.0 | 59.0 | 59.0 | | | | | Effective Green, g (s) | 59.0 | 59.0 | 19.0 | | 39.0 | 39.0 | 59.0 | 59.0 | | | | | Actuated g/C Ratio |
0.53 | 0.53 | 0.17 | | 0.35 | 0.35 | 0.53 | 0.53 | | | | | Clearance Time (s) | 7.0 | 7.0 | 7.0 | | 6.0 | 7.0 | 7.0 | 7.0 | | | | | Vehicle Extension (s) | 3.0 | 3.0 | 3.0 | | 3.0 | 3.0 | 3.0 | 3.0 | | | | | Lane Grp Cap (vph) | 815 | 1733 | 510 | | 286 | 1140 | 809 | 620 | | | | | v/s Ratio Prot | | | 0.16 | | c0.13 | 0.04 | | | | | | | v/s Ratio Perm | 0.46 | 0.45 | | | c0.23 | | c0.48 | 0.04 | | | | | v/c Ratio | 0.88 | 0.85 | 0.95 | | 1.01 | 0.13 | 0.90 | 0.07 | | | | | Uniform Delay, d1 | 23.3 | 22.8 | 46.1 | | 31.0 | 24.9 | 24.0 | 13.0 | | | | | Progression Factor | 0.54 | 0.54 | 1.00 | | 1.24 | 1.13 | 1.00 | 1.00 | | | | | Incremental Delay, d2 | 8.8 | 3.8 | 28.2 | | 33.6 | 0.0 | 15.5 | 0.2 | | | | | Delay (s)
Level of Service | 21.4
C | 16.1
B | 74.2
E | | 72.2
E | 28.2
C | 39.5
D | 13.2
B | | | | | Approach Delay (s) | C | 17.8 | 74.2 | | | 57.3 | U | D | | | | | Approach LOS | | В | F | | | 57.5
E | | | | | | | Intersection Summary | | | | | | | | | | | | | HCM Average Control Delay | | | 33.3 | Н | CM Level | of Servi | ce | | С | | | | HCM Volume to Capacity rat | | | 0.91 | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | S | um of lost | time (s) | | | 13.0 | | | | Intersection Capacity Utilizati | ion | | 135.8% | IC | CU Level o | of Service | е | | Н | | | | Analysis Period (min) | | | 15 | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | *1 | † | ۴ | ¥ | † | لِر | * | × | 4 | 4 | × | t | |-----------------------------------|---------|------------|-----------|------------|------------|------------|----------|----------|------|------|----------|------| | Movement | NBL | NBT | NBR | SBL | SBT | SBR | NEL | NET | NER | SWL | SWT | SWR | | Lane Configurations | | ∱ ⊅ | | | ^ | | ሻ | 4₽ | | | | | | Volume (vph) | 0 | 110 | 305 | 0 | 300 | 0 | 750 | 1390 | 0 | 0 | 0 | 0 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | 7.0 | | | 7.0 | | 7.0 | 7.0 | | | | | | Lane Util. Factor | | 0.95 | | | 0.95 | | 0.91 | 0.91 | | | | | | Frpb, ped/bikes | | 0.93 | | | 1.00 | | 1.00 | 1.00 | | | | | | Flpb, ped/bikes | | 1.00 | | | 1.00 | | 1.00 | 1.00 | | | | | | Frt | | 0.89 | | | 1.00 | | 1.00 | 1.00 | | | | | | Flt Protected | | 1.00 | | | 1.00 | | 0.95 | 1.00 | | | | | | Satd. Flow (prot) | | 2809 | | | 3570 | | 1547 | 3248 | | | | | | Flt Permitted | | 1.00 | | | 1.00 | | 0.95 | 1.00 | | | | | | Satd. Flow (perm) | | 2809 | | | 3570 | | 1547 | 3248 | | | | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 0 | 116 | 321 | 0 | 316 | 0 | 789 | 1463 | 0 | 0 | 0 | 0 | | RTOR Reduction (vph) | 0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Lane Group Flow (vph) | 0 | 397 | 0 | 0 | 316 | 0 | 710 | 1542 | 0 | 0 | 0 | 0 | | Confl. Peds. (#/hr) | 90 | | 65 | 65 | | 90 | | | | | | | | Heavy Vehicles (%) | 0% | 6% | 5% | 0% | 0% | 0% | 5% | 5% | 0% | 0% | 0% | 0% | | Turn Type | | | | | | | Perm | | | | | | | Protected Phases | | 8 | | | 4 | | | 2 | | | | | | Permitted Phases | | | | | | | 2 | | | | | | | Actuated Green, G (s) | | 26.0 | | | 26.0 | | 72.0 | 72.0 | | | | | | Effective Green, g (s) | | 26.0 | | | 26.0 | | 72.0 | 72.0 | | | | | | Actuated g/C Ratio | | 0.23 | | | 0.23 | | 0.64 | 0.64 | | | | | | Clearance Time (s) | | 7.0 | | | 7.0 | | 7.0 | 7.0 | | | | | | Vehicle Extension (s) | | 3.0 | | | 3.0 | | 3.0 | 3.0 | | | | | | Lane Grp Cap (vph) | | 652 | | | 829 | | 995 | 2088 | | | | | | v/s Ratio Prot | | c0.14 | | | 0.09 | | | | | | | | | v/s Ratio Perm | | 0.001 | | | 0.00 | | 0.46 | 0.47 | | | | | | v/c Ratio | | 0.86dr | | | 0.38 | | 0.71 | 0.74 | | | | | | Uniform Delay, d1 | | 38.5 | | | 36.2 | | 13.2 | 13.6 | | | | | | Progression Factor | | 1.00 | | | 0.95 | | 0.26 | 0.26 | | | | | | Incremental Delay, d2 | | 1.6 | | | 0.1 | | 1.9 | 1.0 | | | | | | Delay (s) | | 40.1 | | | 34.5 | | 5.3 | 4.5 | | | | | | Level of Service | | D | | | C | | Α | Α | | | 0.0 | | | Approach Delay (s) Approach LOS | | 40.1
D | | | 34.5
C | | | 4.8
A | | | 0.0
A | | | | | | | | | | | | | | | | | Intersection Summary | | | | | 014: | | | | | | | | | HCM Average Control Delay | | | 13.0 | H | CM Level | of Service | е | | В | | | | | HCM Volume to Capacity ratio | | | 0.70 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | um of lost | | | | 14.0 | | | | | Intersection Capacity Utilization | | | 73.5% | IC | U Level o | of Service | | | D | | | | | Analysis Period (min) | d = 'U | 1 41 1 | 15 | | | | | | | | | | | dr Defacto Right Lane. Reco | de with | i though | iane as a | right lane | 1. | | | | | | | | c Critical Lane Group ## **C4** South Side One-Way | | ۶ | → | + | 4 | \ | 4 | |-----------------------------------|------|----------|----------|------|-----------|--------------| | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | Lane Configurations | | | † | 7 | | # | | Volume (vph) | 0 | 0 | 355 | 100 | 0 | 60 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | | 7.0 | 7.0 | | 7.0 | | Lane Util. Factor | | | 1.00 | 1.00 | | 1.00 | | Frpb, ped/bikes | | | 1.00 | 0.80 | | 0.90 | | Flpb, ped/bikes | | | 1.00 | 1.00 | | 1.00 | | Frt | | | 1.00 | 0.85 | | 0.86 | | Flt Protected | | | 1.00 | 1.00 | | 1.00 | | Satd. Flow (prot) | | | 1610 | 1119 | | 1260 | | Flt Permitted | | | 1.00 | 1.00 | | 1.00 | | Satd. Flow (perm) | | | 1610 | 1119 | | 1260 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 0 | 0 | 394 | 111 | 0 | 67 | | RTOR Reduction (vph) | 0 | 0 | 0 | 63 | 0 | 47 | | Lane Group Flow (vph) | 0 | 0 | 394 | 48 | 0 | 20 | | Confl. Peds. (#/hr) | 190 | | | 190 | 130 | 50 | | Heavy Vehicles (%) | 5% | 4% | 5% | 3% | 8% | 4% | | Turn Type | | | | Perm | | custom | | Protected Phases | | | 6 | | | | | Permitted Phases | | | | 6 | | 4 | | Actuated Green, G (s) | | | 51.4 | 51.4 | | 35.0 | | Effective Green, g (s) | | | 51.4 | 51.4 | | 35.0 | | Actuated g/C Ratio | | | 0.43 | 0.43 | | 0.29 | | Clearance Time (s) | | | 7.0 | 7.0 | | 7.0 | | Vehicle Extension (s) | | | 3.0 | 3.0 | | 3.0 | | Lane Grp Cap (vph) | | | 690 | 479 | | 368 | | v/s Ratio Prot | | | c0.24 | | | | | v/s Ratio Perm | | | | 0.04 | | c0.02 | | v/c Ratio | | | 0.57 | 0.10 | | 0.05 | | Uniform Delay, d1 | | | 26.0 | 20.5 | | 30.6 | | Progression Factor | | | 0.64 | 0.36 | | 1.00 | | Incremental Delay, d2 | | | 3.4 | 0.4 | | 0.1 | | Delay (s) | | | 20.1 | 7.7 | | 30.6 | | Level of Service | | | С | Α | | С | | Approach Delay (s) | | 0.0 | 17.4 | | 30.6 | | | Approach LOS | | Α | В | | С | | | Intersection Summary | | | | | | | | HCM Average Control Delay | | | 18.9 | H | CM Leve | l of Service | | HCM Volume to Capacity ratio | | | 0.36 | | | | | Actuated Cycle Length (s) | | | 120.0 | Sı | ım of los | t time (s) | | Intersection Capacity Utilization | | | 70.8% | | | of Service | | Analysis Period (min) | | | 15 | | | | | c Critical Lane Group | | | | | | | | | ۶ | → | • | • | ← | • | • | † | ~ | / | ↓ | ✓ | |-----------------------------------|------|----------|-------|------|-------------|------------|-------|----------|------|----------|----------|--------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | | | ň | ∱ ∱ | | 7 | | | | | 7 | | Volume (vph) | 0 | 0 | 0 | 5 | 385 | 10 | 5 | 0 | 0 | 0 | 0 | 70 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | | | 7.0 | 6.0 | | 7.0 | | | | | 6.0 | | Lane Util. Factor | | | | 1.00 | 0.95 | | 1.00 | | | | | 1.00 | | Frt | | | | 1.00 | 1.00 | | 1.00 | | | | | 0.86 | | Flt Protected | | | | 0.95 | 1.00 | | 0.95 | | | | | 1.00 | | Satd. Flow (prot) | | | | 1575 | 3081 | | 1575 | | | | | 1463 | | FIt Permitted | | | | 0.95 | 1.00 | | 0.95 | | | | | 1.00 | | Satd. Flow (perm) | | | | 1575 | 3081 | | 1575 | | | | | 1463 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 0 | 0 | 0 | 6 | 428 | 11 | 6 | 0 | 0 | 0 | 0 | 78 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 68 | | Lane Group Flow (vph) | 0 | 0 | 0 | 6 | 438 | 0 | 6 | 0 | 0 | 0 | 0 | 10 | | Heavy Vehicles (%) | 0% | 5% | 2% | 2% | 4% | 0% | 2% | 2% | 2% | 0% | 2% | 0% | | Turn Type | | | | Prot | | | Prot | | | | | custom | | Protected Phases | | | | 1 | 6 | | 8 | | | | | 4 10 | | Permitted Phases | | | | | | | | | | | | | | Actuated Green, G (s) | | | | 1.4 | 77.0 | | 2.0 | | | | | 16.0 | | Effective Green, g (s) | | | | 1.4 | 77.0 | | 2.0 | | | | | 16.0 | | Actuated g/C Ratio | | | | 0.01 | 0.64 | | 0.02 | | | | | 0.13 | | Clearance Time (s) | | | | 7.0 | 6.0 | | 7.0 | | | | | | | Vehicle Extension (s) | | | | 3.0 | 3.0 | | 3.0 | | | | | | | Lane Grp Cap (vph) | | | | 18 | 1977 | | 26 | | | | | 195 | | v/s Ratio Prot | | | | 0.00 | c0.14 | | c0.00 | | | | | c0.01 | | v/s Ratio Perm | | | | | | | | | | | | | | v/c Ratio | | | | 0.33 | 0.22 | | 0.23 | | | | | 0.05 | | Uniform Delay, d1 | | | | 58.8 | 9.0 | | 58.2 | | | | | 45.4 | | Progression Factor | | | | 1.09 | 0.39 | | 1.00 | | | | | 1.00 | | Incremental Delay, d2 | | | | 10.5 | 0.3 | | 4.5 | | | | | 0.1 | | Delay (s) | | | | 74.9 | 3.7 | | 62.8 | | | | | 45.5 | | Level of Service | | | | Е | Α | | Е | | | | | D | | Approach Delay (s) | | 0.0 | | | 4.7 | | | 62.8 | | | 45.5 | | | Approach LOS | | Α | | | Α | | | Е | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 11.4 | Н | CM Level | of Servic | е | | В | | | | | HCM Volume to Capacity ratio | | | 0.19 | | | | | | | | | | | Actuated Cycle Length (s) | | | 120.0 | | um of lost | | | | 25.0 | | | | | Intersection Capacity Utilization | | | 37.2% | IC
| CU Level of | of Service | | | Α | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | a Critical Lana Craun | | | | | | | | | | | | | | | ۶ | → | • | • | ← | 4 | 1 | † | ~ | / | ţ | √ | |-----------------------------------|------|----------|-------|------|------------|------------|------|----------|------|----------|-------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | | | ሻ | ∱ ∱ | | | 4 | | | ₽ | | | Volume (vph) | 0 | 0 | 0 | 0 | 400 | 20 | 0 | 0 | 0 | 0 | 0 | 20 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | | | | 6.0 | | | | | | 7.0 | | | Lane Util. Factor | | | | | 0.95 | | | | | | 1.00 | | | Frt | | | | | 0.99 | | | | | | 0.86 | | | Flt Protected | | | | | 1.00 | | | | | | 1.00 | | | Satd. Flow (prot) | | | | | 3067 | | | | | | 1406 | | | Flt Permitted | | | | | 1.00 | | | | | | 1.00 | | | Satd. Flow (perm) | | | | | 3067 | | | | | | 1406 | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 0 | 0 | 0 | 0 | 444 | 22 | 0 | 0 | 0 | 0 | 0 | 22 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 19 | 0 | | Lane Group Flow (vph) | 0 | 0 | 0 | 0 | 464 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | | Heavy Vehicles (%) | 5% | 5% | 50% | 50% | 4% | 4% | 50% | 50% | 50% | 5% | 5% | 4% | | Turn Type | | | | Prot | | | Perm | | | | | | | Protected Phases | | | | 1 | 6 | | | 8 | | | 4 | | | Permitted Phases | | | | | | | 8 | | | | | | | Actuated Green, G (s) | | | | | 89.0 | | | | | | 18.0 | | | Effective Green, g (s) | | | | | 89.0 | | | | | | 18.0 | | | Actuated g/C Ratio | | | | | 0.74 | | | | | | 0.15 | | | Clearance Time (s) | | | | | 6.0 | | | | | | 7.0 | | | Vehicle Extension (s) | | | | | 3.0 | | | | | | 3.0 | | | Lane Grp Cap (vph) | | | | | 2275 | | | | | | 211 | | | v/s Ratio Prot | | | | | c0.15 | | | | | | c0.00 | | | v/s Ratio Perm | | | | | | | | | | | 00.00 | | | v/c Ratio | | | | | 0.20 | | | | | | 0.02 | | | Uniform Delay, d1 | | | | | 4.7 | | | | | | 43.5 | | | Progression Factor | | | | | 0.70 | | | | | | 1.00 | | | Incremental Delay, d2 | | | | | 0.2 | | | | | | 0.0 | | | Delay (s) | | | | | 3.5 | | | | | | 43.5 | | | Level of Service | | | | | Α | | | | | | D | | | Approach Delay (s) | | 0.0 | | | 3.5 | | | 0.0 | | | 43.5 | | | Approach LOS | | А | | | А | | | А | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 5.3 | H | CM Level | of Servic | е | | Α | | | | | HCM Volume to Capacity ratio | | | 0.17 | | | | | | | | | | | Actuated Cycle Length (s) | | | 120.0 | Sı | um of lost | time (s) | | | 13.0 | | | | | Intersection Capacity Utilization | | | 32.2% | IC | U Level o | of Service | | | Α | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | • | • | ← | • | 4 | † | / | / | ţ | 1 | |-----------------------------------|---------|----------|-------|------|------------|------------|------|----------|----------|----------|-------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | | | ሻ | ተ ኈ | | | र्स | | ሻ | f) | | | Volume (vph) | 0 | 0 | 0 | 20 | 330 | 75 | 10 | 40 | 0 | 0 | 45 | 80 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | | | 7.0 | 6.0 | | | 7.0 | | | 7.0 | | | Lane Util. Factor | | | | 1.00 | 0.95 | | | 1.00 | | | 1.00 | | | Frpb, ped/bikes | | | | 1.00 | 0.93 | | | 1.00 | | | 0.96 | | | Flpb, ped/bikes | | | | 1.00 | 1.00 | | | 0.99 | | | 1.00 | | | Frt | | | | 1.00 | 0.97 | | | 1.00 | | | 0.90 | | | Flt Protected | | | | 0.95 | 1.00 | | | 0.99 | | | 1.00 | | | Satd. Flow (prot) | | | | 1460 | 2741 | | | 1530 | | | 1472 | | | FIt Permitted | | | | 0.95 | 1.00 | | | 0.93 | | | 1.00 | | | Satd. Flow (perm) | | | | 1460 | 2741 | | | 1443 | | | 1472 | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 0 | 0 | 0 | 22 | 367 | 83 | 11 | 44 | 0 | 0 | 50 | 89 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 | 53 | 0 | | Lane Group Flow (vph) | 0 | 0 | 0 | 22 | 434 | 0 | 0 | 55 | 0 | 0 | 86 | 0 | | Confl. Peds. (#/hr) | 110 | | 50 | 50 | | 110 | 35 | | 75 | 75 | | 35 | | Heavy Vehicles (%) | 1% | 5% | 0% | 10% | 5% | 8% | 15% | 7% | 10% | 20% | 0% | 0% | | Turn Type | | | | Prot | | | Perm | | | | | | | Protected Phases | | | | 1 | 6 | | | 8 | | | 4 | | | Permitted Phases | | | | | | | 8 | | | | | | | Actuated Green, G (s) | | | | 4.2 | 80.0 | | | 27.0 | | | 27.0 | | | Effective Green, g (s) | | | | 4.2 | 80.0 | | | 27.0 | | | 27.0 | | | Actuated g/C Ratio | | | | 0.04 | 0.67 | | | 0.22 | | | 0.22 | | | Clearance Time (s) | | | | 7.0 | 6.0 | | | 7.0 | | | 7.0 | | | Vehicle Extension (s) | | | | 3.0 | 3.0 | | | 3.0 | | | 3.0 | | | Lane Grp Cap (vph) | | | | 51 | 1827 | | | 325 | | | 331 | | | v/s Ratio Prot | | | | 0.02 | c0.16 | | | | | | c0.06 | | | v/s Ratio Perm | | | | | | | | 0.04 | | | | | | v/c Ratio | | | | 0.43 | 0.24 | | | 0.17 | | | 0.26 | | | Uniform Delay, d1 | | | | 56.7 | 7.9 | | | 37.5 | | | 38.3 | | | Progression Factor | | | | 1.14 | 0.36 | | | 1.00 | | | 1.00 | | | Incremental Delay, d2 | | | | 5.7 | 0.3 | | | 0.2 | | | 0.4 | | | Delay (s) | | | | 70.3 | 3.2 | | | 37.7 | | | 38.7 | | | Level of Service | | | | E | Α | | | D | | | D | | | Approach Delay (s) | | 0.0 | | | 6.3 | | | 37.7 | | | 38.7 | | | Approach LOS | | Α | | | Α | | | D | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 15.7 | Н | CM Level | of Service | е | | В | | | | | HCM Volume to Capacity ratio | | | 0.24 | | | | | | | | | | | Actuated Cycle Length (s) | | | 120.0 | | um of lost | | | | 13.0 | | | | | Intersection Capacity Utilization | | | 47.5% | IC | U Level c | of Service | | | Α | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | Description: Queen's Quay / Re | es / Ra | disson W | est | | | | | | | | | | | | • | → | • | • | ← | • | • | † | ~ | > | ļ | 4 | |-----------------------------------|---------|-----------|----------|-------|------------|------------|------|----------|------|-------------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | | | 7 | ∱ } | | ሻ | ↑ | | ሻ | ₽ | | | Volume (vph) | 0 | 0 | 0 | 55 | 395 | 40 | 0 | 5 | 0 | 0 | 35 | 30 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | | | 7.0 | 6.0 | | | 7.0 | | | 7.0 | | | Lane Util. Factor | | | | 1.00 | 0.95 | | | 1.00 | | | 1.00 | | | Frpb, ped/bikes | | | | 1.00 | 0.97 | | | 1.00 | | | 0.98 | | | Flpb, ped/bikes | | | | 1.00 | 1.00 | | | 1.00 | | | 1.00 | | | Frt | | | | 1.00 | 0.99 | | | 1.00 | | | 0.93 | | | Flt Protected | | | | 0.95 | 1.00 | | | 1.00 | | | 1.00 | | | Satd. Flow (prot) | | | | 1575 | 2844 | | | 1658 | | | 1523 | | | Flt Permitted | | | | 0.95 | 1.00 | | | 1.00 | | | 1.00 | | | Satd. Flow (perm) | | | | 1575 | 2844 | | | 1658 | | | 1523 | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 0 | 0 | 0 | 61 | 439 | 44 | 0 | 6 | 0 | 0 | 39 | 33 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 25 | 0 | | Lane Group Flow (vph) | 0 | 0 | 0 | 61 | 477 | 0 | 0 | 6 | 0 | 0 | 47 | 0 | | Confl. Peds. (#/hr) | 140 | | | | | 140 | | | | 100 | | 30 | | Heavy Vehicles (%) | 4% | 5% | 2% | 2% | 9% | 4% | 2% | 2% | 2% | 2% | 2% | 0% | | Turn Type | | | | Prot | | | Perm | | | | | | | Protected Phases | | | | 1 | 6 | | | 8 | | | 4 | | | Permitted Phases | | | | | | | 8 | | | | | | | Actuated Green, G (s) | | | | 7.7 | 78.0 | | | 29.0 | | | 29.0 | | | Effective Green, g (s) | | | | 7.7 | 78.0 | | | 29.0 | | | 29.0 | | | Actuated g/C Ratio | | | | 0.06 | 0.65 | | | 0.24 | | | 0.24 | | | Clearance Time (s) | | | | 7.0 | 6.0 | | | 7.0 | | | 7.0 | | | Vehicle Extension (s) | | | | 3.0 | 3.0 | | | 3.0 | | | 3.0 | | | Lane Grp Cap (vph) | | | | 101 | 1849 | | | 401 | | | 368 | | | v/s Ratio Prot | | | | c0.04 | c0.17 | | | 0.00 | | | c0.03 | | | v/s Ratio Perm | | | | | | | | | | | | | | v/c Ratio | | | | 0.60 | 0.26 | | | 0.01 | | | 0.13 | | | Uniform Delay, d1 | | | | 54.7 | 8.8 | | | 34.6 | | | 35.6 | | | Progression Factor | | | | 1.45 | 0.22 | | | 1.00 | | | 1.00 | | | Incremental Delay, d2 | | | | 9.6 | 0.3 | | | 0.0 | | | 0.2 | | | Delay (s) | | | | 88.9 | 2.3 | | | 34.6 | | | 35.8 | | | Level of Service | | | | F | A | | | С | | | D | | | Approach Delay (s) | | 0.0 | | | 12.0 | | | 34.6 | | | 35.8 | | | Approach LOS | | Α | | | В | | | С | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 15.0 | Н | CM Level | of Service | Э | | В | | | | | HCM Volume to Capacity ratio | | | 0.24 | | | | | | | | | | | Actuated Cycle Length (s) | | | 120.0 | | um of lost | | | | 14.0 | | | | | Intersection Capacity Utilization | | | 60.8% | IC | CU Level o | f Service | | | В | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | Description: Queen's Quay / Lo | wer Sim | coe / Har | bourfron | East | | | | | | | | | | | → | • | • | • | • | <i>></i> | | |-----------------------------------|----------|------|-------|----------|------------|-------------|--| | Movement | EBT | EBR | WBL | WBT | NBL | NBR | | | Lane Configurations | | | ሻ | ^ | ħ | | | | Volume (vph) | 0 | 0 | 20 | 530 | 20 | 0 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | | | 7.0 | 6.0 | 7.0 | | | | Lane Util. Factor | |
| 1.00 | 0.95 | 1.00 | | | | Frt | | | 1.00 | 1.00 | 1.00 | | | | Flt Protected | | | 0.95 | 1.00 | 0.95 | | | | Satd. Flow (prot) | | | 1606 | 2975 | 1606 | | | | Flt Permitted | | | 0.95 | 1.00 | 0.95 | | | | Satd. Flow (perm) | | | 1606 | 2975 | 1606 | | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | Adj. Flow (vph) | 0 | 0 | 22 | 589 | 22 | 0 | | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 0 | 0 | | | Lane Group Flow (vph) | 0 | 0 | 22 | 589 | 22 | 0 | | | Heavy Vehicles (%) | 5% | 0% | 0% | 8% | 0% | 0% | | | Turn Type | | | Prot | | | | | | Protected Phases | | | 1 | 6 | 8 | | | | Permitted Phases | | | | | | | | | Actuated Green, G (s) | | | 4.9 | 89.0 | 18.0 | | | | Effective Green, g (s) | | | 4.9 | 89.0 | 18.0 | | | | Actuated g/C Ratio | | | 0.04 | 0.74 | 0.15 | | | | Clearance Time (s) | | | 7.0 | 6.0 | 7.0 | | | | Vehicle Extension (s) | | | 3.0 | 3.0 | 3.0 | | | | Lane Grp Cap (vph) | | | 66 | 2206 | 241 | | | | v/s Ratio Prot | | | 0.01 | c0.20 | c0.01 | | | | v/s Ratio Perm | | | | | | | | | v/c Ratio | | | 0.33 | 0.27 | 0.09 | | | | Uniform Delay, d1 | | | 56.0 | 5.0 | 44.0 | | | | Progression Factor | | | 1.42 | 0.40 | 1.00 | | | | Incremental Delay, d2 | | | 2.3 | 0.2 | 0.2 | | | | Delay (s) | | | 81.5 | 2.2 | 44.1 | | | | Level of Service | | | F | Α | D | | | | Approach Delay (s) | 0.0 | | | 5.1 | 44.1 | | | | Approach LOS | Α | | | Α | D | | | | Intersection Summary | | | | | | | | | HCM Average Control Delay | | | 6.4 | Н | CM Level | of Service | | | HCM Volume to Capacity ratio | | | 0.24 | | | | | | Actuated Cycle Length (s) | | | 120.0 | Sı | um of lost | time (s) | | | Intersection Capacity Utilization | | | 35.4% | | U Level o | | | | Analysis Period (min) | | | 15 | | | | | | c Critical Lane Group | | | | | | | | | | ۶ | → | • | • | ← | • | • | † | ~ | > | ţ | 4 | |---------------------------------------|------|----------|-------|--------------|--------------|------------|------|--------------|------|--------------|--------------|--------------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | | | ሻ | ħβ | | | 4 | | ሻ | ↑ | 7 | | Volume (vph) | 0 | 0 | 0 | 30 | 425 | 130 | 45 | 60 | 10 | 540 | 30 | 100 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | | | 6.0 | 6.0 | | | 7.0 | | 6.0 | 7.0 | 7.0 | | Lane Util. Factor | | | | 1.00 | 0.95 | | | 1.00 | | 1.00 | 1.00 | 1.00 | | Frpb, ped/bikes | | | | 1.00 | 0.91 | | | 0.98 | | 1.00 | 1.00 | 0.59 | | Flpb, ped/bikes | | | | 0.59 | 1.00 | | | 0.85 | | 0.93 | 1.00 | 1.00 | | Frt | | | | 1.00 | 0.96 | | | 0.99 | | 1.00 | 1.00 | 0.85 | | Flt Protected | | | | 0.95 | 1.00 | | | 0.98 | | 0.95 | 1.00 | 1.00 | | Satd. Flow (prot) | | | | 951 | 2682 | | | 1366 | | 1433 | 1691 | 836 | | Flt Permitted | | | | 0.95 | 1.00 | | | 0.87 | | 0.60 | 1.00 | 1.00 | | Satd. Flow (perm) | 2.00 | | 0.00 | 951 | 2682 | 2.00 | 0.00 | 1205 | | 904 | 1691 | 836 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 0 | 0 | 0 | 33 | 472 | 144 | 50 | 67 | 11 | 600 | 33 | 111 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 24 | 0 | 0 | 3 | 0 | 0 | 0 | 12 | | Lane Group Flow (vph) | 0 | 0 | 0 | 33 | 592 | 0 | 0 | 125 | 0 | 600 | 33 | 99 | | Confl. Peds. (#/hr) | 150 | 70/ | 170 | 170 | C 0/ | 150 | 655 | 00/ | 85 | 85 | 00/ | 655 | | Heavy Vehicles (%) | 7% | 7% | 6% | 0% | 6% | 4% | 0% | 0% | 0% | 4% | 0% | 1% | | Turn Type | | | | Perm | • | | Perm | • | | pm+pt | | Perm | | Protected Phases | | | | ^ | 6 | | _ | 8 | | 7 | 4 | | | Permitted Phases | | | | 6 | 25.0 | | 8 | 20.0 | | 4 | 70.0 | 72.0 | | Actuated Green, G (s) | | | | 35.0
35.0 | 35.0
35.0 | | | 28.0
28.0 | | 72.0
72.0 | 72.0
72.0 | 72.0
72.0 | | Effective Green, g (s) | | | | 0.29 | 0.29 | | | 0.23 | | 0.60 | 0.60 | | | Actuated g/C Ratio Clearance Time (s) | | | | 6.0 | 6.0 | | | 7.0 | | 6.0 | 7.0 | 0.60
7.0 | | Vehicle Extension (s) | | | | 3.0 | 3.0 | | | 3.0 | | 3.0 | 3.0 | 3.0 | | | | | | 277 | 782 | | | 281 | | 710 | 1015 | 502 | | Lane Grp Cap (vph) v/s Ratio Prot | | | | 211 | c0.22 | | | 201 | | c0.27 | 0.02 | 502 | | v/s Ratio Prot
v/s Ratio Perm | | | | 0.03 | 00.22 | | | 0.10 | | c0.24 | 0.02 | 0.12 | | v/c Ratio | | | | 0.03 | 0.76 | | | 0.10 | | 0.85 | 0.03 | 0.12 | | Uniform Delay, d1 | | | | 31.2 | 38.6 | | | 39.3 | | 17.3 | 9.8 | 10.9 | | Progression Factor | | | | 1.00 | 1.00 | | | 1.00 | | 1.00 | 1.00 | 1.00 | | Incremental Delay, d2 | | | | 0.9 | 6.8 | | | 1.1 | | 9.1 | 0.0 | 0.2 | | Delay (s) | | | | 32.1 | 45.4 | | | 40.5 | | 26.4 | 9.8 | 11.1 | | Level of Service | | | | C | 73.7
D | | | 70.5
D | | 20.4
C | 3.0
A | В | | Approach Delay (s) | | 0.0 | | J | 44.7 | | | 40.5 | | J | 23.4 | | | Approach LOS | | A | | | D | | | D | | | C | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 33.9 | H | CM Level | of Service | ! | | С | | | | | HCM Volume to Capacity ratio | | | 0.80 | | | | | | | | | | | Actuated Cycle Length (s) | | | 120.0 | | um of lost | | | | 12.0 | | | | | Intersection Capacity Utilization | | | 84.2% | IC | CU Level o | of Service | | | Е | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | • | → | • | • | ← | • | • | † | / | > | ļ | 4 | |-------------------------------|-------|----------|-------|------|------------|------------|------|----------|------|-------------|-------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | 7 | f) | | Ť | ∱ ∱ | | | 4 | | 7 | f) | | | Volume (vph) | 105 | 450 | 20 | 50 | 675 | 210 | 5 | 65 | 50 | 80 | 10 | 340 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 5.0 | 7.0 | | 7.0 | 7.0 | | | 7.0 | | 7.0 | 7.0 | | | Lane Util. Factor | 1.00 | 1.00 | | 1.00 | 0.95 | | | 1.00 | | 1.00 | 1.00 | | | Frpb, ped/bikes | 1.00 | 0.99 | | 1.00 | 0.95 | | | 0.79 | | 1.00 | 0.79 | | | Flpb, ped/bikes | 1.00 | 1.00 | | 0.85 | 1.00 | | | 1.00 | | 0.61 | 1.00 | | | Frt | 1.00 | 0.99 | | 1.00 | 0.96 | | | 0.94 | | 1.00 | 0.85 | | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (prot) | 1569 | 1553 | | 1362 | 2788 | | | 1255 | | 943 | 1124 | | | FIt Permitted | 0.16 | 1.00 | | 0.47 | 1.00 | | | 0.98 | | 0.69 | 1.00 | | | Satd. Flow (perm) | 270 | 1553 | | 674 | 2788 | | | 1231 | | 681 | 1124 | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 117 | 500 | 22 | 56 | 750 | 233 | 6 | 72 | 56 | 89 | 11 | 378 | | RTOR Reduction (vph) | 0 | 1 | 0 | 0 | 28 | 0 | 0 | 25 | 0 | 0 | 134 | 0 | | Lane Group Flow (vph) | 117 | 521 | 0 | 56 | 955 | 0 | 0 | 109 | 0 | 89 | 255 | 0 | | Confl. Peds. (#/hr) | 180 | | 165 | 165 | | 180 | 200 | | 275 | 275 | | 200 | | Heavy Vehicles (%) | 2% | 7% | 0% | 0% | 6% | 4% | 0% | 0% | 0% | 4% | 0% | 1% | | Turn Type | pm+pt | | | Perm | | | Perm | | | Perm | | | | Protected Phases | 5 | 2 | | | 6 | | | 8 | | | 4 | | | Permitted Phases | 2 | | | 6 | | | 8 | | | 4 | | | | Actuated Green, G (s) | 57.0 | 57.0 | | 44.3 | 44.3 | | | 32.0 | | 32.0 | 32.0 | | | Effective Green, g (s) | 57.0 | 57.0 | | 44.3 | 44.3 | | | 32.0 | | 32.0 | 32.0 | | | Actuated g/C Ratio | 0.55 | 0.55 | | 0.43 | 0.43 | | | 0.31 | | 0.31 | 0.31 | | | Clearance Time (s) | 5.0 | 7.0 | | 7.0 | 7.0 | | | 7.0 | | 7.0 | 7.0 | | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | | | 3.0 | | 3.0 | 3.0 | | | Lane Grp Cap (vph) | 247 | 859 | | 290 | 1199 | | | 382 | | 212 | 349 | | | v/s Ratio Prot | 0.04 | c0.34 | | | c0.34 | | | | | | c0.23 | | | v/s Ratio Perm | 0.23 | | | 0.08 | | | | 0.09 | | 0.13 | | | | v/c Ratio | 0.47 | 0.61 | | 0.19 | 0.80 | | | 0.29 | | 0.42 | 0.73 | | | Uniform Delay, d1 | 14.1 | 15.5 | | 18.2 | 25.4 | | | 26.9 | | 28.1 | 31.6 | | | Progression Factor | 1.00 | 1.00 | | 0.76 | 0.71 | | | 1.00 | | 1.00 | 1.00 | | | Incremental Delay, d2 | 1.4 | 3.2 | | 1.3 | 4.8 | | | 1.9 | | 6.0 | 12.6 | | | Delay (s) | 15.5 | 18.6 | | 15.1 | 22.8 | | | 28.7 | | 34.1 | 44.2 | | | Level of Service | В | В | | В | С | | | С | | С | D | | | Approach Delay (s) | | 18.1 | | | 22.4 | | | 28.7 | | | 42.4 | | | Approach LOS | | В | | | С | | | С | | | D | | | Intersection Summary | | | | | 0141 | | | | | | | | | HCM Average Control Delay | | | 25.7 | Н | CM Level | of Service | е | | С | | | | | HCM Volume to Capacity ra | tio | | 0.79 | _ | | | | | 0:0 | | | | | Actuated Cycle Length (s) | | | 103.0 | | um of lost | | | | 21.0 | | | | | Intersection Capacity Utiliza | tion | | 99.5% | IC | U Level o | of Service | | | F | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | • | → | + | • | / | 4 | |---------------------------------|----------------|-----------------|-------------------|------|------------------|-----------------| | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | Lane Configurations | CDL | | | VVDR | SBL
1 | SBR
7 | | Volume (vph) | ງ
95 | ↑
435 | ↑ ↑
735 | 115 | ា
155 | r
240 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 6.0 | 6.0 | 6.0 | 1300 | 6.0 | 6.0 | | Lane Util. Factor | 1.00 | 1.00 | 0.95 | | 1.00 | 1.00 | | Frpb, ped/bikes | 1.00 | 1.00 | 0.99 | | 1.00 | 0.93 | | Flpb, ped/bikes | 0.98 | 1.00 | 1.00 | | 1.00 | 1.00 | | Frt | 1.00 | 1.00 | 0.98 | | 1.00 | 0.85 | | Flt Protected | 0.95 | 1.00 | 1.00 | | 0.95 | 1.00 | | Satd. Flow (prot) | 1521 | 1595 | 2917 | | 1545 | 1293 | | Flt Permitted | 0.26 | 1.00 | 1.00 | | 0.95 | 1.00 | | Satd. Flow (perm) | 416 |
1595 | 2917 | | 1545 | 1293 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 106 | 483 | 817 | 128 | 172 | 267 | | RTOR Reduction (vph) | 0 | 403 | 11 | 0 | 0 | 92 | | Lane Group Flow (vph) | 106 | 483 | 934 | 0 | 172 | 175 | | Confl. Peds. (#/hr) | 85 | 403 | 304 | 85 | 60 | 55 | | Heavy Vehicles (%) | 4% | 6% | 6% | 12% | 4% | 3% | | Turn Type | Perm | 0 /0 | 0 /0 | 12/0 | -1 /0 | Perm | | Protected Phases | rellil | 2 | 6 | | 4 | FEIIII | | Permitted Phases | 2 | | U | | 4 | 4 | | Actuated Green, G (s) | 63.7 | 63.7 | 63.7 | | 27.3 | 27.3 | | Effective Green, g (s) | 63.7 | 63.7 | 63.7 | | 27.3 | 27.3 | | Actuated g/C Ratio | 0.62 | 0.62 | 0.62 | | 0.27 | 0.27 | | Clearance Time (s) | 6.0 | 6.0 | 6.0 | | 6.0 | 6.0 | | Vehicle Extension (s) | 3.0 | 3.0 | 3.0 | | 3.0 | 3.0 | | Lane Grp Cap (vph) | 257 | 986 | 1804 | | 410 | 343 | | v/s Ratio Prot | 201 | 0.30 | c0.32 | | 0.11 | 343 | | v/s Ratio Perm | 0.25 | 0.30 | CU.32 | | 0.11 | c0.14 | | v/c Ratio | 0.25 | 0.49 | 0.52 | | 0.42 | 0.51 | | Uniform Delay, d1 | 10.1 | 10.8 | 11.0 | | 31.3 | 32.2 | | Progression Factor | 0.52 | 0.51 | 1.00 | | 1.00 | 1.00 | | Incremental Delay, d2 | 4.1 | 1.5 | 1.00 | | 0.7 | 1.00 | | Delay (s) | 9.3 | 7.0 | 12.1 | | 32.0 | 33.5 | | Level of Service | 9.3
A | 7.0
A | 12.1
B | | 32.0
C | 33.5
C | | Approach Delay (s) | A | 7.4 | 12.1 | | 32.9 | U | | Approach LOS | | 7.4
A | 12.1
B | | 32.9
C | | | | | | D | | U | | | Intersection Summary | | | | | | | | HCM Average Control Delay | | | 15.3 | H | CM Level | of Service | | HCM Volume to Capacity rati | 0 | | 0.52 | | | | | Actuated Cycle Length (s) | | | 103.0 | | um of lost | | | Intersection Capacity Utilizati | on | | 105.8% | IC | U Level o | of Service | | Analysis Period (min) | | | 15 | | | | | c Critical Lane Group | | | | | | | | | ၨ | → | ← | • | \ | 4 | | |-----------------------------------|------|----------|--------------|--------------|----------|--------------|--| | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | | Lane Configurations | | | † | 7 | | 7 | | | Volume (vph) | 0 | 0 | 580 | 165 | 0 | 95 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | | | 7.0 | 7.0 | | 7.0 | | | Lane Util. Factor | | | 1.00 | 1.00 | | 1.00 | | | Frpb, ped/bikes | | | 1.00 | 0.75 | | 0.93 | | | Flpb, ped/bikes | | | 1.00 | 1.00 | | 1.00 | | | Frt Flt Protected | | | 1.00
1.00 | 0.85
1.00 | | 0.86
1.00 | | | Satd. Flow (prot) | | | 1674 | 1067 | | 1340 | | | Flt Permitted | | | 1.00 | 1.007 | | 1.00 | | | Satd. Flow (perm) | | | 1674 | 1067 | | 1340 | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | | Adj. Flow (vph) | 0.33 | 0.33 | 611 | 174 | 0.55 | 100 | | | RTOR Reduction (vph) | 0 | 0 | 0 | 83 | 0 | 71 | | | Lane Group Flow (vph) | 0 | 0 | 611 | 91 | 0 | 29 | | | Confl. Peds. (#/hr) | 243 | | | 243 | 38 | 27 | | | Heavy Vehicles (%) | 0% | 3% | 1% | 1% | 4% | 2% | | | Turn Type | | | | Perm | | custom | | | Protected Phases | | | 6 | | | | | | Permitted Phases | | | | 6 | | 4 | | | Actuated Green, G (s) | | | 51.4 | 51.4 | | 35.0 | | | Effective Green, g (s) | | | 51.4 | 51.4 | | 35.0 | | | Actuated g/C Ratio | | | 0.43 | 0.43 | | 0.29 | | | Clearance Time (s) | | | 7.0 | 7.0 | | 7.0 | | | Vehicle Extension (s) | | | 3.0 | 3.0 | | 3.0 | | | Lane Grp Cap (vph) | | | 717 | 457 | | 391 | | | v/s Ratio Prot
v/s Ratio Perm | | | c0.36 | 0.08 | | c0.02 | | | v/c Ratio | | | 0.85 | 0.06 | | 0.07 | | | Uniform Delay, d1 | | | 30.9 | 21.4 | | 30.8 | | | Progression Factor | | | 1.06 | 1.21 | | 1.00 | | | Incremental Delay, d2 | | | 11.8 | 0.9 | | 0.1 | | | Delay (s) | | | 44.7 | 27.0 | | 30.9 | | | Level of Service | | | D | C | | С | | | Approach Delay (s) | | 0.0 | 40.8 | | 30.9 | | | | Approach LOS | | Α | D | | С | | | | Intersection Summary | | | | | | | | | HCM Average Control Delay | | | 39.7 | Н | CM Leve | l of Service | | | HCM Volume to Capacity ratio | | | 0.54 | | | | | | Actuated Cycle Length (s) | | | 120.0 | | | t time (s) | | | Intersection Capacity Utilization | 1 | | 74.8% | IC | U Level | of Service | | | Analysis Period (min) | | | 15 | | | | | | c Critical Lane Group | | | | | | | | | | ۶ | → | • | • | ← | • | 1 | † | ~ | / | ţ | 4 | |-----------------------------------|------|----------|-------|------|------------|------------|-------|------|------|----------|------|--------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | | | ሻ | ∱ ⊅ | | ሻ | | | | | 7 | | Volume (vph) | 0 | 0 | 0 | 10 | 695 | 15 | 5 | 0 | 0 | 0 | 0 | 50 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | | | 7.0 | 6.0 | | 7.0 | | | | | 6.0 | | Lane Util. Factor | | | | 1.00 | 0.95 | | 1.00 | | | | | 1.00 | | Frt | | | | 1.00 | 1.00 | | 1.00 | | | | | 0.86 | | FIt Protected | | | | 0.95 | 1.00 | | 0.95 | | | | | 1.00 | | Satd. Flow (prot) | | | | 1575 | 3082 | | 1575 | | | | | 1463 | | Flt Permitted | | | | 0.95 | 1.00 | | 0.95 | | | | | 1.00 | | Satd. Flow (perm) | | | | 1575 | 3082 | | 1575 | | | | | 1463 | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 0 | 0 | 0 | 11 | 732 | 16 | 5 | 0 | 0 | 0 | 0 | 53 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 46 | | Lane Group Flow (vph) | 0 | 0 | 0 | 11 | 747 | 0 | 5 | 0 | 0 | 0 | 0 | 7 | | Heavy Vehicles (%) | 0% | 5% | 2% | 2% | 4% | 0% | 2% | 2% | 2% | 0% | 2% | 0% | | Turn Type | | | | Prot | | | Prot | | | | | custom | | Protected Phases | | | | 1 | 6 | | 8 | | | | | 4 10 | | Permitted Phases | | | | | | | | | | | | | | Actuated Green, G (s) | | | | 1.6 | 77.0 | | 2.0 | | | | | 16.0 | | Effective Green, g (s) | | | | 1.6 | 77.0 | | 2.0 | | | | | 16.0 | | Actuated g/C Ratio | | | | 0.01 | 0.64 | | 0.02 | | | | | 0.13 | | Clearance Time (s) | | | | 7.0 | 6.0 | | 7.0 | | | | | | | Vehicle Extension (s) | | | | 3.0 | 3.0 | | 3.0 | | | | | | | Lane Grp Cap (vph) | | | | 21 | 1978 | | 26 | | | | | 195 | | v/s Ratio Prot | | | | 0.01 | c0.24 | | c0.00 | | | | | c0.00 | | v/s Ratio Perm | | | | | | | | | | | | | | v/c Ratio | | | | 0.52 | 0.38 | | 0.19 | | | | | 0.04 | | Uniform Delay, d1 | | | | 58.8 | 10.2 | | 58.2 | | | | | 45.3 | | Progression Factor | | | | 1.19 | 0.65 | | 1.00 | | | | | 1.00 | | Incremental Delay, d2 | | | | 20.7 | 0.5 | | 3.6 | | | | | 0.1 | | Delay (s) | | | | 90.9 | 7.1 | | 61.8 | | | | | 45.4 | | Level of Service | | | | F | Α | | Е | | | | | D | | Approach Delay (s) | | 0.0 | | | 8.3 | | | 61.8 | | | 45.4 | | | Approach LOS | | Α | | | Α | | | Е | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 11.1 | Н | CM Level | of Service | е | | В | | | | | HCM Volume to Capacity ratio | | | 0.32 | | | | | | | | | | | Actuated Cycle Length (s) | | | 120.0 | S | um of lost | time (s) | | | 25.0 | | | | | Intersection Capacity Utilization | 1 | | 46.9% | | | of Service | | | Α | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | * | • | ← | 4 | 1 | † | ~ | / | ţ | 1 | |-----------------------------------|------|----------|-------|------|------------|------------|------|----------|------|----------|-------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | | | ሻ | ∱ ∱ | | | 4 | | | ₽ | | | Volume (vph) | 0 | 0 | 0 | 0 | 755 | 35 | 0 | 0 | 0 | 0 | 0 | 30 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | | | | 6.0 | | | | | | 7.0 | | | Lane Util. Factor | | | | | 0.95 | | | | | | 1.00 | | | Frt | | | | | 0.99 | | | | | | 0.86 | | | Flt Protected | | | | | 1.00 | | | | | | 1.00 | | | Satd. Flow (prot) | | | | | 3132 | | | | | | 1463 | | | FIt Permitted | | | | | 1.00 | | | | | | 1.00 | | | Satd. Flow (perm) | | | | | 3132 | | | | | | 1463 | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 0 | 0 | 0 | 0 | 795 | 37 | 0 | 0 | 0 | 0 | 0 | 32 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 27 | 0 | | Lane Group Flow (vph) | 0 | 0 | 0 | 0 | 830 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | | Heavy Vehicles (%) | 0% | 3% | 0% | 0% | 2% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | | Turn Type | | | | Prot | | | Perm | | | | | | | Protected Phases | | | | 1 | 6 | | 1 0 | 8 | | | 4 | | | Permitted Phases | | | | • | | | 8 | | | | • | | | Actuated Green, G (s) | | | | | 89.0 | | | | | | 18.0 | | | Effective Green, g (s) | | | | | 89.0 | | | | | | 18.0 | | | Actuated g/C Ratio | | | | | 0.74 | | | | | | 0.15 | | | Clearance Time (s) | | | | | 6.0 | | | | | | 7.0 | | | Vehicle Extension (s) | | | | | 3.0 | | | | | | 3.0 | | | Lane Grp Cap (vph) | | | | | 2323 | | | | | | 219 | | | v/s Ratio Prot | | | | | c0.27 | | | | | | c0.00 | | | v/s Ratio Perm | | | | | 00.27 | | | | | | 00.00 | | | v/c Ratio | | | | | 0.36 | | | | | | 0.02 | | | Uniform Delay, d1 | | | | | 5.4 | | | | | | 43.5 | | | Progression Factor | | | | | 0.42 | | | | | | 1.00 | | | Incremental Delay, d2 | | | | | 0.4 | | | | | | 0.0 | | | Delay (s) | | | | | 2.7 | | | | | | 43.5 | | | Level of Service | | | | | Α. | | | | | | D | | | Approach Delay (s) | | 0.0 | | | 2.7 | | | 0.0 | | | 43.5 | | | Approach LOS | | A | | | A | | | A | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 4.2 | H | CM Level | of Service | e | | Α | | | | | HCM Volume to Capacity ratio | | | 0.30 | | | | | | | | | | | Actuated Cycle Length (s) | | | 120.0 | Sı | um of lost | time (s) | | | 13.0 | | | | | Intersection Capacity Utilization | | |
43.6% | | | of Service | | | Α | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | • | • | • | • | 4 | † | / | / | ↓ | 4 | |-----------------------------------|---------|----------|-------|------|-------------|------------|------|----------|----------|----------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | | | Ť | ∱ ∱ | | | र्स | | | ↑ | 7 | | Volume (vph) | 0 | 0 | 0 | 30 | 610 | 65 | 15 | 70 | 0 | 0 | 40 | 165 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | | | 7.0 | 6.0 | | | 7.0 | | | 7.0 | 7.0 | | Lane Util. Factor | | | | 1.00 | 0.95 | | | 1.00 | | | 1.00 | 1.00 | | Frpb, ped/bikes | | | | 1.00 | 0.95 | | | 1.00 | | | 1.00 | 0.88 | | Flpb, ped/bikes | | | | 1.00 | 1.00 | | | 0.98 | | | 1.00 | 1.00 | | Frt | | | | 1.00 | 0.99 | | | 1.00 | | | 1.00 | 0.85 | | Flt Protected | | | | 0.95 | 1.00 | | | 0.99 | | | 1.00 | 1.00 | | Satd. Flow (prot) | | | | 1606 | 2950 | | | 1645 | | | 1691 | 1266 | | Flt Permitted | | | | 0.95 | 1.00 | | | 0.95 | | | 1.00 | 1.00 | | Satd. Flow (perm) | | | | 1606 | 2950 | | | 1576 | | | 1691 | 1266 | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 0 | 0 | 0 | 32 | 642 | 68 | 16 | 74 | 0 | 0 | 42 | 174 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 115 | | Lane Group Flow (vph) | 0 | 0 | 0 | 32 | 703 | 0 | 0 | 90 | 0 | 0 | 42 | 59 | | Confl. Peds. (#/hr) | 184 | | 40 | 40 | | 184 | 82 | | 101 | 101 | | 82 | | Heavy Vehicles (%) | 1% | 6% | 0% | 0% | 2% | 0% | 0% | 0% | 0% | 8% | 0% | 0% | | Turn Type | | | | Prot | | | Perm | | | | | Perm | | Protected Phases | | | | 1 | 6 | | | 8 | | | 4 | | | Permitted Phases | | | | | | | 8 | | | | | 4 | | Actuated Green, G (s) | | | | 4.2 | 80.0 | | | 27.0 | | | 27.0 | 27.0 | | Effective Green, g (s) | | | | 4.2 | 80.0 | | | 27.0 | | | 27.0 | 27.0 | | Actuated g/C Ratio | | | | 0.04 | 0.67 | | | 0.22 | | | 0.22 | 0.22 | | Clearance Time (s) | | | | 7.0 | 6.0 | | | 7.0 | | | 7.0 | 7.0 | | Vehicle Extension (s) | | | | 3.0 | 3.0 | | | 3.0 | | | 3.0 | 3.0 | | Lane Grp Cap (vph) | | | | 56 | 1967 | | | 355 | | | 380 | 285 | | v/s Ratio Prot | | | | 0.02 | c0.24 | | | | | | 0.02 | | | v/s Ratio Perm | | | | | | | | c0.06 | | | | 0.05 | | v/c Ratio | | | | 0.57 | 0.36 | | | 0.25 | | | 0.11 | 0.21 | | Uniform Delay, d1 | | | | 57.0 | 8.8 | | | 38.2 | | | 37.0 | 37.8 | | Progression Factor | | | | 0.99 | 1.31 | | | 1.00 | | | 1.00 | 1.00 | | Incremental Delay, d2 | | | | 12.6 | 0.5 | | | 0.4 | | | 0.1 | 0.4 | | Delay (s) | | | | 68.9 | 12.0 | | | 38.6 | | | 37.1 | 38.1 | | Level of Service | | | | E | В | | | D | | | D | D | | Approach Delay (s) | | 0.0 | | | 14.4 | | | 38.6 | | | 37.9 | | | Approach LOS | | Α | | | В | | | D | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 21.3 | Н | CM Level | of Servic | е | | С | | | | | HCM Volume to Capacity ratio | | | 0.33 | | | | | | | | | | | Actuated Cycle Length (s) | | | 120.0 | | um of lost | | | | 13.0 | | | | | Intersection Capacity Utilization | | | 83.4% | IC | CU Level of | of Service | | | Е | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | Description: Queen's Quay / Re | es / Ra | disson W | est | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | • | • | ← | • | 4 | † | ~ | / | | 1 | |-----------------------------------|---------|------------|-----------|------|------------|-----------|------|----------|------|----------|---------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | | | ሻ | ተ ኈ | | ሻ | ↑ | | ሻ | ĵ₃ | | | Volume (vph) | 0 | 0 | 0 | 25 | 645 | 90 | 20 | 80 | 0 | 0 | 5 | 45 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | | | 7.0 | 6.0 | | 7.0 | 7.0 | | | 7.0 | | | Lane Util. Factor | | | | 1.00 | 0.95 | | 1.00 | 1.00 | | | 1.00 | | | Frpb, ped/bikes | | | | 1.00 | 0.97 | | 1.00 | 1.00 | | | 0.96 | | | Flpb, ped/bikes | | | | 1.00 | 1.00 | | 1.00 | 1.00 | | | 1.00 | | | Frt | | | | 1.00 | 0.98 | | 1.00 | 1.00 | | | 0.86 | | | Flt Protected | | | | 0.95 | 1.00 | | 0.95 | 1.00 | | | 1.00 | | | Satd. Flow (prot) | | | | 1575 | 2989 | | 1575 | 1658 | | | 1358 | | | FIt Permitted | | | | 0.95 | 1.00 | | 0.72 | 1.00 | | | 1.00 | | | Satd. Flow (perm) | | | | 1575 | 2989 | | 1199 | 1658 | | | 1358 | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 0 | 0 | 0 | 26 | 679 | 95 | 21 | 84 | 0 | 0 | 5 | 47 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 36 | 0 | | Lane Group Flow (vph) | 0 | 0 | 0 | 26 | 765 | 0 | 21 | 84 | 0 | 0 | 16 | 0 | | Confl. Peds. (#/hr) | 138 | | | | | 138 | | | | 101 | | 30 | | Heavy Vehicles (%) | 3% | 5% | 2% | 2% | 2% | 1% | 2% | 2% | 2% | 5% | 2% | 3% | | Turn Type | | | | Prot | | | Perm | | | Perm | | | | Protected Phases | | | | 1 | 6 | | | 8 | | | 4 | | | Permitted Phases | | | | | | | 8 | | | 4 | | | | Actuated Green, G (s) | | | | 5.2 | 78.0 | | 29.0 | 29.0 | | | 29.0 | | | Effective Green, g (s) | | | | 5.2 | 78.0 | | 29.0 | 29.0 | | | 29.0 | | | Actuated g/C Ratio | | | | 0.04 | 0.65 | | 0.24 | 0.24 | | | 0.24 | | | Clearance Time (s) | | | | 7.0 | 6.0 | | 7.0 | 7.0 | | | 7.0 | | | Vehicle Extension (s) | | | | 3.0 | 3.0 | | 3.0 | 3.0 | | | 3.0 | | | Lane Grp Cap (vph) | | | | 68 | 1943 | | 290 | 401 | | | 328 | | | v/s Ratio Prot | | | | 0.02 | c0.26 | | | c0.05 | | | 0.01 | | | v/s Ratio Perm | | | | | | | 0.02 | | | | | | | v/c Ratio | | | | 0.38 | 0.39 | | 0.07 | 0.21 | | | 0.05 | | | Uniform Delay, d1 | | | | 55.8 | 9.9 | | 35.1 | 36.3 | | | 34.9 | | | Progression Factor | | | | 1.21 | 0.40 | | 1.00 | 1.00 | | | 1.00 | | | Incremental Delay, d2 | | | | 3.4 | 0.6 | | 0.1 | 0.3 | | | 0.1 | | | Delay (s) | | | | 70.8 | 4.5 | | 35.2 | 36.6 | | | 35.0 | | | Level of Service | | | | E | Α | | D | D | | | С | | | Approach Delay (s) | | 0.0 | | | 6.7 | | | 36.3 | | | 35.0 | | | Approach LOS | | Α | | | Α | | | D | | | С | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 11.5 | Н | CM Level | of Servic | е | | В | | | | | HCM Volume to Capacity ratio | | | 0.34 | | | | | | | | | | | Actuated Cycle Length (s) | | | 120.0 | | um of lost | | | | 13.0 | | | | | Intersection Capacity Utilization | | | 60.8% | IC | U Level c | f Service | | | В | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | Description: Queen's Quay / Lo | wer Sim | icoe / Har | bourfront | East | | | | | | | | | | | → | • | • | • | • | / | | |-----------------------------------|----------|------|-------|----------|------------|------------|------| | Movement | EBT | EBR | WBL | WBT | NBL | NBR | | | Lane Configurations | | | ሻ | ^ | * | | | | Volume (vph) | 0 | 0 | 20 | 785 | 15 | 0 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | | | 7.0 | 6.0 | 7.0 | | | | Lane Util. Factor | | | 1.00 | 0.95 | 1.00 | | | | Frt | | | 1.00 | 1.00 | 1.00 | | | | Flt Protected | | | 0.95 | 1.00 | 0.95 | | | | Satd. Flow (prot) | | | 1606 | 3181 | 1606 | | | | Flt Permitted | | | 0.95 | 1.00 | 0.95 | | | | Satd. Flow (perm) | | | 1606 | 3181 | 1606 | | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | | Adj. Flow (vph) | 0 | 0 | 21 | 826 | 16 | 0 | | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 0 | 0 | | | Lane Group Flow (vph) | 0 | 0 | 21 | 826 | 16 | 0 | | | Heavy Vehicles (%) | 3% | 0% | 0% | 1% | 0% | 0% | | | Turn Type | | | Prot | | | | | | Protected Phases | | | 1 | 6 | 8 | | | | Permitted Phases | | | | | | | | | Actuated Green, G (s) | | | 3.4 | 89.0 | 18.0 | | | | Effective Green, g (s) | | | 3.4 | 89.0 | 18.0 | | | | Actuated g/C Ratio | | | 0.03 | 0.74 | 0.15 | | | | Clearance Time (s) | | | 7.0 | 6.0 | 7.0 | | | | Vehicle Extension (s) | | | 3.0 | 3.0 | 3.0 | | | | Lane Grp Cap (vph) | | | 46 | 2359 | 241 | | | | v/s Ratio Prot | | | 0.01 | c0.26 | c0.01 | | | | v/s Ratio Perm | | | | | | | | | v/c Ratio | | | 0.46 | 0.35 | 0.07 | | | | Uniform Delay, d1 | | | 57.4 | 5.4 | 43.8 | | | | Progression Factor | | | 1.28 | 0.14 | 1.00 | | | | Incremental Delay, d2 | | | 3.6 | 0.2 | 0.1 | | | | Delay (s) | | | 76.9 | 1.0 | 43.9 | | | | Level of Service | | | E | Α | D | | | | Approach Delay (s) | 0.0 | | | 2.9 | 43.9 | | | | Approach LOS | Α | | | Α | D | | | | Intersection Summary | | | | | | | | | HCM Average Control Delay | | | 3.6 | Н | CM Level | of Service | Α | | HCM Volume to Capacity ratio | | | 0.30 | | | | | | Actuated Cycle Length (s) | | | 120.0 | | um of lost | | 13.0 | | Intersection Capacity Utilization | | | 43.3% | IC | CU Level o | f Service | Α | | Analysis Period (min) | | | 15 | | | | | | c Critical Lane Group | | | | | | | | | | ۶ | → | * | • | — | 4 | 1 | † | ~ | / | + | -✓ | |-----------------------------------|------|----------|-------|------|------------|------------|------|-----------|------|----------|-----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | | | ň | ∱ β | | | 4 | | ň | † | 7 | | Volume (vph) | 0 | 0 | 0 | 25 | 700 | 260 | 15 | 20 | 15 | 480 | 35 | 90 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | | | 6.0 | 6.0 | | | 7.0 | | 6.0 | 7.0 | 7.0 | | Lane Util. Factor | | | | 1.00 | 0.95 | | | 1.00 | | 1.00 | 1.00 | 1.00 | | Frpb, ped/bikes | | | | 1.00 |
0.89 | | | 0.94 | | 1.00 | 1.00 | 0.61 | | Flpb, ped/bikes | | | | 0.44 | 1.00 | | | 0.89 | | 0.90 | 1.00 | 1.00 | | Frt | | | | 1.00 | 0.96 | | | 0.96 | | 1.00 | 1.00 | 0.85 | | Flt Protected | | | | 0.95 | 1.00 | | | 0.99 | | 0.95 | 1.00 | 1.00 | | Satd. Flow (prot) | | | | 707 | 2712 | | | 1336 | | 1403 | 1691 | 880 | | Flt Permitted | | | | 0.95 | 1.00 | | | 0.92 | | 0.68 | 1.00 | 1.00 | | Satd. Flow (perm) | | | | 707 | 2712 | | | 1249 | | 998 | 1691 | 880 | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 0 | 0 | 0 | 26 | 737 | 274 | 16 | 21 | 16 | 505 | 37 | 95 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 32 | 0 | 0 | 12 | 0 | 0 | 0 | 12 | | Lane Group Flow (vph) | 0 | 0 | 0 | 26 | 979 | 0 | 0 | 41 | 0 | 505 | 37 | 83 | | Confl. Peds. (#/hr) | 170 | | 333 | 333 | | 170 | 559 | | 86 | 86 | | 559 | | Heavy Vehicles (%) | 0% | 5% | 0% | 0% | 1% | 0% | 0% | 0% | 0% | 3% | 0% | 0% | | Turn Type | | | | Perm | | | Perm | | | pm+pt | | Perm | | Protected Phases | | | | | 6 | | | 8 | | 7 | 4 | | | Permitted Phases | | | | 6 | | | 8 | | | 4 | | 4 | | Actuated Green, G (s) | | | | 46.0 | 46.0 | | | 28.0 | | 61.0 | 61.0 | 61.0 | | Effective Green, g (s) | | | | 46.0 | 46.0 | | | 28.0 | | 61.0 | 61.0 | 61.0 | | Actuated g/C Ratio | | | | 0.38 | 0.38 | | | 0.23 | | 0.51 | 0.51 | 0.51 | | Clearance Time (s) | | | | 6.0 | 6.0 | | | 7.0 | | 6.0 | 7.0 | 7.0 | | Vehicle Extension (s) | | | | 3.0 | 3.0 | | | 3.0 | | 3.0 | 3.0 | 3.0 | | Lane Grp Cap (vph) | | | | 271 | 1040 | | | 291 | | 598 | 860 | 447 | | v/s Ratio Prot | | | | | c0.36 | | | | | c0.19 | 0.02 | | | v/s Ratio Perm | | | | 0.04 | | | | 0.03 | | c0.24 | | 0.09 | | v/c Ratio | | | | 0.10 | 0.94 | | | 0.14 | | 0.84 | 0.04 | 0.19 | | Uniform Delay, d1 | | | | 23.7 | 35.7 | | | 36.5 | | 23.9 | 14.8 | 16.0 | | Progression Factor | | | | 1.00 | 1.00 | | | 1.00 | | 1.00 | 1.00 | 1.00 | | Incremental Delay, d2 | | | | 0.7 | 16.9 | | | 0.2 | | 10.6 | 0.0 | 0.2 | | Delay (s) | | | | 24.4 | 52.6 | | | 36.7 | | 34.5 | 14.8 | 16.2 | | Level of Service | | 0.0 | | С | D | | | D | | С | В | В | | Approach Delay (s) Approach LOS | | 0.0
A | | | 51.9
D | | | 36.7
D | | | 30.6
C | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 43.6 | Н | CM Level | of Service | | | D | | | | | HCM Volume to Capacity ratio | | | 0.87 | | 20.01 | | | | | | | | | Actuated Cycle Length (s) | | | 120.0 | S | um of lost | time (s) | | | 12.0 | | | | | Intersection Capacity Utilization | า | | 96.1% | | | of Service | | | F | | | | | Analysis Period (min) | | | 15 | | | | | | • | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | * | • | ← | 4 | 1 | † | ~ | / | | ✓ | |---------------------------------------|--------------|--------------|-------|--------------|--------------|------------|------|--------------|------|--------------|--------------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | 4î | | ሻ | ተኈ | | | 4 | | ሻ | ₽ | | | Volume (vph) | 95 | 450 | 0 | 50 | 675 | 235 | 5 | 20 | 30 | 95 | 30 | 120 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 5.0 | 7.0 | | 7.0 | 7.0 | | | 7.0 | | 7.0 | 7.0 | | | Lane Util. Factor | 1.00 | 1.00 | | 1.00 | 0.95 | | | 1.00 | | 1.00 | 1.00 | | | Frpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 0.96 | | | 0.85 | | 1.00 | 0.83 | | | Flpb, ped/bikes | 1.00 | 1.00 | | 0.88 | 1.00 | | | 0.99 | | 0.77 | 1.00 | | | Frt | 1.00 | 1.00 | | 1.00 | 0.96 | | | 0.93 | | 1.00 | 0.88 | | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (prot) | 1585 | 1610 | | 1407 | 2929 | | | 1309 | | 1185 | 1230 | | | Flt Permitted | 0.19 | 1.00 | | 0.49 | 1.00 | | | 0.98 | | 0.72 | 1.00 | | | Satd. Flow (perm) | 316 | 1610 | 0.05 | 728 | 2929 | | 2.05 | 1284 | 2.05 | 897 | 1230 | 0.05 | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 100 | 474 | 0 | 53 | 711 | 247 | 5 | 21 | 32 | 100 | 32 | 126 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 32 | 0 | 0 | 23 | 0 | 0 | 91 | 0 | | Lane Group Flow (vph) | 100 | 474 | 0 | 53 | 926 | 0 | 0 | 35 | 0 | 100 | 67 | 0 | | Confl. Peds. (#/hr) | 118 | F 0/ | 126 | 126 | 40/ | 118 | 197 | 00/ | 142 | 142 | 00/ | 197 | | Heavy Vehicles (%) | 1% | 5% | 0% | 0% | 1% | 3% | 0% | 0% | 0% | 4% | 0% | 0% | | Turn Type | pm+pt | 0 | | Perm | ^ | | Perm | 0 | | Perm | 4 | | | Protected Phases | 5 | 2 | | ^ | 6 | | _ | 8 | | 4 | 4 | | | Permitted Phases | 2 | 60.0 | | 6 | 40.0 | | 8 | 20.0 | | 4 | 20.0 | | | Actuated Green, G (s) | 60.0 | 60.0 | | 48.0 | 48.0 | | | 29.0 | | 29.0 | 29.0 | | | Effective Green, g (s) | 60.0
0.58 | 60.0
0.58 | | 48.0
0.47 | 48.0
0.47 | | | 29.0
0.28 | | 29.0
0.28 | 29.0
0.28 | | | Actuated g/C Ratio Clearance Time (s) | 5.0 | 7.0 | | 7.0 | 7.0 | | | 7.0 | | 7.0 | 7.0 | | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | | | 3.0 | | 3.0 | 3.0 | | | | 270 | 938 | | | 1365 | | | 362 | | 253 | 346 | | | Lane Grp Cap (vph) v/s Ratio Prot | 0.03 | c0.29 | | 339 | c0.32 | | | 302 | | 200 | 0.05 | | | v/s Ratio Prot
v/s Ratio Perm | 0.03 | 00.29 | | 0.07 | 00.32 | | | 0.03 | | c0.11 | 0.05 | | | v/c Ratio | 0.19 | 0.51 | | 0.07 | 0.68 | | | 0.03 | | 0.40 | 0.20 | | | Uniform Delay, d1 | 11.9 | 12.7 | | 15.8 | 21.5 | | | 27.3 | | 29.9 | 28.1 | | | Progression Factor | 1.00 | 1.00 | | 1.09 | 1.12 | | | 1.00 | | 1.00 | 1.00 | | | Incremental Delay, d2 | 0.9 | 1.00 | | 0.8 | 2.3 | | | 0.5 | | 4.6 | 1.3 | | | Delay (s) | 12.7 | 14.7 | | 18.1 | 26.3 | | | 27.9 | | 34.5 | 29.4 | | | Level of Service | 12.7
B | В | | 10.1
B | 20.5
C | | | 27.5
C | | 04.5
C | 23.4
C | | | Approach Delay (s) | | 14.3 | | U | 25.9 | | | 27.9 | | U | 31.4 | | | Approach LOS | | В | | | C | | | C | | | С | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | у | | 23.2 | H | CM Level | of Service | ! | | С | | | | | HCM Volume to Capacity ra | ıtio | | 0.60 | | | | | | | | | | | Actuated Cycle Length (s) | | | 103.0 | | um of lost | | | | 21.0 | | | | | Intersection Capacity Utiliza | tion | | 90.5% | IC | U Level c | of Service | | | E | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | • | → | ← | • | \ | 4 | | |---------------------------------|--------------|--------------|--------------|------|--------------|--------------|--| | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | | Lane Configurations | ሻ | † | † \$ | | * | 7 | | | Volume (vph) | 120 | 420 | 640 | 195 | 390 | 355 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | 6.0 | 6.0 | 6.0 | | 6.0 | 6.0 | | | Lane Util. Factor | 1.00 | 1.00 | 0.95 | | 1.00 | 1.00 | | | Frpb, ped/bikes | 1.00 | 1.00 | 0.98 | | 1.00 | 0.93 | | | Flpb, ped/bikes | 0.98 | 1.00 | 1.00 | | 1.00 | 1.00 | | | Frt | 1.00 | 1.00 | 0.97 | | 1.00 | 0.85 | | | Fit Protected | 0.95
1527 | 1.00
1595 | 1.00
2955 | | 0.95
1516 | 1.00
1341 | | | Satd. Flow (prot) Flt Permitted | 0.27 | 1.00 | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (perm) | 434 | 1595 | 2955 | | 1516 | 1341 | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | | Adj. Flow (vph) | 126 | 442 | 674 | 205 | 411 | 374 | | | RTOR Reduction (vph) | 0 | 0 | 25 | 0 | 0 | 76 | | | Lane Group Flow (vph) | 126 | 442 | 854 | 0 | 411 | 298 | | | Confl. Peds. (#/hr) | 106 | | 001 | 106 | 42 | 49 | | | Heavy Vehicles (%) | 3% | 6% | 2% | 5% | 6% | 0% | | | Turn Type | Perm | | | | | Perm | | | Protected Phases | | 2 | 6 | | 4 | | | | Permitted Phases | 2 | | | | | 4 | | | Actuated Green, G (s) | 58.0 | 58.0 | 58.0 | | 33.0 | 33.0 | | | Effective Green, g (s) | 58.0 | 58.0 | 58.0 | | 33.0 | 33.0 | | | Actuated g/C Ratio | 0.56 | 0.56 | 0.56 | | 0.32 | 0.32 | | | Clearance Time (s) | 6.0 | 6.0 | 6.0 | | 6.0 | 6.0 | | | Vehicle Extension (s) | 3.0 | 3.0 | 3.0 | | 3.0 | 3.0 | | | Lane Grp Cap (vph) | 244 | 898 | 1664 | | 486 | 430 | | | v/s Ratio Prot | | 0.28 | 0.29 | | c0.27 | | | | v/s Ratio Perm | c0.29 | 0.40 | 0.54 | | 0.05 | 0.22 | | | v/c Ratio | 0.52 | 0.49 | 0.51 | | 0.85 | 0.69 | | | Uniform Delay, d1 | 13.9 | 13.6 | 13.8 | | 32.6 | 30.6 | | | Progression Factor | 1.78 | 1.86 | 1.00 | | 1.00
12.8 | 1.00 | | | Incremental Delay, d2 | 7.0 | 1.8 | 1.1 | | | 4.8 | | | Delay (s)
Level of Service | 31.7
C | 27.1
C | 15.0
B | | 45.4
D | 35.4
D | | | Approach Delay (s) | U | 28.1 | 15.0 | | 40.6 | U | | | Approach LOS | | C | В | | D | | | | Intersection Summary | | | | | | | | | HCM Average Control Delay | 1 | | 27.3 | HO | CM Level | of Service | | | HCM Volume to Capacity rat | | | 0.64 | | | | | | Actuated Cycle Length (s) | | | 103.0 | | ım of lost | | | | Intersection Capacity Utilizat | tion | | 107.3% | IC | U Level c | of Service | | | Analysis Period (min) | | | 15 | | | | | | c Critical Lane Group | | | | | | | | | | ۶ | → | • | • | ← | • | 1 | † | <i>></i> | / | Ţ | ✓ | |---------------------------------|-------|----------|--------|------|------------|------------|------|------------|-------------|----------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | 14.54 | ተተኈ | | | | | | ∱ ∱ | | ሻሻ | ^ | | | Volume (vph) | 1510 | 3150 | 25 | 0 | 0 | 0 | 0 | 0 | 100 | 245 | 35 | 0 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 7.0 | 7.0 | | | | | | 7.0 | | 6.0 | 7.0 | | | Lane Util. Factor | 0.97 | 0.91 | | | | | | 0.95 | | 0.97 | 1.00 | | | Frpb, ped/bikes | 1.00 | 1.00 |
| | | | | 1.00 | | 1.00 | 1.00 | | | Flpb, ped/bikes | 1.00 | 1.00 | | | | | | 1.00 | | 1.00 | 1.00 | | | Frt | 1.00 | 1.00 | | | | | | 0.85 | | 1.00 | 1.00 | | | FIt Protected | 0.95 | 1.00 | | | | | | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (prot) | 3395 | 4925 | | | | | | 2863 | | 3429 | 1807 | | | FIt Permitted | 0.95 | 1.00 | | | | | | 1.00 | | 0.50 | 1.00 | | | Satd. Flow (perm) | 3395 | 4925 | | | | | | 2863 | | 1819 | 1807 | | | Peak-hour factor, PHF | 0.97 | 0.97 | 0.97 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 1557 | 3247 | 26 | 0 | 0 | 0 | 0 | 0 | 111 | 272 | 39 | 0 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 31 | 0 | 0 | 0 | 0 | | Lane Group Flow (vph) | 1557 | 3273 | 0 | 0 | 0 | 0 | 0 | 80 | 0 | 272 | 39 | 0 | | Confl. Peds. (#/hr) | | | 20 | | | | | | | | | | | Heavy Vehicles (%) | 2% | 4% | 3% | 0% | 0% | 0% | 0% | 6% | 6% | 1% | 4% | 0% | | Turn Type | Split | | | | | | | | | pm+pt | | | | Protected Phases | 2 | 2 | | | | | | 8 | | 7 | 4 | | | Permitted Phases | | | | | | | | | | 4 | | | | Actuated Green, G (s) | 91.3 | 91.3 | | | | | | 17.0 | | 38.7 | 38.7 | | | Effective Green, g (s) | 91.3 | 91.3 | | | | | | 17.0 | | 38.7 | 38.7 | | | Actuated g/C Ratio | 0.63 | 0.63 | | | | | | 0.12 | | 0.27 | 0.27 | | | Clearance Time (s) | 7.0 | 7.0 | | | | | | 7.0 | | 6.0 | 7.0 | | | Vehicle Extension (s) | 3.0 | 3.0 | | | | | | 3.0 | | 3.0 | 3.0 | | | Lane Grp Cap (vph) | 2153 | 3123 | | | | | | 338 | | 664 | 486 | | | v/s Ratio Prot | 0.46 | c0.66 | | | | | | 0.03 | | c0.04 | 0.02 | | | v/s Ratio Perm | | | | | | | | | | c0.07 | | | | v/c Ratio | 0.72 | 1.05 | | | | | | 0.24 | | 0.41 | 0.08 | | | Uniform Delay, d1 | 17.8 | 26.4 | | | | | | 57.6 | | 42.0 | 39.3 | | | Progression Factor | 1.00 | 1.00 | | | | | | 1.00 | | 1.00 | 1.00 | | | Incremental Delay, d2 | 2.1 | 30.5 | | | | | | 0.4 | | 0.4 | 0.1 | | | Delay (s) | 20.0 | 56.8 | | | | | | 58.0 | | 42.4 | 39.4 | | | Level of Service | В | Е | | | | | | E | | D | D | | | Approach Delay (s) | | 44.9 | | | 0.0 | | | 58.0 | | | 42.0 | | | Approach LOS | | D | | | Α | | | E | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 45.0 | Н | CM Level | of Service |) | | D | | | | | HCM Volume to Capacity rati | io | | 0.85 | | | | | | | | | | | Actuated Cycle Length (s) | | | 144.0 | | um of lost | ٠, | | | 13.0 | | | | | Intersection Capacity Utilizati | on | | 137.7% | IC | U Level of | of Service | | | Н | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | • | • | *_ | • | ሻ | † | ~ | / | ↓ | ¥J | |--------------------------------|--------------|-------------|-------|------------|-------------|-------------|--------------|-------------|------|----------|---------------|------------| | Movement | EBL | EBT | EBR | WBL | WBR | WBR2 | NBL | NBT | NBR | SBL | SBT | SBR2 | | Lane Configurations | 16.56 | ተተኈ | | | 777 | | ሻ | ₽ | | | 4₽ | 7 | | Volume (vph) | 525 | 2910 | 60 | 10 | 940 | 135 | 10 | 65 | 40 | 190 | 55 | 10 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 6.0 | 6.0 | | 6.0 | 6.0 | | 8.0 | 8.0 | | | 8.0 | 8.0 | | Lane Util. Factor | 0.97 | 0.91 | | 1.00 | 0.76 | | 1.00 | 1.00 | | | 0.95 | 1.00 | | Frpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 0.97 | | 1.00 | 0.96 | | | 1.00 | 1.00 | | Flpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | | 0.93 | 1.00 | | Frt | 1.00 | 1.00 | | 1.00 | 0.85 | | 1.00 | 0.94 | | | 1.00 | 0.85 | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | | | 0.96 | 1.00 | | Satd. Flow (prot) | 3330 | 4948 | | 1785 | 3476 | | 1750 | 1641 | | | 3134 | 1566 | | Flt Permitted | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.58 | 1.00 | | | 0.71 | 1.00 | | Satd. Flow (perm) | 3330 | 4948 | | 1785 | 3476 | | 1076 | 1641 | | | 2307 | 1566 | | Peak-hour factor, PHF | 0.97 | 0.97 | 0.97 | 0.91 | 0.91 | 0.91 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 541 | 3000 | 62 | 11 | 1033 | 148 | 11 | 72 | 44 | 211 | 61 | 11 | | RTOR Reduction (vph) | 0 | 1 | 0 | 0 | 14 | 0 | 0 | 20 | 0 | 0 | 0 | 8 | | Lane Group Flow (vph) | 541 | 3061 | 0 | 11 | 1167 | 0 | 11 | 96 | 0 | 0 | 272 | 3 | | Confl. Peds. (#/hr) | 5 | 00/ | 40 | 40 | 00/ | 5 | 00/ | 5 0/ | 80 | 80 | 40/ | 00/ | | Heavy Vehicles (%) | 4% | 3% | 13% | 0% | 2% | 2% | 2% | 5% | 1% | 2% | 4% | 2% | | Turn Type | Prot | • | | | custom | | Perm | • | | Perm | | Perm | | Protected Phases | 5 | 2 | | 1 | _ | | • | 8 | | _ | 4 | 4 | | Permitted Phases | 00.0 | 00.0 | | 4.4 | 6 | | 8 | 07.0 | | 4 | 07.0 | 4 | | Actuated Green, G (s) | 26.8 | 60.6 | | 4.4 | 38.2 | | 27.0 | 27.0 | | | 27.0 | 27.0 | | Effective Green, g (s) | 26.8 | 60.6 | | 4.4 | 38.2 | | 27.0 | 27.0 | | | 27.0 | 27.0 | | Actuated g/C Ratio | 0.24
6.0 | 0.54
6.0 | | 0.04 | 0.34
6.0 | | 0.24 | 0.24
8.0 | | | 0.24 | 0.24 | | Clearance Time (s) | 3.0 | 3.0 | | 6.0
3.0 | 3.0 | | 8.0
3.0 | 3.0 | | | 8.0
3.0 | 8.0
3.0 | | Vehicle Extension (s) | | | | | | | | | | | | | | Lane Grp Cap (vph) | 797 | 2677 | | 70 | 1186 | | 259 | 396 | | | 556 | 378 | | v/s Ratio Prot | c0.16 | c0.62 | | 0.01 | 0.24 | | 0.01 | 0.06 | | | -0.10 | 0.00 | | v/s Ratio Perm | 0.60 | 1.14 | | 0.16 | 0.34 | | 0.01 | 0.24 | | | c0.12
0.49 | 0.00 | | v/c Ratio
Uniform Delay, d1 | 0.68
38.7 | 25.7 | | 52.0 | 36.6 | | 0.04
32.6 | 34.3 | | | 36.6 | 32.3 | | Progression Factor | 1.00 | 1.00 | | 1.26 | 0.55 | | 1.00 | 1.00 | | | 1.00 | 1.00 | | Incremental Delay, d2 | 2.3 | 69.5 | | 0.8 | 19.8 | | 0.1 | 0.3 | | | 0.7 | 0.0 | | Delay (s) | 41.0 | 95.2 | | 66.4 | 40.0 | | 32.7 | 34.6 | | | 37.2 | 32.3 | | Level of Service | 41.0
D | 95.2
F | | 00.4
E | 40.0
D | | 32.7
C | 04.0
C | | | 57.2
D | 32.3
C | | Approach Delay (s) | U | 87.0 | | L | U | | U | 34.4 | | | 37.1 | U | | Approach LOS | | F | | | | | | C | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Dela | у | | 72.3 | H | ICM Leve | l of Servic | e | | Е | | | | | HCM Volume to Capacity ra | | | 0.89 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | 5 | Sum of los | t time (s) | | | 14.0 | | | | | Intersection Capacity Utiliza | ition | | 91.8% | | | of Service | | | F | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | • | 1 | † | <i>></i> | / | ↓ | 4 | ~ | t | | |--------------------------------------|--------------|--------------|--------|--------------|--------------|-------------|--------------|--------------|------|--------------|------|--| | Movement | EBL2 | EBT | EBR | NBL | NBT | NBR2 | SBL | SBT | SBR | SWR | SWR2 | | | Lane Configurations | ሻ | ተ ኈ | | ሻ | ₽ | | ሻ | ₽ | | ブブだ | | | | Volume (vph) | 170 | 1665 | 50 | 25 | 0 | 20 | 105 | 10 | 50 | 1010 | 115 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | 6.0 | 6.0 | | 7.0 | 7.0 | | 7.0 | 7.0 | | 6.0 | | | | Lane Util. Factor | 1.00 | 0.95 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 0.76 | | | | Frpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 0.96 | | 1.00 | 0.92 | | 0.97 | | | | Flpb, ped/bikes | 1.00 | 1.00 | | 0.92 | 1.00 | | 0.97 | 1.00 | | 1.00 | | | | Frt | 1.00 | 1.00 | | 1.00 | 0.85 | | 1.00 | 0.87 | | 1.00 | | | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | | 1.00 | | | | Satd. Flow (prot) | 1648 | 3417 | | 1600 | 1529 | | 1730 | 1114 | | 3951 | | | | Flt Permitted | 0.95 | 1.00 | | 0.71 | 1.00 | | 0.74 | 1.00 | | 1.00 | | | | Satd. Flow (perm) | 1648 | 3417 | | 1202 | 1529 | | 1353 | 1114 | | 3951 | | | | Peak-hour factor, PHF | 0.94 | 0.94 | 0.94 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.91 | 0.91 | | | Adj. Flow (vph) | 181 | 1771 | 53 | 28 | 0 | 22 | 117 | 11 | 56 | 1110 | 126 | | | RTOR Reduction (vph) | 0 | 2 | 0 | 0 | 13 | 0 | 0 | 40 | 0 | 10 | 0 | | | Lane Group Flow (vph) | 181 | 1822 | 0 | 28 | 9 | 0 | 117 | 27 | 0 | 1226 | 0 | | | Confl. Peds. (#/hr) | 5 | 40/ | 10 | 80 | 5 0/ | 30 | 30 | 450/ | 80 | 00/ | 5 | | | Heavy Vehicles (%) | 8% | 4% | 2% | 3% | 5% | 0% | 0% | 15% | 40% | 6% | 3% | | | Turn Type | pm+pt | • | | Perm | • | | Perm | | | custom | | | | Protected Phases | 5 | 2 | | _ | 8 | | 4 | 4 | | _ | | | | Permitted Phases | 2 | 07.0 | | 8 | 20.0 | | 4 | 20.0 | | 6 | | | | Actuated Green, G (s) | 67.0 | 67.0 | | 32.0 | 32.0 | | 32.0 | 32.0 | | 54.0 | | | | Effective Green, g (s) | 67.0 | 67.0 | | 32.0 | 32.0 | | 32.0 | 32.0 | | 54.0 | | | | Actuated g/C Ratio | 0.60
6.0 | 0.60
6.0 | | 0.29 | 0.29 | | 0.29 | 0.29 | | 0.48
6.0 | | | | Clearance Time (s) | 3.0 | 3.0 | | 7.0
3.0 | 7.0
3.0 | | 7.0
3.0 | 7.0
3.0 | | 3.0 | | | | Vehicle Extension (s) | | | | | | | | | | | | | | Lane Grp Cap (vph) | 986 | 2044 | | 343 | 437 | | 387 | 318 | | 1905 | | | | v/s Ratio Prot | 0.01 | c0.53 | | 0.00 | 0.01 | | -0.00 | 0.02 | | 0.24 | | | | v/s Ratio Perm | 0.10 | 0.00 | | 0.02 | 0.00 | | c0.09 | 0.00 | | 0.31 | | | | v/c Ratio | 0.18
10.2 | 0.89
19.4 | | 0.08
29.3 | 0.02
28.7 | | 0.30
31.3 | 0.08
29.3 | | 0.64
21.8 | | | | Uniform Delay, d1 Progression Factor | 0.60 | 0.94 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 0.14 | | | | Incremental Delay, d2 | 0.00 | 1.8 | | 0.1 | 0.0 | | 0.4 | 0.1 | | 0.14 | | | | Delay (s) | 6.1 | 20.0 | | 29.4 | 28.8 | | 31.7 | 29.4 | | 4.0 | | | | Level of Service | Α | 20.0
C | | 29.4
C | 20.0
C | | 31.7
C | 23.4
C | | 4.0
A | | | | Approach Delay (s) | | 18.8 | | U | 29.1 | | U | 30.9 | | | | | | Approach LOS | | В | | | C | | | C | | | | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 14.3 | H | CM Level | of Servic | e | | В | | | | | HCM Volume to Capacity rat | io | | 0.70 | | | | | | | | | | |
Actuated Cycle Length (s) | | | 112.0 | Sı | um of lost | t time (s) | | | 13.0 | | | | | Intersection Capacity Utilizat | ion | | 101.8% | IC | U Level | of Service | | | G | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | Lane Configurations Volume (yph) 165 1090 1990 1990 1990 1990 1990 1990 199 | | • | / | ← | • | * | † | ↓ | 4 | | |--|------------------------------|------|----------|-------------|------|------------|------------|----------|------|------| | Volume (vph) | Movement | WBL2 | WBL | WBT | WBR | NBL2 | NBT | SBT | SBR2 | | | Volume (vph) | Lane Configurations | | ሽኘኘ | 4 1> | | | ^ | ħβ | | | | Total Lost time (s) 6.0 6.0 8.0 8.0 8.0 | Volume (vph) | 65 | | | 475 | 100 | | | 645 | | | Lane Util. Factor | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Frpb, pedrbikes | Total Lost time (s) | | 6.0 | | | | 8.0 | 8.0 | | | | Fipb, ped/bikes | Lane Util. Factor | | | | | | | | | | | Fit Protected | Frpb, ped/bikes | | | | | | | | | | | Fit Protected 0.95 1.00 0.99 1.00 Sard. Flow (prot) 4214 3142 3352 3037 Fit Permitted 0.95 1.00 0.61 1.00 Satd. Flow (perm) 4214 3142 2051 3037 Peak-hour factor, PHF 0.95 0.95 0.95 0.95 0.90 0.90 0.90 0.90 | Flpb, ped/bikes | | | | | | | | | | | Satd. Flow (prot) 4214 3142 3352 3037 FIT Permitted 0.95 1.00 0.61 1.00 Satd. Flow (perm) 4214 3142 2051 3037 Peak-hour factor, PHF 0.95 0.95 0.95 0.90 0.90 0.90 0.90 Adj. Flow (vph) 68 1147 626 500 111 872 278 717 RTOR Reduction (vph) 0 0 89 0 0 145 0 Lane Group Flow (vph) 0 1215 1037 0 983 850 0 Confl. Peds. (#/hr) 70 45 45 448 <td>Frt</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | Frt | | | | | | | | | | | Fit Permitted 0,95 1,00 0,61 1,00 Satd. Flow (perm) 4214 3142 2051 3037 | | | | | | | | | | | | Satd. Flow (perm) 4214 3142 2051 3037 Peak-hour factor, PHF 0.95 0.95 0.95 0.90 0.90 0.90 0.90 Adj. Flow (vph) 68 1147 626 500 111 872 278 717 RTOR Reduction (vph) 0 0 89 0 0 0 145 0 Lane Group Flow (vph) 0 1215 1037 0 0 983 850 0 Confl. Peds. (#hrr) 70 45 45 446 46 44 3% 5% 6% 7% 4% Heavy Vehicles (%) 14% 6% 4% 3% 5% 6% 7% 4% Turn Type Perm Split pm+pt Protected Phases 6 6 3 8 4 Permitted Phases 6 6 6 3 8 4 Permitted Phases 6 6 6 6 0 2 8 <td>Satd. Flow (prot)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | Satd. Flow (prot) | | | | | | | | | | | Peak-hour factor, PHF 0.95 0.95 0.95 0.90 0.90 0.90 0.90 Adj. Flow (vph) 68 1147 626 500 111 872 278 717 RTOR Reduction (vph) 0 0 89 0 0 145 0 Lane Group Flow (vph) 0 1215 1037 0 0 983 850 0 Confl. Peds. (#/hr) 70 45 | Flt Permitted | | | | | | | | | | | Adj. Flow (vph) 68 1147 626 500 111 872 278 717 RTOR Reduction (vph) 0 0 89 0 0 0 145 0 Lane Group Flow (vph) 0 1215 1037 0 0 983 850 0 Confl. Peds. (#/hr) 70 45 45 4/h 4/h | Satd. Flow (perm) | | 4214 | 3142 | | | 2051 | 3037 | | | | RTOR Reduction (vph) | Peak-hour factor, PHF | 0.95 | 0.95 | | 0.95 | 0.90 | 0.90 | 0.90 | 0.90 | | | Lane Group Flow (vph) 0 1215 1037 0 0 983 850 0 Confl. Peds. (#/hr) 70 45 Heavy Vehicles (%) 14% 6% 4% 3% 5% 6% 7% 4% Turn Type Perm Split pm+pt Protected Phases 6 8 Actuated Green, G (s) 37.8 37.8 60.2 60.2 Effective Green, g (s) 37.8 37.8 60.2 60.2 Actuated groen, process groen, g (s) 37.8 37.8 60.2 60.2 Actuated groen, g (s) 37.8 37.8 60.2 60.2 Actuated Groen, g (s) 37.8 37.8 60.2 60.2 Actuated Groen, g (s) 6.0 6.0 0.3 Actuated Groen, g (s) 6.0 6.0 0.2 Actuated Cycle Length (s) 112.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 104.0% ICU Level of Service G Analysis Period (min) 15 | Adj. Flow (vph) | 68 | 1147 | 626 | 500 | 111 | 872 | 278 | 717 | | | Confi. Peds. (#/hr) 70 45 Heavy Vehicles (%) 14% 6% 4% 3% 5% 6% 7% 4% Tum Type Perm Split pm+pt Protected Phases 6 3 8 4 Permitted Phases 6 8 Actuated Green, G (s) 37.8 37.8 60.2 60.2 Effective Green, g (s) 37.8 37.8 60.2 60.2 Actuated g/C Ratio 0.34 0.34 0.54 0.54 Clearance Time (s) 6.0 6.0 8.0 8.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 1422 1060 1102 1632 v/s Ratio Perm 0.29 c0.48 0.28 0.28 V/s Ratio Perm 0.29 c0.48 0.40 0.66 0.3 Uniform Delay, d1 34.5 36.7 23.0 16.6 0.3 0.2 0.4 0.4 0.6 0.3 | RTOR Reduction (vph) | 0 | 0 | | 0 | 0 | 0 | 145 | 0 | | | Heavy Vehicles (%) | Lane Group Flow (vph) | 0 | 1215 | 1037 | 0 | 0 | 983 | 850 | 0 | | | Turn Type | Confl. Peds. (#/hr) | 70 | | | 45 | | | | | | | Protected Phases 6 6 3 8 4 Permitted Phases 6 8 8 Actuated Green, G (s) 37.8 37.8 60.2 60.2 Effective Green, g (s) 37.8 37.8 60.2 60.2 Actuated g/C Ratio 0.34 0.34 0.54 0.54 Clearance Time (s) 6.0 6.0 8.0 8.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Gry Cap (vph) 1422 1060 1102 1632 v/s Ratio Perm 0.29 c0.48 v/s Ratio Perm 0.29 c0.48 v/c Ratio 0.85 0.98 0.89 0.52 Uniform Delay, d1 34.5 36.7 23.0 16.6 Progression Factor 0.23 0.13 0.70 1.00 Incermental Delay, d2 0.7 4.6 6.6 0.3 Delay (s) 8.7 9.4 22.7 16.9 Approach Delay (s) </td <td>Heavy Vehicles (%)</td> <td>14%</td> <td>6%</td> <td>4%</td> <td>3%</td> <td>5%</td> <td>6%</td> <td>7%</td> <td>4%</td> <td></td> | Heavy Vehicles (%) | 14% | 6% | 4% | 3% | 5% | 6% | 7% | 4% | | | Protected Phases 6 6 3 8 4 Permitted Phases 6 8 8 Actuated Green, G (s) 37.8 37.8 60.2 60.2 Effective Green, g (s) 37.8 37.8 60.2 60.2 Actuated g/C Ratio 0.34 0.34 0.54 0.54 Clearance Time (s) 6.0 6.0 8.0 8.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 1422 1060 1102 1632 v/s Ratio Prot c0.33 0.28 0.28 v/s Ratio Perm 0.29 c0.48 0.52 Uniform Delay, d1 34.5 36.7 23.0 16.6 Progression Factor 0.23 0.13 0.70 1.00 Incremental Delay, d2 | Turn Type | Perm | Split | | | pm+pt | | | | | | Actuated Green, G (s) 37.8 37.8 60.2 60.2 Effective Green, g (s) 37.8 37.8 60.2 60.2 Actuated g/C Ratio 0.34 0.34 0.54 0.54 Clearance Time (s) 6.0 6.0 8.0 8.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 1422 1060 1102 1632 v/s Ratio Prot 0.29 0.28 v/s Ratio Perm 0.29 0.48 v/c Ratio 0.85 0.98 0.89 0.52 Uniform Delay, d1 34.5 36.7 23.0 16.6 Progression Factor 0.23 0.13 0.70 1.00 Incremental Delay, d2 0.7 4.6 6.6 0.3 Delay (s) 8.7 9.4 22.7 16.9 Level of Service A A C B Approach Delay (s) 9.0 22.7 16.9 Approach LOS A C B HCM Volume to Capacity ratio 0.92 Actuated Cycle Length (s) 112.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 104.0% ICU Level of Service G Analysis Period (min) 15 | Protected Phases | | 6 | 6 | | | 8 | 4 | | | | Effective Green, g (s) 37.8 37.8 60.2 60.2 Actuated g/C Ratio 0.34 0.34 0.54 0.54 Clearance Time (s) 6.0 6.0 8.0 8.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 1422 1060 1102 1632 v/s Ratio Prot c0.33 0.28 0.28 v/s Ratio Perm 0.29 c0.48 v/c Ratio 0.85 0.98 0.89 0.52 Uniform Delay, d1 34.5 36.7 23.0 16.6 Progression Factor 0.23 0.13 0.70 1.00 Incremental Delay, d2 0.7 4.6 6.6 0.3 Delay (s) 8.7 9.4 22.7 16.9 Level of Service A A C B Approach LOS A C B HCM Volume to Capacity ratio 0.92 A C B HCM Volume to Capacity ratio 0.92 A C B HCM Level of Service <td>Permitted Phases</td> <td>6</td> <td></td> <td></td> <td></td> <td>8</td> <td></td> <td></td> <td></td> <td></td> | Permitted Phases | 6 | | | | 8 | | | | | | Actuated g/C Ratio 0.34 0.34 0.54 0.54 Clearance Time (s) 6.0 6.0 8.0 8.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 1422 1060 1102 1632 v/s Ratio Prot c0.33 0.28 v/s Ratio Perm 0.29 c0.48 v/c Ratio 0.85 0.98 0.89 0.52 Uniform Delay, d1 34.5 36.7 23.0 16.6 Progression Factor 0.23 0.13 0.70 1.00 Incremental Delay, d2 0.7 4.6 6.6 0.3 Delay (s) 8.7 9.4 22.7 16.9 Level of Service A A C B Approach Delay (s) A C B Approach LOS A C B Intersection Summary HCM Volume to Capacity ratio 0.92 Actuated Cycle Length (s) 112.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 104.0% <t< td=""><td>Actuated Green, G (s)</td><td></td><td>37.8</td><td>37.8</td><td></td><td></td><td>60.2</td><td>60.2</td><td></td><td></td></t<> | Actuated Green, G (s) | | 37.8 | 37.8 | | | 60.2 | 60.2 | | | | Clearance Time (s) 6.0 6.0 8.0 8.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 1422 1060 1102 1632 v/s Ratio Prot c0.33 0.28 v/s Ratio Perm 0.29 c0.48 v/c Ratio 0.85 0.98 0.89 0.52 Uniform Delay, d1 34.5 36.7 23.0 16.6 Progression Factor 0.23 0.13 0.70 1.00 Incremental Delay, d2 0.7 4.6 6.6 0.3 Delay (s) 8.7 9.4 22.7 16.9 Approach Delay (s) 9.0 22.7 16.9 Approach LOS A C B
Intersection Summary HCM Average Control Delay 14.0 HCM Level of Service B HCM Volume to Capacity ratio 0.92 Actuated Cycle Length (s) 112.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 104.0% | Effective Green, g (s) | | 37.8 | 37.8 | | | 60.2 | 60.2 | | | | Vehicle Extension (s) 3.0 | Actuated g/C Ratio | | 0.34 | 0.34 | | | 0.54 | 0.54 | | | | Lane Grp Cap (vph) 1422 1060 1102 1632 v/s Ratio Prot c0.33 0.28 v/s Ratio Perm 0.29 c0.48 v/c Ratio 0.85 0.98 0.89 0.52 Uniform Delay, d1 34.5 36.7 23.0 16.6 Progression Factor 0.23 0.13 0.70 1.00 Incremental Delay, d2 0.7 4.6 6.6 0.3 Delay (s) 8.7 9.4 22.7 16.9 Level of Service A A C B Approach Delay (s) 9.0 22.7 16.9 Approach LOS A C B Intersection Summary HCM Average Control Delay 14.0 HCM Level of Service B HCM Volume to Capacity ratio 0.92 Actuated Cycle Length (s) 112.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 104.0% ICU Level of Service G Analysis Period (min) 15 | Clearance Time (s) | | 6.0 | 6.0 | | | 8.0 | 8.0 | | | | v/s Ratio Prot c0.33 0.28 v/s Ratio Perm 0.29 c0.48 v/c Ratio 0.85 0.98 0.89 0.52 Uniform Delay, d1 34.5 36.7 23.0 16.6 Progression Factor 0.23 0.13 0.70 1.00 Incremental Delay, d2 0.7 4.6 6.6 0.3 Delay (s) 8.7 9.4 22.7 16.9 Level of Service A A C B Approach Delay (s) 9.0 22.7 16.9 Approach LOS A C B Intersection Summary HCM Average Control Delay 14.0 HCM Level of Service B HCM Volume to Capacity ratio 0.92 Actuated Cycle Length (s) 112.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 104.0% ICU Level of Service G Analysis Period (min) 15 | Vehicle Extension (s) | | 3.0 | 3.0 | | | 3.0 | 3.0 | | | | v/s Ratio Perm 0.29 c0.48 v/c Ratio 0.85 0.98 0.89 0.52 Uniform Delay, d1 34.5 36.7 23.0 16.6 Progression Factor 0.23 0.13 0.70 1.00 Incremental Delay, d2 0.7 4.6 6.6 0.3 Delay (s) 8.7 9.4 22.7 16.9 Level of Service A A C B Approach Delay (s) 9.0 22.7 16.9 Approach LOS A C B Intersection Summary HCM Average Control Delay 14.0 HCM Level of Service B HCM Volume to Capacity ratio 0.92 Actuated Cycle Length (s) 112.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 104.0% ICU Level of Service G Analysis Period (min) 15 | Lane Grp Cap (vph) | | 1422 | 1060 | | | 1102 | 1632 | | | | v/c Ratio 0.85 0.98 0.89 0.52 Uniform Delay, d1 34.5 36.7 23.0 16.6 Progression Factor 0.23 0.13 0.70 1.00 Incremental Delay, d2 0.7 4.6 6.6 0.3 Delay (s) 8.7 9.4 22.7 16.9 Level of Service A A C B Approach Delay (s) 9.0 22.7 16.9 Approach LOS A C B Intersection Summary HCM Average Control Delay 14.0 HCM Level of Service B HCM Volume to Capacity ratio 0.92 Actuated Cycle Length (s) 112.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 104.0% ICU Level of Service G Analysis Period (min) 15 | v/s Ratio Prot | | | c0.33 | | | | 0.28 | | | | Uniform Delay, d1 34.5 36.7 23.0 16.6 Progression Factor 0.23 0.13 0.70 1.00 Incremental Delay, d2 0.7 4.6 6.6 0.3 Delay (s) 8.7 9.4 22.7 16.9 Level of Service A A C B Approach Delay (s) 9.0 22.7 16.9 Approach LOS A C B Intersection Summary HCM Average Control Delay 14.0 HCM Level of Service B HCM Volume to Capacity ratio 0.92 Actuated Cycle Length (s) 112.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 104.0% ICU Level of Service G Analysis Period (min) 15 | v/s Ratio Perm | | 0.29 | | | | c0.48 | | | | | Progression Factor 0.23 0.13 0.70 1.00 Incremental Delay, d2 0.7 4.6 6.6 0.3 Delay (s) 8.7 9.4 22.7 16.9 Level of Service A A C B Approach Delay (s) 9.0 22.7 16.9 Approach LOS A C B Intersection Summary HCM Average Control Delay 14.0 HCM Level of Service B HCM Volume to Capacity ratio 0.92 Actuated Cycle Length (s) 112.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 104.0% ICU Level of Service G Analysis Period (min) 15 | v/c Ratio | | 0.85 | 0.98 | | | 0.89 | 0.52 | | | | Incremental Delay, d2 | Uniform Delay, d1 | | | 36.7 | | | 23.0 | 16.6 | | | | Delay (s) 8.7 9.4 22.7 16.9 Level of Service A A C B Approach Delay (s) 9.0 22.7 16.9 Approach LOS A C B Intersection Summary HCM Average Control Delay 14.0 HCM Level of Service B HCM Volume to Capacity ratio 0.92 Actuated Cycle Length (s) 112.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 104.0% ICU Level of Service G Analysis Period (min) 15 | Progression Factor | | 0.23 | 0.13 | | | 0.70 | 1.00 | | | | Level of Service A A A C B Approach Delay (s) 9.0 22.7 16.9 Approach LOS A C B Intersection Summary HCM Average Control Delay 14.0 HCM Level of Service B HCM Volume to Capacity ratio 0.92 Actuated Cycle Length (s) 112.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 104.0% ICU Level of Service G Analysis Period (min) 15 | Incremental Delay, d2 | | 0.7 | 4.6 | | | 6.6 | 0.3 | | | | Approach Delay (s) 9.0 22.7 16.9 Approach LOS A C B Intersection Summary HCM Average Control Delay 14.0 HCM Level of Service B HCM Volume to Capacity ratio 0.92 Actuated Cycle Length (s) 112.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 104.0% ICU Level of Service G Analysis Period (min) 15 | Delay (s) | | 8.7 | 9.4 | | | 22.7 | 16.9 | | | | Approach LOS A C B Intersection Summary HCM Average Control Delay 14.0 HCM Level of Service B HCM Volume to Capacity ratio 0.92 Actuated Cycle Length (s) 112.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 104.0% ICU Level of Service G Analysis Period (min) 15 | Level of Service | | Α | | | | | | | | | Intersection Summary HCM Average Control Delay 14.0 HCM Level of Service B HCM Volume to Capacity ratio 0.92 Actuated Cycle Length (s) 112.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 104.0% ICU Level of Service G Analysis Period (min) 15 | Approach Delay (s) | | | 9.0 | | | 22.7 | | | | | HCM Average Control Delay 14.0 HCM Level of Service B HCM Volume to Capacity ratio 0.92 Actuated Cycle Length (s) 112.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 104.0% ICU Level of Service G Analysis Period (min) 15 | Approach LOS | | | Α | | | С | В | | | | HCM Volume to Capacity ratio 0.92 Actuated Cycle Length (s) 112.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 104.0% ICU Level of Service G Analysis Period (min) 15 | Intersection Summary | | | | | | | | | | | Actuated Cycle Length (s) 112.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 104.0% ICU Level of Service G Analysis Period (min) 15 | HCM Average Control Delay | | | 14.0 | H | CM Level | of Service | | | В | | Actuated Cycle Length (s) 112.0 Sum of lost time (s) 14.0 Intersection Capacity Utilization 104.0% ICU Level of Service G Analysis Period (min) 15 | HCM Volume to Capacity ratio | | | 0.92 | | | | | | | | Intersection Capacity Utilization 104.0% ICU Level of Service G Analysis Period (min) 15 | Actuated Cycle Length (s) | | | 112.0 | S | um of lost | time (s) | | | 14.0 | | Analysis Period (min) 15 | | 1 | | | | | | | | | | | Analysis Period (min) | | | 15 | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | ۶ | → | * | • | + | • | 1 | † | <i>></i> | / | ↓ | ✓ | |-----------------------------------|------|----------|-------|------|------------|-----------|-------|----------|-------------|----------|----------|--------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | | | | सीकि | | ሻ | ^ | | | ↑ | 77 | | Volume (vph) | 0 | 0 | 0 | 165 | 2005 | 210 | 145 | 675 | 0 | 0 | 245 | 260 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | | | | 7.0 | | 7.0 | 7.0 | | | 7.0 | 7.0 | | Lane Util. Factor | | | | | 0.86 | | 1.00 | 0.95 | | | 1.00 | 0.88 | | Frpb, ped/bikes | | | | | 0.99 | | 1.00 | 1.00 | | | 1.00 | 1.00 | | Flpb, ped/bikes | | | | | 1.00 | | 0.70 | 1.00 | | | 1.00 | 1.00 | | Frt | | | | | 0.99 | | 1.00 | 1.00 | | | 1.00 | 0.85 | | FIt Protected | | | | | 1.00 | | 0.95 | 1.00 | | | 1.00 | 1.00 | | Satd. Flow (prot) | | | | | 6003 | | 1173 | 3400 | | | 1634 | 2703 | | FIt Permitted | | | | | 1.00 | | 0.51 | 1.00 | | | 1.00 | 1.00 | | Satd. Flow (perm) | | | | | 6003 | | 629 | 3400 | | | 1634 | 2703 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.95 | 0.95 | 0.95 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 0 | 0 | 0 | 174 | 2111 | 221 | 161 | 750 | 0 | 0 | 272 | 289 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 209 | | Lane Group Flow (vph) | 0 | 0 | 0 | 0 | 2492 | 0 | 161 | 750 | 0 | 0 | 272 | 80 | | Confl. Peds. (#/hr) | | | | 35 | | 125 | 1405 | | | | | 1405 | | Heavy Vehicles (%) | 0% | 0% | 0% | 12% | 4% | 3% | 6% | 5% | 0% | 0% | 15% | 4% | | Turn Type | | | | Perm | | | Perm | | | | | custom | | Protected Phases | | | | | 6 | | | 8 | | | 4 | 3 | | Permitted Phases | | | | 6 | | | 8 | | | | | | | Actuated Green, G (s) | | | | | 36.0 | | 62.0 | 62.0 | | | 24.0 | 31.0 | | Effective Green, g (s) | | | | | 36.0 | | 62.0 | 62.0 | | | 24.0 | 31.0 | | Actuated g/C Ratio | | | | | 0.32 | | 0.55 | 0.55 | | | 0.21 | 0.28 | | Clearance Time (s) | | | | | 7.0 | | 7.0 | 7.0 | | | 7.0 | 7.0 | | Vehicle Extension (s) | | | | | 3.0 | | 3.0 | 3.0 | | | 3.0 | 3.0 | | Lane Grp Cap (vph) | | | | | 1930 | | 348 | 1882 | | | 350 | 748 | | v/s Ratio Prot | | | | | | | | 0.22 | | | c0.17 | 0.03 | | v/s Ratio Perm | | | | | 0.42 | | c0.26 | | | | | | | v/c Ratio | | | | | 1.29 | | 0.46 | 0.40 | | | 0.78 | 0.11 | | Uniform Delay, d1 | | | | | 38.0 | | 15.0 | 14.3 | | | 41.5 | 30.2 | | Progression Factor | | | | | 0.36 | | 0.51 | 0.48 | | | 1.00 | 1.00 | | Incremental Delay, d2 | | | | | 131.3 | | 0.7 | 0.1 |
| | 10.4 | 0.3 | | Delay (s) | | | | | 145.0 | | 8.3 | 7.0 | | | 51.8 | 30.5 | | Level of Service | | | | | F | | Α | Α | | | D | С | | Approach Delay (s) | | 0.0 | | | 145.0 | | | 7.2 | | | 40.8 | | | Approach LOS | | Α | | | F | | | Α | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 98.8 | Н | CM Level | of Servic | е | | F | | | | | HCM Volume to Capacity ratio | | | 0.82 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | S | um of lost | time (s) | | | 14.0 | | | | | Intersection Capacity Utilization | 1 | | 87.3% | | CU Level o | | | | Е | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | • | • | ← | 4 | 1 | † | ~ | / | † | ✓ | |-----------------------------------|------|----------|--------|------|--------------|------------|-------|----------|------|----------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | | | | 4 ↑ ₽ | | 7 | ^ | | | Φ₽ | | | Volume (vph) | 0 | 0 | 0 | 105 | 2060 | 300 | 110 | 1170 | 0 | 0 | 125 | 230 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | | | | 7.0 | | 4.0 | 7.0 | | | 7.0 | | | Lane Util. Factor | | | | | 0.91 | | 1.00 | 0.95 | | | 0.95 | | | Frpb, ped/bikes | | | | | 0.98 | | 1.00 | 1.00 | | | 0.79 | | | Flpb, ped/bikes | | | | | 1.00 | | 0.93 | 1.00 | | | 1.00 | | | Frt | | | | | 0.98 | | 1.00 | 1.00 | | | 0.90 | | | Flt Protected | | | | | 1.00 | | 0.95 | 1.00 | | | 1.00 | | | Satd. Flow (prot) | | | | | 4747 | | 1567 | 3433 | | | 2348 | | | Flt Permitted | | | | | 1.00 | | 0.45 | 1.00 | | | 1.00 | | | Satd. Flow (perm) | | | | | 4747 | | 737 | 3433 | | | 2348 | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.95 | 0.95 | 0.95 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 0 | 0 | 0 | 111 | 2168 | 316 | 122 | 1300 | 0 | 0 | 139 | 256 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 39 | 0 | | Lane Group Flow (vph) | 0 | 0 | 0 | 0 | 2593 | 0 | 122 | 1300 | 0 | 0 | 356 | 0 | | Confl. Peds. (#/hr) | | | | 130 | | 165 | 435 | | 290 | 290 | | 435 | | Heavy Vehicles (%) | 0% | 0% | 0% | 2% | 4% | 3% | 6% | 4% | 0% | 0% | 11% | 8% | | Turn Type | | | | Perm | _ | | pm+pt | | | | | | | Protected Phases | | | | _ | 6 | | 3 | 8 | | | 4 | | | Permitted Phases | | | | 6 | | | 8 | | | | | | | Actuated Green, G (s) | | | | | 47.0 | | 51.0 | 51.0 | | | 41.0 | | | Effective Green, g (s) | | | | | 47.0 | | 51.0 | 51.0 | | | 41.0 | | | Actuated g/C Ratio | | | | | 0.42 | | 0.46 | 0.46 | | | 0.37 | | | Clearance Time (s) | | | | | 7.0 | | 4.0 | 7.0 | | | 7.0 | | | Vehicle Extension (s) | | | | | 3.0 | | 3.0 | 3.0 | | | 3.0 | | | Lane Grp Cap (vph) | | | | | 1992 | | 380 | 1563 | | | 860 | | | v/s Ratio Prot | | | | | | | 0.02 | c0.38 | | | 0.15 | | | v/s Ratio Perm | | | | | 0.55 | | 0.13 | | | | | | | v/c Ratio | | | | | 1.30 | | 0.32 | 0.83 | | | 0.41 | | | Uniform Delay, d1 | | | | | 32.5 | | 18.2 | 26.7 | | | 26.5 | | | Progression Factor | | | | | 1.00 | | 0.59 | 0.51 | | | 1.00 | | | Incremental Delay, d2 | | | | | 139.6 | | 0.3 | 2.7 | | | 0.3 | | | Delay (s) | | | | | 172.1 | | 11.1 | 16.3 | | | 26.9 | | | Level of Service | | 0.0 | | | F | | В | B | | | С | | | Approach Delay (s) | | 0.0 | | | 172.1 | | | 15.8 | | | 26.9 | | | Approach LOS | | Α | | | F | | | В | | | С | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 108.7 | Н | CM Level | of Servic | е | | F | | | | | HCM Volume to Capacity ratio | | | 1.06 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | um of lost | | | | 14.0 | | | | | Intersection Capacity Utilization | | | 164.2% | IC | CU Level of | of Service | | | Н | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | • | • | ← | • | 1 | † | ~ | - | Ţ | 1 | |-----------------------------------|--------|------------|------------|----------|------------|------------|------|----------|------|-------|--------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | ↑ ↑ | | | | | | ^ | | | 4₽ | | | Volume (vph) | 0 | 1320 | 480 | 0 | 0 | 0 | 0 | 905 | 0 | 165 | 195 | 0 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.6 | 3.5 | 3.5 | 3.5 | 3.5 | | Total Lost time (s) | | 6.0 | | | | | | 8.0 | | | 8.0 | | | Lane Util. Factor | | 0.91 | | | | | | 0.95 | | | 0.95 | | | Frpb, ped/bikes | | 0.99 | | | | | | 1.00 | | | 1.00 | | | Flpb, ped/bikes | | 1.00 | | | | | | 1.00 | | | 1.00 | | | Frt | | 0.96 | | | | | | 1.00 | | | 1.00 | | | Flt Protected | | 1.00 | | | | | | 1.00 | | | 0.98 | | | Satd. Flow (prot) | | 4608 | | | | | | 3610 | | | 3236 | | | FIt Permitted | | 1.00 | | | | | | 1.00 | | | 0.53 | | | Satd. Flow (perm) | | 4608 | | | | | | 3610 | | | 1768 | | | Peak-hour factor, PHF | 0.94 | 0.94 | 0.94 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 0 | 1404 | 511 | 0 | 0 | 0 | 0 | 1006 | 0 | 183 | 217 | 0 | | RTOR Reduction (vph) | 0 | 46 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Lane Group Flow (vph) | 0 | 1869 | 0 | 0 | 0 | 0 | 0 | 1006 | 0 | 0 | 400 | 0 | | Confl. Peds. (#/hr) | 30 | | 30 | | | | | | | 55 | | | | Heavy Vehicles (%) | 17% | 5% | 8% | 2% | 2% | 2% | 0% | 0% | 0% | 8% | 7% | 0% | | Turn Type | | | | | | | | | | pm+pt | | | | Protected Phases | | 2 | | | | | | 8 | | 7 | 4 | | | Permitted Phases | | | | | | | | | | 4 | | | | Actuated Green, G (s) | | 54.6 | | | | | | 43.4 | | | 43.4 | | | Effective Green, g (s) | | 54.6 | | | | | | 43.4 | | | 43.4 | | | Actuated g/C Ratio | | 0.49 | | | | | | 0.39 | | | 0.39 | | | Clearance Time (s) | | 6.0 | | | | | | 8.0 | | | 8.0 | | | Vehicle Extension (s) | | 3.0 | | | | | | 3.0 | | | 3.0 | | | Lane Grp Cap (vph) | | 2246 | | | | | | 1399 | | | 685 | | | v/s Ratio Prot | | c0.41 | | | | | | c0.28 | | | | | | v/s Ratio Perm | | | | | | | | | | | 0.23 | | | v/c Ratio | | 0.83 | | | | | | 0.72 | | | 1.81dl | | | Uniform Delay, d1 | | 24.7 | | | | | | 29.1 | | | 27.2 | | | Progression Factor | | 0.64 | | | | | | 1.00 | | | 0.82 | | | Incremental Delay, d2 | | 2.0 | | | | | | 1.8 | | | 1.1 | | | Delay (s) | | 17.8 | | | | | | 30.9 | | | 23.3 | | | Level of Service | | В | | | | | | С | | | С | | | Approach Delay (s) | | 17.8 | | | 0.0 | | | 30.9 | | | 23.3 | | | Approach LOS | | В | | | Α | | | С | | | С | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 22.4 | H | CM Level | of Service | е | | С | | | | | HCM Volume to Capacity ratio | | | 0.78 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | Sı | um of lost | time (s) | | | 14.0 | | | | | Intersection Capacity Utilization | | | 90.5% | IC | U Level o | of Service | | | Е | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | dl Defacto Left Lane. Recode | with 1 | though la | ne as a le | ft lane. | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | † | <i>></i> | \ | ↓ | / | 4 | | | | |-------------------------------|-------|----------|------------|-------------|------------|------------|--------|--------|------|--|--| | Movement | EBL | EBT | NBT | NBR | SBL | SBT | NER | NER2 | | | | | Lane Configurations | ሻ | 414 | ↑ ↑ | | ሻ | ^ | 7 | 7 | | | | | Volume (vph) | 830 | 1120 | 340 | 25 | 180 | 275 | 635 | 180 | | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | | Total Lost time (s) | 7.0 | 7.0 | 7.0 | | 7.0 | 7.0 | 7.0 | 7.0 | | | | | Lane Util. Factor | 0.91 | 0.91 | 0.95 | | 1.00 | 0.95 | 1.00 | 1.00 | | | | | Frpb, ped/bikes | 1.00 | 1.00 | 0.98 | | 1.00 | 1.00 | 1.00 | 1.00 | | | | | Flpb, ped/bikes | 1.00 | 1.00 | 1.00 | | 0.85 | 1.00 | 1.00 | 1.00 | | | | | Frt | 1.00 | 1.00 | 0.99 | | 1.00 | 1.00 | 1.00 | 0.85 | | | | | Flt Protected | 0.95 | 0.99 | 1.00 | | 0.95 | 1.00 | 1.00 | 1.00 | | | | | Satd. Flow (prot) | 1557 | 3210 | 3312 | | 1424 | 3159 | 1842 | 1566 | | | | | Flt Permitted | 0.95 | 0.99 | 1.00 | | 0.48 | 1.00 | 1.00 | 1.00 | | | | | Satd. Flow (perm) | 1557 | 3210 | 3312 | | 714 | 3159 | 1842 | 1566 | | | | | Peak-hour factor, PHF | 0.94 | 0.94 | 0.90 | 0.90 | 0.90 | 0.90 | 0.94 | 0.94 | | | | | Adj. Flow (vph) | 883 | 1191 | 378 | 28 | 200 | 306 | 676 | 191 | | | | | RTOR Reduction (vph) | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 90 | | | | | Lane Group Flow (vph) | 671 | 1403 | 401 | 0 | 200 | 306 | 676 | 101 | | | | | Confl. Peds. (#/hr) | 5 | | | 310 | 310 | | | | | | | | Heavy Vehicles (%) | 4% | 6% | 5% | 0% | 7% | 13% | 2% | 2% | | | | | Turn Type | Perm | | | | Perm | | custom | custom | | | | | Protected Phases | | 2 | 8 | | | 4 | | | | | | | Permitted Phases | 2 | | | | 4 | | 2 | 2 | | | | | Actuated Green, G (s) | 59.0 | 59.0 | 39.0 | | 39.0 | 39.0 | 59.0 | 59.0 | | | | | Effective Green, g (s) | 59.0 | 59.0 | 39.0 | | 39.0 | 39.0 | 59.0 | 59.0 | | | | | Actuated g/C Ratio | 0.53 | 0.53 | 0.35 | | 0.35 | 0.35 | 0.53 | 0.53 | | | | | Clearance Time (s) | 7.0 | 7.0 | 7.0 | | 7.0 | 7.0 | 7.0 | 7.0 | | | | | Vehicle Extension (s) | 3.0 | 3.0 | 3.0 | | 3.0 | 3.0 | 3.0 | 3.0 | | | | | Lane Grp Cap (vph) | 820 | 1691 | 1153 | | 249 | 1100 | 970 | 825 | | | | | v/s Ratio Prot | | | 0.12 | | | 0.10 | | | | | | | v/s Ratio Perm | 0.43 | 0.44 | | | c0.28 | | 0.37 | 0.06 | | | | | v/c Ratio | 0.82 | 0.83 | 0.35 | | 0.80 | 0.28 | 0.70 | 0.12 | | | | | Uniform Delay, d1 | 22.0 | 22.3 | 27.1 | | 33.0 | 26.3 | 19.8 | 13.4 | | | | | Progression Factor | 0.61 | 0.61 | 1.00 | | 1.40 | 1.43 | 1.00 | 1.00 | | | | | Incremental Delay, d2 | 7.3 | 4.0 | 0.2 | | 8.8 | 0.1
| 4.1 | 0.3 | | | | | Delay (s) | 20.8 | 17.6 | 27.3 | | 55.1 | 37.8 | 24.0 | 13.7 | | | | | Level of Service | С | В | С | | E | D | С | В | | | | | Approach Delay (s) | | 18.6 | 27.3 | | | 44.7 | | | | | | | Approach LOS | | В | С | | | D | | | | | | | Intersection Summary | | | | | | | | | | | | | HCM Average Control Delay | , | | 23.6 | H | CM Level | of Servi | се | | С | | | | HCM Volume to Capacity ra | atio | | 0.82 | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | ım of lost | | | | 14.0 | | | | Intersection Capacity Utiliza | ation | | 141.8% | IC | U Level c | of Service |) | | Н | | | | Analysis Period (min) | | | 15 | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | *1 | † | ۴ | ¥ | | لر | <i>•</i> | × | 4 | 4 | × | t | |-----------------------------------|------|------------|--------|------|--------------|------------|----------|------|------|------|------|------| | Movement | NBL | NBT | NBR | SBL | SBT | SBR | NEL | NET | NER | SWL | SWT | SWR | | Lane Configurations | | ∱ ∱ | | | ^ | | ሻ | 4₽ | | | | | | Volume (vph) | 0 | 165 | 145 | 0 | 230 | 0 | 1100 | 700 | 0 | 0 | 0 | 0 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | 7.0 | | | 7.0 | | 7.0 | 7.0 | | | | | | Lane Util. Factor | | 0.95 | | | 0.95 | | 0.91 | 0.91 | | | | | | Frpb, ped/bikes | | 0.99 | | | 1.00 | | 1.00 | 1.00 | | | | | | Flpb, ped/bikes | | 1.00 | | | 1.00 | | 1.00 | 1.00 | | | | | | Frt | | 0.93 | | | 1.00 | | 1.00 | 1.00 | | | | | | FIt Protected | | 1.00 | | | 1.00 | | 0.95 | 0.98 | | | | | | Satd. Flow (prot) | | 2994 | | | 3336 | | 1562 | 3150 | | | | | | Flt Permitted | | 1.00 | | | 1.00 | | 0.95 | 0.98 | | | | | | Satd. Flow (perm) | | 2994 | | | 3336 | | 1562 | 3150 | | | | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.94 | 0.94 | 0.94 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 0 | 183 | 161 | 0 | 256 | 0 | 1170 | 745 | 0 | 0 | 0 | 0 | | RTOR Reduction (vph) | 0 | 91 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Lane Group Flow (vph) | 0 | 253 | 0 | 0 | 256 | 0 | 632 | 1283 | 0 | 0 | 0 | 0 | | Confl. Peds. (#/hr) | | | 15 | | | | | | | | | | | Heavy Vehicles (%) | 0% | 12% | 7% | 0% | 7% | 0% | 4% | 8% | 0% | 0% | 0% | 0% | | Turn Type | | | | | | | Perm | | | | | | | Protected Phases | | 8 | | | 4 | | | 2 | | | | | | Permitted Phases | | | | | | | 2 | | | | | | | Actuated Green, G (s) | | 43.0 | | | 43.0 | | 55.0 | 55.0 | | | | | | Effective Green, g (s) | | 43.0 | | | 43.0 | | 55.0 | 55.0 | | | | | | Actuated g/C Ratio | | 0.38 | | | 0.38 | | 0.49 | 0.49 | | | | | | Clearance Time (s) | | 7.0 | | | 7.0 | | 7.0 | 7.0 | | | | | | Vehicle Extension (s) | | 3.0 | | | 3.0 | | 3.0 | 3.0 | | | | | | Lane Grp Cap (vph) | | 1149 | | | 1281 | | 767 | 1547 | | | | | | v/s Ratio Prot | | c0.08 | | | 0.08 | | | | | | | | | v/s Ratio Perm | | | | | | | 0.40 | 0.41 | | | | | | v/c Ratio | | 0.22 | | | 0.20 | | 0.82 | 0.83 | | | | | | Uniform Delay, d1 | | 23.2 | | | 23.0 | | 24.4 | 24.5 | | | | | | Progression Factor | | 1.00 | | | 1.01 | | 0.45 | 0.45 | | | | | | Incremental Delay, d2 | | 0.1 | | | 0.0 | | 6.2 | 3.3 | | | | | | Delay (s) | | 23.3 | | | 23.2 | | 17.2 | 14.3 | | | | | | Level of Service | | С | | | С | | В | В | | | | | | Approach Delay (s) | | 23.3 | | | 23.2 | | | 15.3 | | | 0.0 | | | Approach LOS | | С | | | С | | | В | | | Α | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 17.2 | H | CM Level | of Service | Э | | В | | | | | HCM Volume to Capacity ratio | | | 0.56 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | Sı | um of lost | time (s) | | | 14.0 | | | | | Intersection Capacity Utilization | | | 164.2% | | | of Service | | | Н | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | • | • | ← | • | 1 | † | <i>></i> | / | Ţ | ✓ | |-----------------------------------|-------|----------|--------|------|------------|------------|------|------------|-------------|----------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | 44 | ተተኈ | | | | | | ∱ ∱ | | ሻሻ | ^ | | | Volume (vph) | 895 | 2735 | 90 | 0 | 0 | 0 | 0 | 130 | 35 | 380 | 5 | 0 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 7.0 | 7.0 | | | | | | 7.0 | | 6.0 | 7.0 | | | Lane Util. Factor | 0.97 | 0.91 | | | | | | 0.95 | | 0.97 | 1.00 | | | Frpb, ped/bikes | 1.00 | 1.00 | | | | | | 1.00 | | 1.00 | 1.00 | | | Flpb, ped/bikes | 1.00 | 1.00 | | | | | | 1.00 | | 1.00 | 1.00 | | | Frt | 1.00 | 1.00 | | | | | | 0.97 | | 1.00 | 1.00 | | | Flt Protected | 0.95 | 1.00 | | | | | | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (prot) | 3395 | 4982 | | | | | | 3298 | | 3395 | 1789 | | | FIt Permitted | 0.95 | 1.00 | | | | | | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (perm) | 3395 | 4982 | | | | | | 3298 | | 3395 | 1789 | | | Peak-hour factor, PHF | 0.93 | 0.93 | 0.93 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 962 | 2941 | 97 | 0 | 0 | 0 | 0 | 137 | 37 | 400 | 5 | 0 | | RTOR Reduction (vph) | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | | Lane Group Flow (vph) | 962 | 3035 | 0 | 0 | 0 | 0 | 0 | 173 | 0 | 400 | 5 | 0 | | Confl. Peds. (#/hr) | 1 | | 60 | 60 | | 1 | 15 | | | | | 15 | | Heavy Vehicles (%) | 2% | 2% | 3% | 0% | 0% | 0% | 0% | 5% | 4% | 2% | 5% | 2% | | Turn Type | Split | | | | | | | | | Prot | | | | Protected Phases | 2 | 2 | | | | | | 8 | | 7 | 4 | | | Permitted Phases | | | | | | | | | | | | | | Actuated Green, G (s) | 64.0 | 64.0 | | | | | | 17.0 | | 11.0 | 34.0 | | | Effective Green, g (s) | 64.0 | 64.0 | | | | | | 17.0 | | 11.0 | 34.0 | | | Actuated g/C Ratio | 0.57 | 0.57 | | | | | | 0.15 | | 0.10 | 0.30 | | | Clearance Time (s) | 7.0 | 7.0 | | | | | | 7.0 | | 6.0 | 7.0 | | | Vehicle Extension (s) | 3.0 | 3.0 | | | | | | 3.0 | | 3.0 | 3.0 | | | Lane Grp Cap (vph) | 1940 | 2847 | | | | | | 501 | | 333 | 543 | | | v/s Ratio Prot | 0.28 | c0.61 | | | | | | c0.05 | | c0.12 | 0.00 | | | v/s Ratio Perm | | | | | | | | | | | | | | v/c Ratio | 0.50 | 1.07 | | | | | | 0.35 | | 1.20 | 0.01 | | | Uniform Delay, d1 | 14.4 | 24.0 | | | | | | 42.5 | | 50.5 | 27.2 | | | Progression Factor | 1.00 | 1.00 | | | | | | 1.00 | | 1.00 | 1.00 | | | Incremental Delay, d2 | 0.9 | 37.7 | | | | | | 0.4 | | 115.8 | 0.0 | | | Delay (s) | 15.3 | 61.7 | | | | | | 42.9 | | 166.3 | 27.2 | | | Level of Service | В | Е | | | | | | D | | F | С | | | Approach Delay (s) | | 50.6 | | | 0.0 | | | 42.9 | | | 164.6 | | | Approach LOS | | D | | | Α | | | D | | | F | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 60.4 | H | CM Level | of Service |) | | E | | | | | HCM Volume to Capacity ratio | | | 0.95 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | ım of lost | | | | 20.0 | | | | | Intersection Capacity Utilization | n | | 158.0% | IC | U Level of | of Service | | | Н | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | * | • | *_ | 4 | ሻ | † | <i>></i> | / | Ţ | M | |--|-------|--------------|--------|-------------|-------------|--------------|------|--------------|-------------|--------------|-------------|-------------| | Movement | EBL | EBT | EBR | WBL | WBR | WBR2 | NBL | NBT | NBR | SBL | SBT | SBR2 | | Lane Configurations | 1616 | ተተኈ | | 7 | 775 | | | ∱ ∱ | | ሻ | ↑ | 7 | | Volume (vph) | 300 | 2785 | 65 | 25 | 1815 | 135 | 25 | 65 | 45 | 460 | 115 | 30 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 6.0 | 6.0 | | 6.0 | 6.0 | | | 8.0 | | 5.0 | 8.0 | 8.0 | | Lane Util. Factor | 0.97 | 0.91 | | 1.00 | *0.91 | | | 0.95 | | 1.00 | 1.00 | 1.00 | | Frpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 0.97 | | | 0.96 | | 1.00 | 1.00 | 0.82 | | Flpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 1.00 | | | 0.97 | | 0.96 | 1.00 | 1.00 | | Frt | 1.00 | 1.00 | | 1.00 | 1.00 | | | 0.95 | | 1.00 | 1.00 | 0.85 | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | | 0.99 | | 0.95 | 1.00 | 1.00 | | Satd. Flow (prot) | 3429 | 5006 | | 1653 | 4869 | | | 3123 | | 1676 | 1756 | 1277 | | Flt Permitted | 0.95 | 1.00 | | 0.95 | 1.00 | | | 0.88 | | 0.56 | 1.00 | 1.00 | | Satd. Flow (perm) | 3429 | 5006 | | 1653 | 4869 | | | 2771 | | 986 | 1756 | 1277 | | Peak-hour factor, PHF | 0.93 | 0.93 | 0.93 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 323 | 2995 | 70 | 26 | 1911 | 142 | 26 | 68 | 47 | 484 | 121 | 32 | | RTOR Reduction (vph) | 0 | 2 | 0 | 0 | 8 | 0 | 0 | 36 | 0 | 0 | 0 | 21 | | Lane Group Flow (vph) | 323 | 3063 | 0 | 26 | 2045 | 0 | 0 | 105 | 0 | 484 | 121 | 11 | | Confl. Peds. (#/hr) | 5 | 00/ | 25 | 25 | 00/ | 5 | 135 | 00/ | 85 | 85 | 70/ | 135 | | Heavy Vehicles (%) | 1% | 2% | 0% | 8% | 2% | 5% | 4% | 0% | 0% | 2% | 7% | 3% | | Turn Type | Prot | • | | | custom | | Perm | • | | pm+pt | | Perm | | Protected Phases | 5 | 2 | | 1 | ^ | | 0 | 8 | | 7 | 4 | 4 | | Permitted Phases | 0.4 | 40.4 | | 2.0 | 6 | | 8 | 07.0 | | 4 | 20.0 | 20.0 | | Actuated Green, G (s) | 9.4 | 49.4 | | 3.6 | 43.6 | | | 27.0 | | 39.0 | 39.0 | 39.0 | | Effective Green, g (s) | 9.4 | 49.4
0.44 | | 3.6
0.03 | 43.6 | | | 27.0
0.24 | | 39.0
0.35 | 39.0 | 39.0 | | Actuated g/C Ratio | 0.08 | 6.0 | | 6.0 | 0.39
6.0 | | | 8.0 | | 5.0 | 0.35
8.0 | 0.35
8.0 | | Clearance Time (s) Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | | | 3.0 | | 3.0 | 3.0 | 3.0 | | | 288 | 2208 | | | | | | | | 386 | | 445 | | Lane Grp Cap (vph) v/s Ratio Prot | c0.09 | c0.61 | | 53
0.02 | 1895 | | | 668 | |
c0.08 | 611
0.07 | 445 | | v/s Ratio Prot
v/s Ratio Perm | 00.09 | CU.01 | | 0.02 | 0.42 | | | 0.04 | | c0.06 | 0.07 | 0.01 | | v/c Ratio | 1.12 | 1.39 | | 0.49 | 1.08 | | | 0.04 | | 1.25 | 0.20 | 0.01 | | Uniform Delay, d1 | 51.3 | 31.3 | | 53.3 | 34.2 | | | 33.5 | | 36.5 | 25.6 | 24.0 | | Progression Factor | 1.07 | 1.23 | | 0.85 | 1.17 | | | 1.00 | | 1.00 | 1.00 | 1.00 | | Incremental Delay, d2 | 59.5 | 174.5 | | 1.7 | 38.5 | | | 0.1 | | 133.9 | 0.2 | 0.0 | | Delay (s) | 114.3 | 213.1 | | 46.9 | 78.6 | | | 33.6 | | 170.4 | 25.7 | 24.0 | | Level of Service | F | Z 10.1 | | 70.5
D | 70.0
E | | | C | | 170.4
F | 23.7
C | 24.0
C | | Approach Delay (s) | ' | 203.7 | | | | | | 33.6 | | ' | 135.6 | J | | Approach LOS | | F | | | | | | C | | | F | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 151.1 | H | ICM Leve | l of Service | е | | F | | | | | HCM Volume to Capacity ra | itio | | 1.30 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | Sum of los | | | | 17.0 | | | | | Intersection Capacity Utiliza | tion | | 108.8% | [| CU Level | of Service | | | G | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | • | 4 | † | / | / | ļ | 4 | </th <th>t</th> <th></th> | t | | |---------------------------------|-------|----------|-------|------|-----------|------------|----------|------|------|---------------------------|------|--| | Movement | EBL2 | EBT | EBR | NBL | NBT | NBR2 | SBL | SBT | SBR | SWR | SWR2 | | | Lane Configurations | ň | ħβ | | Ŋ | † | | Ţ | 4Î | | 772 | | | | Volume (vph) | 175 | 1620 | 15 | 80 | 30 | 90 | 170 | 30 | 75 | 1820 | 125 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | 6.0 | 6.0 | | 7.0 | 7.0 | | 7.0 | 7.0 | | 6.0 | | | | Lane Util. Factor | 1.00 | 0.95 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 0.76 | | | | Frpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 0.97 | | 1.00 | 0.87 | | 0.96 | | | | Flpb, ped/bikes | 1.00 | 1.00 | | 0.85 | 1.00 | | 0.98 | 1.00 | | 1.00 | | | | Frt | 1.00 | 1.00 | | 1.00 | 0.89 | | 1.00 | 0.89 | | 1.00 | | | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | | 1.00 | | | | Satd. Flow (prot) | 1750 | 3460 | | 1512 | 1605 | | 1663 | 1274 | | 4023 | | | | Flt Permitted | 0.95 | 1.00 | | 0.69 | 1.00 | | 0.68 | 1.00 | | 1.00 | | | | Satd. Flow (perm) | 1750 | 3460 | | 1091 | 1605 | | 1182 | 1274 | | 4023 | | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | | Adj. Flow (vph) | 184 | 1705 | 16 | 84 | 32 | 95 | 179 | 32 | 79 | 1916 | 132 | | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 15 | 0 | 0 | 56 | 0 | 6 | 0 | | | Lane Group Flow (vph) | 184 | 1721 | 0 | 84 | 112 | 0 | 179 | 55 | 0 | 2042 | 0 | | | Confl. Peds. (#/hr) | 20 | | 15 | 170 | | 25 | 25 | | 170 | | 20 | | | Heavy Vehicles (%) | 2% | 3% | 3% | 0% | 4% | 0% | 5% | 5% | 18% | 2% | 5% | | | Turn Type | Prot | | | Perm | | | Perm | | | custom | | | | Protected Phases | 5 | 2 | | | 8 | | | 4 | | | | | | Permitted Phases | | | | 8 | | | 4 | | | 6 | | | | Actuated Green, G (s) | 7.0 | 67.0 | | 32.0 | 32.0 | | 32.0 | 32.0 | | 54.0 | | | | Effective Green, g (s) | 7.0 | 67.0 | | 32.0 | 32.0 | | 32.0 | 32.0 | | 54.0 | | | | Actuated g/C Ratio | 0.06 | 0.60 | | 0.29 | 0.29 | | 0.29 | 0.29 | | 0.48 | | | | Clearance Time (s) | 6.0 | 6.0 | | 7.0 | 7.0 | | 7.0 | 7.0 | | 6.0 | | | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | | | | Lane Grp Cap (vph) | 109 | 2070 | | 312 | 459 | | 338 | 364 | | 1940 | | | | v/s Ratio Prot | c0.11 | 0.50 | | | 0.07 | | | 0.04 | | | | | | v/s Ratio Perm | | | | 0.08 | | | c0.15 | | | c0.51 | | | | v/c Ratio | 1.69 | 0.83 | | 0.27 | 0.24 | | 0.53 | 0.15 | | 1.05 | | | | Uniform Delay, d1 | 52.5 | 18.0 | | 31.0 | 30.7 | | 33.7 | 29.9 | | 29.0 | | | | Progression Factor | 0.99 | 1.11 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 0.59 | | | | Incremental Delay, d2 | 313.2 | 0.4 | | 0.5 | 0.3 | | 1.5 | 0.2 | | 25.3 | | | | Delay (s) | 365.3 | 20.3 | | 31.4 | 31.0 | | 35.2 | 30.0 | | 42.4 | | | | Level of Service | F | С | | С | С | | D | С | | D | | | | Approach Delay (s) | | 53.6 | | | 31.2 | | | 33.2 | | | | | | Approach LOS | | D | | | С | | | С | | | | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 46.1 | H | CM Leve | of Servic | е | | D | | | | | HCM Volume to Capacity rati | o | | 0.92 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | um of los | | | | 19.0 | | | | | Intersection Capacity Utilizati | on | | 99.4% | IC | U Level | of Service | | | F | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | • | F | ← | • | M | † | ļ | 4 | | |----------------------------------|----------|----------|------------|------------|------------|------------|------------|------|------| | Movement | WBL2 | WBL | WBT | WBR | NBL2 | NBT | SBT | SBR2 | | | Lane Configurations | | ሽኘኘ | ↑ ↑ | | ሻ | ↑ | † } | | | | Volume (vph) | 50 | 1870 | 655 | 85 | 160 | 545 | 585 | 790 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | | 6.0 | 6.0 | | 6.0 | 8.0 | 8.0 | | | | Lane Util. Factor | | 0.94 | 0.95 | | 1.00 | 1.00 | 0.95 | | | | Frpb, ped/bikes | | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | | | | Flpb, ped/bikes | | 0.89 | 1.00 | | 1.00 | 1.00 | 1.00 | | | | Frt | | 1.00 | 0.98 | | 1.00 | 1.00 | 0.91 | | | | Flt Protected | | 0.95 | 1.00 | | 0.95 | 1.00 | 1.00 | | | | Satd. Flow (prot) | | 4399 | 3385 | | 1750 | 1807 | 3150 | | | | FIt Permitted | | 0.95 | 1.00 | | 0.09 | 1.00 | 1.00 | | | | Satd. Flow (perm) | | 4399 | 3385 | | 160 | 1807 | 3150 | | | | Peak-hour factor, PHF | 0.93 | 0.93 | 0.93 | 0.93 | 0.95 | 0.95 | 0.95 | 0.95 | | | Adj. Flow (vph) | 54 | 2011 | 704 | 91 | 168 | 574 | 616 | 832 | | | RTOR Reduction (vph) | 0 | 0 | 9 | 0 | 0 | 0 | 128 | 0 | | | Lane Group Flow (vph) | 0 | 2065 | 786 | 0 | 168 | 574 | 1320 | 0 | | | Confl. Peds. (#/hr) | 45 | | | | | | | | | | Heavy Vehicles (%) | 13% | 1% | 4% | 1% | 2% | 4% | 3% | 4% | | | Turn Type | Perm | Split | | | pm+pt | | | | | | Protected Phases | | 6 | 6 | | 3 | 8 | 4 | | | | Permitted Phases | 6 | | | | 8 | | | | | | Actuated Green, G (s) | | 48.0 | 48.0 | | 50.0 | 50.0 | 40.0 | | | | Effective Green, g (s) | | 48.0 | 48.0 | | 50.0 | 50.0 | 40.0 | | | | Actuated g/C Ratio | | 0.43 | 0.43 | | 0.45 | 0.45 | 0.36 | | | | Clearance Time (s) | | 6.0 | 6.0 | | 6.0 | 8.0 | 8.0 | | | | Vehicle Extension (s) | | 3.0 | 3.0 | | 3.0 | 3.0 | 3.0 | | | | Lane Grp Cap (vph) | | 1885 | 1451 | | 128 | 807 | 1125 | | | | v/s Ratio Prot | | | 0.23 | | c0.05 | 0.32 | 0.42 | | | | v/s Ratio Perm | | 0.47 | | | c0.54 | | | | | | v/c Ratio | | 1.10 | 0.54 | | 1.31 | 0.71 | 1.21dr | | | | Uniform Delay, d1 | | 32.0 | 23.8 | | 31.5 | 25.1 | 36.0 | | | | Progression Factor | | 0.28 | 0.21 | | 3.02 | 1.44 | 1.00 | | | | Incremental Delay, d2 | | 46.8 | 0.5 | | 145.8 | 0.3 | 87.7 | | | | Delay (s) | | 55.8 | 5.6 | | 240.8 | 36.4 | 123.7 | | | | Level of Service | | Е | Α | | F | D | F | | | | Approach Delay (s) | | | 41.8 | | | 82.7 | 123.7 | | | | Approach LOS | | | D | | | F | F | | | | Intersection Summary | | | | | | | | | | | HCM Average Control Delay | | | 71.3 | Н | CM Level | of Service | ce | | Е | | HCM Volume to Capacity ratio | | | 1.14 | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | S | um of lost | time (s) | | | 12.0 | | Intersection Capacity Utilizatio | n | | 103.6% | IC | CU Level o | of Service |) | | G | | Analysis Period (min) | | | 15 | | | | | | | | dr Defacto Right Lane. Reco | ode with | 1 though | lane as a | right lane | e. | | | | | | | ۶ | → | • | • | — | • | 1 | † | ~ | / | ↓ | ✓ | |---|------|----------|-------|------|--------------|------------|--------------|--------------|------|----------|--------------|--------------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | | | | सााक | | ሻ | 44 | | | + | 77 | | Volume (vph) | 0 | 0 | 0 | 100 | 2220 | 150 | 115 | 525 | 0 | 0 | 345 | 455 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | | | | 7.0 | | 7.0 | 7.0 | | | 7.0 | 7.0 | | Lane Util. Factor | | | | | 0.86 | | 1.00 | 0.95 | | | 1.00 | 0.88 | | Frpb, ped/bikes | | | | | 0.99 | | 1.00 | 1.00 | | | 1.00 | 1.00 | | Flpb, ped/bikes | | | | | 1.00 | | 0.78 | 1.00 | | | 1.00 | 1.00 | | Frt | | | | | 0.99 | | 1.00 | 1.00 | | | 1.00 | 0.85 | | Flt Protected | | | | | 1.00 | | 0.95 | 1.00 | | | 1.00 | 1.00 | | Satd. Flow (prot) | | | | | 6100 | | 1371 | 3336 | | | 1773 | 2729 | | Flt Permitted | | | | | 1.00 | | 0.38 | 1.00 | | | 1.00 | 1.00 | | Satd. Flow (perm) | | | | | 6100 | | 550 | 3336 | | | 1773 | 2729 | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.93 | 0.93 | 0.93 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 0 | 0 | 0 | 108 | 2387 | 161 | 121 | 553 | 0 | 0 | 363 | 479 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 390 | | Lane Group Flow (vph) | 0 | 0 | 0 | 0 | 2649 | 0 | 121 | 553 | 0 | 0 | 363 | 89 | | Confl. Peds. (#/hr) | 00/ | 00/ | 00/ | 30 | 00/ | 135 | 1370 | 70/ | 445 | 00/ | 00/ | 1370 | | Heavy Vehicles (%) | 0% | 0% | 0% | 4% | 3% | 5% | 1% | 7% | 0% | 0% | 6% | 3% | | Turn Type | | | | Perm | • | | Perm | • | | | | custom | | Protected Phases | | | | | 6 | | • | 8 | | | 4 | 3 | | Permitted Phases | | | | 6 | 40.0 | | 8 | 50.0 | | | 04.0 | 40.0 | | Actuated Green, G (s) | | | | | 48.0 | | 50.0 | 50.0 | | | 24.8 | 18.2 | | Effective Green, g (s) | | | | | 48.0 | | 50.0 | 50.0 | | | 24.8 | 18.2 | | Actuated g/C Ratio |
| | | | 0.43 | | 0.45 | 0.45 | | | 0.22 | 0.16 | | Clearance Time (s) | | | | | 7.0
3.0 | | 7.0 | 7.0
3.0 | | | 7.0
3.0 | 7.0 | | Vehicle Extension (s) | | | | | | | 3.0 | | | | | 3.0 | | Lane Grp Cap (vph) | | | | | 2614 | | 246 | 1489 | | | 393 | 443 | | v/s Ratio Prot | | | | | 0.42 | | -0.00 | 0.17 | | | c0.20 | 0.03 | | v/s Ratio Perm | | | | | 0.43 | | c0.22 | 0.27 | | | 0.00 | 0.20 | | v/c Ratio
Uniform Delay, d1 | | | | | 1.01
32.0 | | 0.49
22.0 | 0.37
20.6 | | | 0.92
42.7 | 0.20
40.6 | | • • | | | | | 0.55 | | 0.89 | 0.84 | | | 1.00 | 1.00 | | Progression Factor
Incremental Delay, d2 | | | | | 14.3 | | 0.69 | 0.04 | | | 27.0 | 1.00 | | Delay (s) | | | | | 31.9 | | 20.2 | 17.4 | | | 69.7 | 41.6 | | Level of Service | | | | | 31.9
C | | 20.2
C | 17.4
B | | | 09.7
E | 41.0
D | | Approach Delay (s) | | 0.0 | | | 31.9 | | U | 17.9 | | | 53.7 | U | | Approach LOS | | Α | | | C | | | В | | | 55.7
D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 34.0 | H | CM Level | of Servic | е | | С | | | | | HCM Volume to Capacity ratio | | | 0.83 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | S | um of lost | time (s) | | | 14.0 | | | | | Intersection Capacity Utilization | 1 | | 92.1% | IC | CU Level o | of Service | | | F | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | Lane Configurations | | • | → | \rightarrow | • | ← | • | 4 | † | / | > | ļ | 4 | |--|------------------------|---------|------------|---------------|------------|---------------|------------|-------|----------|----------|-------------|------------|------| | Volume (vph) 0 0 0 110 1925 100 170 705 0 0 175 39 1901 1900 1900 1900 1900 1900 1900 1 | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Ideal Flow (yphp) | Lane Configurations | | | | | 4 † \$ | | ň | ^ | | | ∱ ∱ | | | Total Lost time (s) | \ . <i>,</i> | | | | | | | | | | | | 390 | | Lane Util. Factor | | 1900 | 1900 | 1900 | 1900 | | 1900 | | | 1900 | 1900 | | 1900 | | Frpb, ped/bikes | | | | | | | | | | | | | | | Fipb, ped/bikes | | | | | | | | | | | | | | | Fit Protected | | | | | | | | | | | | | | | Fit Protected 1.00 0.95 1.00 1.00 | | | | | | | | | | | | | | | Satd. Flow (prot) | | | | | | | | | | | | | | | Fit Permitted | | | | | | | | | | | | | | | Satcl. Flow (perm) 4915 445 3433 2205 Peak-hour factor, PHF 0.95 0.95 0.93 0.93 0.93 0.95 0.93 0.90 0 0 0 0 0 0 0 0 0 0 0< | , | | | | | | | | | | | | | | Peak-hour factor, PHF 0.95 0.95 0.95 0.93 0.93 0.93 0.95 0.90 | | | | | | | | | | | | | | | Adj. Flow (vph) 0 0 118 2070 108 179 742 0 0 184 41 RTOR Reduction (vph) 0 | Satd. Flow (perm) | | | | | | | | | | | | | | RTOR Reduction (vph) 0 0 0 4 0 0 0 0 18 0 Lane Group Flow (vph) 0 0 0 0 2929 0 179 742 0 0 577 0 Confl. Peds. (#hr) 90 65 65 90 490 290 290 490 Heavy Vehicles (%) 0% 0% 0% 2% 7% 4% 4% 0% 0% 11% 59 Turn Type Perm pmrth pmrth pmrth pmrth pmrth Proceeds 4 < | Peak-hour factor, PHF | 0.95 | | 0.95 | | | | | | 0.95 | 0.95 | | 0.95 | | Lane Group Flow (vph) 0 0 0 0 2292 0 179 742 0 0 577 0 Confl. Peds. (#/hr) 90 65 65 90 490 290 290 491 Heavy Vehicles (%) 0% 0% 0% 2% 7% 4% 4% 0% 0% 110 5% Turn Type Perm pm+pt pm+pt 6 3 8 4 6 3 8 4 4 6 30.6 6 3 8 4 4 41.6 41.6 41.6 30.6 6 6 8 8 4 4 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6 | | 0 | 0 | 0 | 118 | 2070 | 108 | 179 | 742 | 0 | 0 | | 411 | | Confi. Peds. (#/hr) 90 65 65 90 490 290 290 490 Heavy Vehicles (%) 0% 0% 0% 7% 4% 4% 0% 0% 1116 57 Turn Type Perm pm+pt pm+pt pm-pt pm | RTOR Reduction (vph) | 0 | | | 0 | | 0 | | | 0 | | | 0 | | Heavy Vehicles (%) | Lane Group Flow (vph) | | 0 | | | 2292 | | | 742 | | | 577 | 0 | | Tum Type Perm pm+pt Protected Phases 6 3 8 4 Permitted Phases 6 8 A Actuated Green, G (s) 56.4 41.6 41.6 30.6 Effective Green, g (s) 56.4 41.6 41.6 30.6 Actuated g/C Ratio 0.50 0.37 0.37 0.27 Clearance Time (s) 7.0 4.0 7.0 7.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 2475 242 1275 602 v/s Ratio Prot c0.05 0.22 c0.26 v/s Ratio Perm 0.47 0.23 v/c Ratio 0.93 0.74 0.58 1.25dr Uniform Delay, d1 25.9 28.0 28.2 40.1 Progression Factor 1.00 0.77 0.82 1.00 Incremental Delay, d2 7.4 8.1 0.5 26.3 Delay (s) 33.3 29.8 | Confl. Peds. (#/hr) | | | | | | | | | | | | 490 | | Protected Phases 6 | Heavy Vehicles (%) | 0% | 0% | 0% | 0% | 2% | 7% | 4% | 4% | 0% | 0% | 11% | 5% | | Permitted Phases 6 | | | | | Perm | | | pm+pt | | | | | | | Actuated Green, G (s) 56.4 41.6 41.6 30.6 Effective Green, g (s) 56.4 41.6 41.6 30.6 Actuated g/C Ratio 0.50 0.37 0.37 0.27 Clearance Time (s) 7.0 4.0 7.0 7.0 7.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 2475 242 1275 602 v/s Ratio Prot c0.05 0.22 c0.26 v/s Ratio Perm 0.47 0.23 v/c Ratio Perm 0.47 0.23 v/c Ratio Perm 0.47 0.58 1.25dr Uniform Delay, d1 25.9 28.0 28.2 40.1 Progression Factor 1.00 0.77 0.82 1.00 Incremental Delay, d2 7.4 8.1 0.5 26.3 Delay (s) 33.3 29.8 23.7 66.4 Level of Service C C C C E Approach Delay (s) 0.0 33.3 24.9 66.4 Approach LOS A C C C E E Intersection Summary HCM Average Control Delay 36.4 HCM Level of Service D HCM Volume to Capacity ratio 0.93 Actuated Cycle Length (s) 112.0 Sum of lost time (s) 18.0 Intersection Capacity Utilization 139.2% ICU Level of Service H Analysis Period (min) 15 dr Defacto Right Lane. Recode with 1 though lane as a right lane. | Protected Phases | | | | | 6 | | 3 | 8 | | | 4 | | | Effective Green, g (s) 56.4 41.6 41.6 30.6 Actuated g/C Ratio 0.50 0.37 0.37 0.27 Clearance Time (s) 7.0 4.0 7.0 7.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 2475 242 1275 602 V/s Ratio Prot c0.05 0.22 c0.26 V/s Ratio Perm 0.47 0.23 V/c Ratio 0.93 0.74 0.58 1.25dr Uniform Delay, d1 25.9 28.0 28.2 40.1 Progression Factor 1.00 0.77 0.82 1.00 Incremental Delay, d2 7.4 8.1 0.5 26.3 Delay (s) 33.3 29.8 23.7 66.4 Level of Service C C C E Approach Delay (s) 0.0 33.3 24.9 66.4 Approach LOS A C C E Intersection Summary HCM Volume to Capacity ratio 0.93 A | Permitted Phases | | | | 6 | | | 8 | | | | | | | Actuated g/C Ratio 0.50 0.37 0.37 0.27 Clearance Time (s) 7.0 4.0 7.0 7.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 2475 242 1275 602 v/s Ratio Prot c0.05 0.22 c0.26 v/s Ratio Perm 0.47 0.23 v/c Ratio 0.93 0.74 0.58 1.25dr Uniform Delay, d1 25.9 28.0 28.2 40.1 Progression Factor 1.00 0.77 0.82 1.00 Incremental Delay, d2 7.4 8.1 0.5 26.3 Delay (s) 33.3 29.8 23.7 66.4 Level of Service C C C E Approach Delay (s) 0.0 33.3 24.9 66.4 Approach LOS A C C C E Intersection Summary B 112.0 Sum of lost time (s) 18.0 18.0 HCM Volume to Capacity ratio 0.93 12.0 Sum of | Actuated Green, G (s) | | | | | 56.4 | | 41.6 | | | | 30.6 | | | Clearance Time (s) 7.0 4.0 7.0 7.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 2475 242 1275 602 v/s Ratio Prot c0.05 0.22 c0.26 v/s Ratio Perm 0.47 0.23 c0.28 v/s Ratio 0.93 0.74 0.58 1.25dr Uniform Delay, d1 25.9 28.0 28.2 40.1 Progression Factor 1.00 0.77 0.82 1.00 Incremental Delay, d2 7.4 8.1 0.5 26.3 Delay (s) 33.3 29.8 23.7 66.4 Level of Service C C C E Approach Los A C C C E Intersection Summary E E E HCM Volume to Capacity ratio 0.93 Actuated Cycle Length (s) 112.0 Sum of lost time (s) 18.0 Intersection Capacity Utilization 139.2% | Effective Green, g (s) | | | | | 56.4 | | 41.6 | | | | | | | Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 2475 242 1275 602 v/s Ratio Prot c0.05 0.22 c0.26 v/s Ratio Perm 0.47 0.23 v/c Ratio 0.93 0.74 0.58 1.25dr Uniform Delay, d1 25.9 28.0 28.2 40.1 Progression Factor 1.00 0.77 0.82 1.00 Incremental Delay, d2 7.4 8.1 0.5 26.3 Delay (s) 33.3 29.8 23.7 66.4 Level
of Service C C C E Approach Delay (s) 0.0 33.3 24.9 66.4 Approach LOS A C C C E Intersection Summary B HCM Volume to Capacity ratio 0.93 Actuated Cycle Length (s) 112.0 Sum of lost time (s) 18.0 Intersection Capacity Utilization 139.2% ICU Level of Service H H Analysis Pe | Actuated g/C Ratio | | | | | | | | | | | | | | Lane Grp Cap (vph) 2475 242 1275 602 v/s Ratio Prot c0.05 0.22 c0.26 v/s Ratio Perm 0.47 0.23 v/c Ratio 0.93 0.74 0.58 1.25dr Uniform Delay, d1 25.9 28.0 28.2 40.1 Progression Factor 1.00 0.77 0.82 1.00 Incremental Delay, d2 7.4 8.1 0.5 26.3 Delay (s) 33.3 29.8 23.7 66.4 Level of Service C C C E Approach Delay (s) 0.0 33.3 24.9 66.4 Approach LOS A C C E Intersection Summary B <td>Clearance Time (s)</td> <td></td> | Clearance Time (s) | | | | | | | | | | | | | | v/s Ratio Prot c0.05 0.22 c0.26 v/s Ratio Perm 0.47 0.23 v/c Ratio 0.93 0.74 0.58 1.25dr Uniform Delay, d1 25.9 28.0 28.2 40.1 Progression Factor 1.00 0.77 0.82 1.00 Incremental Delay, d2 7.4 8.1 0.5 26.3 Delay (s) 33.3 29.8 23.7 66.4 Level of Service C C C E Approach Delay (s) 0.0 33.3 24.9 66.4 Approach LOS A C C E Intersection Summary C C C E IHCM Average Control Delay 36.4 HCM Level of Service D HCM Volume to Capacity ratio 0.93 Actuated Cycle Length (s) 112.0 Sum of lost time (s) 18.0 Intersection Capacity Utilization 139.2% ICU Level of Service H Analysis Period (min) 15 dr < | Vehicle Extension (s) | | | | | 3.0 | | 3.0 | 3.0 | | | 3.0 | | | v/s Ratio Perm 0.47 0.23 v/c Ratio 0.93 0.74 0.58 1.25dr Uniform Delay, d1 25.9 28.0 28.2 40.1 Progression Factor 1.00 0.77 0.82 1.00 Incremental Delay, d2 7.4 8.1 0.5 26.3 Delay (s) 33.3 29.8 23.7 66.4 Level of Service C C C E Approach Delay (s) 0.0 33.3 24.9 66.4 Approach LOS A C C C E Intersection Summary HCM Average Control Delay 36.4 HCM Level of Service D D HCM Volume to Capacity ratio 0.93 Actuated Cycle Length (s) 112.0 Sum of lost time (s) 18.0 Intersection Capacity Utilization 139.2% ICU Level of Service H Analysis Period (min) 15 dr Defacto Right Lane. Recode with 1 though lane as a right lane. | Lane Grp Cap (vph) | | | | | 2475 | | 242 | 1275 | | | 602 | | | v/c Ratio 0.93 0.74 0.58 1.25dr Uniform Delay, d1 25.9 28.0 28.2 40.1 Progression Factor 1.00 0.77 0.82 1.00 Incremental Delay, d2 7.4 8.1 0.5 26.3 Delay (s) 33.3 29.8 23.7 66.4 Level of Service C C C E Approach Delay (s) 0.0 33.3 24.9 66.4 Approach LOS A C C C E Intersection Summary HCM Average Control Delay 36.4 HCM Level of Service D D HCM Volume to Capacity ratio 0.93 Actuated Cycle Length (s) 112.0 Sum of lost time (s) 18.0 Intersection Capacity Utilization 139.2% ICU Level of Service H H Analysis Period (min) 15 15 15 15 15 Graph of the color t | v/s Ratio Prot | | | | | | | c0.05 | 0.22 | | | c0.26 | | | Uniform Delay, d1 25.9 28.0 28.2 40.1 Progression Factor 1.00 0.77 0.82 1.00 Incremental Delay, d2 7.4 8.1 0.5 26.3 Delay (s) 33.3 29.8 23.7 66.4 Level of Service C C C E Approach Delay (s) 0.0 33.3 24.9 66.4 Approach LOS A C C C E Intersection Summary HCM Average Control Delay 36.4 HCM Level of Service D D HCM Volume to Capacity ratio 0.93 Actuated Cycle Length (s) 112.0 Sum of lost time (s) 18.0 Intersection Capacity Utilization 139.2% ICU Level of Service H Analysis Period (min) 15 dr Defacto Right Lane. Recode with 1 though lane as a right lane. | v/s Ratio Perm | | | | | 0.47 | | 0.23 | | | | | | | Progression Factor 1.00 0.77 0.82 1.00 Incremental Delay, d2 7.4 8.1 0.5 26.3 Delay (s) 33.3 29.8 23.7 66.4 Level of Service C C C E Approach Delay (s) 0.0 33.3 24.9 66.4 Approach LOS A C C C E Intersection Summary B HCM Level of Service D D HCM Volume to Capacity ratio 0.93 Actuated Cycle Length (s) 112.0 Sum of lost time (s) 18.0 Intersection Capacity Utilization 139.2% ICU Level of Service H Analysis Period (min) 15 dr Defacto Right Lane. Recode with 1 though lane as a right lane. Intersection Capacity Lane. Recode with 1 though lane as a right lane. | v/c Ratio | | | | | 0.93 | | 0.74 | | | | | | | Note | Uniform Delay, d1 | | | | | 25.9 | | 28.0 | 28.2 | | | | | | Delay (s) 33.3 29.8 23.7 66.4 Level of Service C C C E Approach Delay (s) 0.0 33.3 24.9 66.4 Approach LOS A C C E Intersection Summary HCM Average Control Delay 36.4 HCM Level of Service D HCM Volume to Capacity ratio 0.93 Actuated Cycle Length (s) 112.0 Sum of lost time (s) 18.0 Intersection Capacity Utilization 139.2% ICU Level of Service H Analysis Period (min) 15 dr Defacto Right Lane. Recode with 1 though lane as a right lane. | Progression Factor | | | | | 1.00 | | 0.77 | 0.82 | | | | | | Level of Service C C C E Approach Delay (s) 0.0 33.3 24.9 66.4 Approach LOS A C C C Intersection Summary HCM Average Control Delay 36.4 HCM Level of Service D HCM Volume to Capacity ratio 0.93 Actuated Cycle Length (s) 112.0 Sum of lost time (s) 18.0 Intersection Capacity Utilization 139.2% ICU Level of Service H Analysis Period (min) 15 dr Defacto Right Lane. Recode with 1 though lane as a right lane. | Incremental Delay, d2 | | | | | 7.4 | | 8.1 | 0.5 | | | 26.3 | | | Approach Delay (s) 0.0 33.3 24.9 66.4 Approach LOS A C C E Intersection Summary HCM Average Control Delay 36.4 HCM Level of Service D HCM Volume to Capacity ratio 0.93 Actuated Cycle Length (s) 112.0 Sum of lost time (s) 18.0 Intersection Capacity Utilization 139.2% ICU Level of Service H Analysis Period (min) 15 dr Defacto Right Lane. Recode with 1 though lane as a right lane. | Delay (s) | | | | | 33.3 | | 29.8 | 23.7 | | | 66.4 | | | Approach LOS A C C E Intersection Summary HCM Average Control Delay 36.4 HCM Level of Service D HCM Volume to Capacity ratio 0.93 Actuated Cycle Length (s) 112.0 Sum of lost time (s) 18.0 Intersection Capacity Utilization 139.2% ICU Level of Service H Analysis Period (min) 15 dr Defacto Right Lane. Recode with 1 though lane as a right lane. | Level of Service | | | | | | | С | | | | | | | Intersection Summary HCM Average Control Delay 36.4 HCM Level of Service D HCM Volume to Capacity ratio 0.93 Actuated Cycle Length (s) 112.0 Sum of lost time (s) 18.0 Intersection Capacity Utilization 139.2% ICU Level of Service H Analysis Period (min) 15 dr Defacto Right Lane. Recode with 1 though lane as a right lane. | | | 0.0 | | | 33.3 | | | 24.9 | | | 66.4 | | | HCM Average Control Delay 36.4 HCM Level of Service D HCM Volume to Capacity ratio 0.93 Actuated Cycle Length (s) 112.0 Sum of lost time (s) 18.0 Intersection Capacity Utilization 139.2% ICU Level of Service H Analysis Period (min) 15 dr Defacto Right Lane. Recode with 1 though lane as a right lane. | Approach LOS | | Α | | | С | | | С | | | E | | | HCM Volume to Capacity ratio Actuated Cycle Length (s) 112.0 Sum of lost time (s) 18.0 Intersection Capacity Utilization 139.2% ICU Level of Service H Analysis Period (min) 15 dr Defacto Right Lane. Recode with 1 though lane as a right lane. | Intersection Summary | | | | | | | | | | | | | | Actuated Cycle Length (s) 112.0 Sum of lost time (s) 18.0 Intersection Capacity Utilization 139.2% ICU Level of Service H Analysis Period (min) 15 dr Defacto Right Lane. Recode with 1 though lane as a right lane. | | | | | Н | CM Level | of Service | e | | D | | | | | Intersection Capacity Utilization 139.2% ICU Level of Service H Analysis Period (min) 15 dr Defacto Right Lane. Recode with 1 though lane as a right lane. | | | | | | | | | | | | | | | Analysis Period (min) 15 dr Defacto Right Lane. Recode with 1 though lane as a right lane. | | | | | | | | | | | | | | | dr Defacto Right Lane. Recode with 1 though lane as a right lane. | | | | | IC | CU Level o | of Service |) | | Н | c. Critical Lane Group | ğ . | de with | 1 though I | ane as a | right lane | €. | | | | | | | | | | ۶ | → | * | • | ← | 4 | 1 | † | ~ | / | | 4 | |-----------------------------------|------|----------|-------|------|------------|------------|------|----------|------|----------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | ተተኈ | | | | | | ^ | | 7 | † | | | Volume (vph) | 0 | 1465 | 440 | 0 | 0 | 0 | 0 | 720 | 0 | 470 | 165 | 0 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.6 | 3.5 | 3.5 | 3.5 | 3.5 | | Total Lost time (s) | | 6.0 | | | | | | 8.0 | | 4.0 | 8.0 | | | Lane Util. Factor | | 0.91 | | | | | | 0.95 | | 1.00 | 1.00 | | | Frpb, ped/bikes | | 0.99 | | | | | | 1.00 | | 1.00 | 1.00 | | | Flpb, ped/bikes | | 1.00 | | | | | | 1.00 | | 1.00 | 1.00 | | | Frt | | 0.97 | | | | | | 1.00 | | 1.00 | 1.00 | | | Flt Protected | | 1.00 | | | | | | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (prot) | | 4712 | | | | | | 3471 | | 1716 | 1756 | | | Flt Permitted | | 1.00 | | | | | | 1.00 | | 0.15 | 1.00 | | | Satd. Flow (perm) | | 4712 | | | | | | 3471 | | 268 | 1756 | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 0 | 1542 | 463 | 0 | 0 | 0 | 0 | 758 | 0 | 495 | 174 | 0 | | RTOR Reduction (vph) | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Lane Group Flow (vph) | 0 | 2003 | 0 | 0 | 0 | 0 | 0 | 758 | 0 | 495 | 174 | 0 | | Confl. Peds. (#/hr) | 35 | | 15 | 15 | | 35 | 835 | | 55 | 55 | | 835 | | Heavy Vehicles (%) | 0% | 4% | 5% | 0% | 0% | 0% | 0% | 4% | 4% | 4% | 7% | 0% | | Turn Type | | | | | | | | | | pm+pt | | | | Protected Phases | | 2 | | | | | | 8 | | 7 | 4 | | | Permitted Phases | | | | | | | | | | 4 | | | | Actuated Green, G (s) | | 47.0 | | | | | | 23.0 | | 51.0 | 51.0 | | | Effective Green, g (s) | | 47.0 | | | | | | 23.0 | | 51.0 | 51.0 | | | Actuated g/C Ratio | | 0.42 | | | | | | 0.21 | | 0.46 | 0.46 | | | Clearance Time (s) | | 6.0 | | | | | | 8.0 | | 4.0 | 8.0 | | | Vehicle Extension (s) | | 3.0 | | | | | | 3.0 | | 3.0 | 3.0 | | | Lane Grp Cap (vph) | | 1977 | | | | | | 713 |
| 432 | 800 | | | v/s Ratio Prot | | c0.43 | | | | | | 0.22 | | c0.25 | 0.10 | | | v/s Ratio Perm | | 00.10 | | | | | | V.LL | | c0.28 | 0.10 | | | v/c Ratio | | 1.01 | | | | | | 1.06 | | 1.15 | 0.22 | | | Uniform Delay, d1 | | 32.5 | | | | | | 44.5 | | 32.7 | 18.4 | | | Progression Factor | | 0.96 | | | | | | 1.00 | | 1.54 | 0.51 | | | Incremental Delay, d2 | | 19.4 | | | | | | 51.7 | | 68.4 | 0.0 | | | Delay (s) | | 50.6 | | | | | | 96.2 | | 118.7 | 9.5 | | | Level of Service | | D | | | | | | F | | F | A | | | Approach Delay (s) | | 50.6 | | | 0.0 | | | 96.2 | | • | 90.3 | | | Approach LOS | | D | | | A | | | F | | | F | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 68.4 | H | CM Level | of Service |) | | Е | | | | | HCM Volume to Capacity ratio | | | 1.02 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | Sı | um of lost | time (s) | | | 10.0 | | | | | Intersection Capacity Utilization | | | 99.4% | | | of Service | | | F | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ٠ | → | † | <u> </u> | \ | | <i>></i> | 4 | | | |---------------------------------|--------|--------------|------------|----------|------------|------------|-------------|--------|------|--| | Movement | EBL | EBT | NBT | NBR | SBL | SBT | NER | NER2 | | | | Lane Configurations | ሻ | 4₽ | ∱ } | | ሻ | ^ | 7 | 7 | | | | Volume (vph) | 960 | 1420 | 310 | 75 | 295 | 140 | 760 | 75 | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | Total Lost time (s) | 7.0 | 7.0 | 7.0 | | 6.0 | 7.0 | 7.0 | 7.0 | | | | Lane Util. Factor | 0.91 | 0.91 | 0.95 | | 1.00 | 0.95 | 1.00 | 1.00 | | | | Frpb, ped/bikes | 1.00 | 1.00 | 0.93 | | 1.00 | 1.00 | 1.00 | 0.76 | | | | Flpb, ped/bikes | 0.98 | 1.00 | 1.00 | | 0.97 | 1.00 | 1.00 | 1.00 | | | | Frt | 1.00 | 1.00 | 0.97 | | 1.00 | 1.00 | 0.85 | 0.85 | | | | Flt Protected | 0.95 | 0.99 | 1.00 | | 0.95 | 1.00 | 1.00 | 1.00 | | | | Satd. Flow (prot) | 1548 | 3293 | 2952 | | 1658 | 3275 | 1536 | 1177 | | | | FIt Permitted | 0.95 | 0.99 | 1.00 | | 0.28 | 1.00 | 1.00 | 1.00 | | | | Satd. Flow (perm) | 1548 | 3293 | 2952 | | 497 | 3275 | 1536 | 1177 | | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | | | Adj. Flow (vph) | 1011 | 1495 | 326 | 79 | 311 | 147 | 800 | 79 | | | | RTOR Reduction (vph) | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 35 | | | | Lane Group Flow (vph) | 809 | 1697 | 388 | 0 | 311 | 147 | 800 | 44 | | | | Confl. Peds. (#/hr) | 10 | 1001 | 000 | 290 | 290 | 177 | 000 | 125 | | | | Heavy Vehicles (%) | 3% | 3% | 10% | 7% | 4% | 9% | 4% | 3% | | | | Turn Type | Perm | 3 /0 | 10 /0 | 1 /0 | | 3 70 | custom | | | | | Protected Phases | Feiiii | 2 | 8 | | pm+pt
7 | 4 | Custom | Custom | | | | Permitted Phases | 2 | Z | 0 | | 4 | 4 | 2 | 2 | | | | | 59.4 | EQ 4 | 19.6 | | 38.6 | 38.6 | 59.4 | 59.4 | | | | Actuated Green, G (s) | | 59.4
59.4 | 19.6 | | 38.6 | 38.6 | 59.4 | 59.4 | | | | Effective Green, g (s) | 59.4 | | 0.18 | | | | | | | | | Actuated g/C Ratio | 0.53 | 0.53 | | | 0.34 | 0.34 | 0.53 | 0.53 | | | | Clearance Time (s) | 7.0 | 7.0 | 7.0 | | 6.0 | 7.0 | 7.0 | 7.0 | | | | Vehicle Extension (s) | 3.0 | 3.0 | 3.0 | | 3.0 | 3.0 | 3.0 | 3.0 | | | | Lane Grp Cap (vph) | 821 | 1746 | 517 | | 306 | 1129 | 815 | 624 | | | | v/s Ratio Prot | 2.50 | 0.50 | 0.13 | | c0.12 | 0.04 | 0.50 | 2.24 | | | | v/s Ratio Perm | c0.52 | 0.52 | 0 == | | c0.23 | 0.40 | 0.52 | 0.04 | | | | v/c Ratio | 0.99 | 0.97 | 0.75 | | 1.02 | 0.13 | 0.98 | 0.07 | | | | Uniform Delay, d1 | 25.9 | 25.5 | 43.9 | | 33.2 | 25.2 | 25.8 | 12.8 | | | | Progression Factor | 0.69 | 0.69 | 1.00 | | 1.09 | 0.93 | 1.00 | 1.00 | | | | Incremental Delay, d2 | 19.1 | 10.1 | 5.9 | | 34.3 | 0.0 | 27.4 | 0.2 | | | | Delay (s) | 37.1 | 27.5 | 49.8 | | 70.4 | 23.4 | 53.1 | 13.1 | | | | Level of Service | D | С | D | | E | C | D | В | | | | Approach Delay (s) | | 30.6 | 49.8 | | | 55.4 | | | | | | Approach LOS | | С | D | | | E | | | | | | Intersection Summary | | | | | | | | | | | | HCM Average Control Delay | | | 39.0 | Н | CM Level | of Servi | ce | | D | | | HCM Volume to Capacity rat | io | | 0.96 | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | um of lost | . , | | | 13.0 | | | Intersection Capacity Utilizati | ion | | 146.5% | IC | CU Level o | of Service | 9 | | Н | | | Analysis Period (min) | | | 15 | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | † | 7 | ₩ | † | لر | <i>•</i> | × | 4 | 4 | × | t | |-----------------------------------|------|-------------|--------|----------|------------|------------|----------|------|------|------|------|------| | Movement | NBL | NBT | NBR | SBL | SBT | SBR | NEL | NET | NER | SWL | SWT | SWR | | Lane Configurations | | ∱ î≽ | | | ^ | | 7 | 4₽ | | | | | | Volume (vph) | 0 | 95 | 255 | 0 | 275 | 0 | 765 | 1415 | 0 | 0 | 0 | 0 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | 7.0 | | | 7.0 | | 7.0 | 7.0 | | | | | | Lane Util. Factor | | 0.95 | | | 0.95 | | 0.91 | 0.91 | | | | | | Frpb, ped/bikes | | 0.93 | | | 1.00 | | 1.00 | 1.00 | | | | | | Flpb, ped/bikes | | 1.00 | | | 1.00 | | 1.00 | 1.00 | | | | | | Frt | | 0.89 | | | 1.00 | | 1.00 | 1.00 | | | | | | Flt Protected | | 1.00 | | | 1.00 | | 0.95 | 1.00 | | | | | | Satd. Flow (prot) | | 2813 | | | 3570 | | 1547 | 3248 | | | | | | Flt Permitted | | 1.00 | | | 1.00 | | 0.95 | 1.00 | | | | | | Satd. Flow (perm) | | 2813 | | | 3570 | | 1547 | 3248 | | | | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 0 | 100 | 268 | 0 | 289 | 0 | 805 | 1489 | 0 | 0 | 0 | 0 | | RTOR Reduction (vph) | 0 | 38 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Lane Group Flow (vph) | 0 | 330 | 0 | 0 | 289 | 0 | 724 | 1570 | 0 | 0 | 0 | 0 | | Confl. Peds. (#/hr) | 90 | | 65 | 65 | | 90 | | | | | | | | Heavy Vehicles (%) | 0% | 6% | 5% | 0% | 0% | 0% | 5% | 5% | 0% | 0% | 0% | 0% | | Turn Type | | | | | | | Perm | | | | | | | Protected Phases | | 8 | | | 4 | | | 2 | | | | | | Permitted Phases | | | | | | | 2 | | | | | | | Actuated Green, G (s) | | 26.0 | | | 26.0 | | 72.0 | 72.0 | | | | | | Effective Green, g (s) | | 26.0 | | | 26.0 | | 72.0 | 72.0 | | | | | | Actuated g/C Ratio | | 0.23 | | | 0.23 | | 0.64 | 0.64 | | | | | | Clearance Time (s) | | 7.0 | | | 7.0 | | 7.0 | 7.0 | | | | | | Vehicle Extension (s) | | 3.0 | | | 3.0 | | 3.0 | 3.0 | | | | | | Lane Grp Cap (vph) | | 653 | | | 829 | | 995 | 2088 | | | | | | v/s Ratio Prot | | c0.12 | | | 0.08 | | | | | | | | | v/s Ratio Perm | | | | | | | 0.47 | 0.48 | | | | | | v/c Ratio | | 0.51 | | | 0.35 | | 0.73 | 0.75 | | | | | | Uniform Delay, d1 | | 37.4 | | | 35.9 | | 13.4 | 13.8 | | | | | | Progression Factor | | 1.00 | | | 0.90 | | 0.30 | 0.30 | | | | | | Incremental Delay, d2 | | 0.6 | | | 0.1 | | 1.3 | 0.7 | | | | | | Delay (s) | | 38.0 | | | 32.6 | | 5.4 | 4.9 | | | | | | Level of Service | | D | | | С | | Α | Α | | | | | | Approach Delay (s) | | 38.0 | | | 32.6 | | | 5.0 | | | 0.0 | | | Approach LOS | | D | | | С | | | Α | | | Α | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 11.8 | H | CM Level | of Service | Э | | В | | | | | HCM Volume to Capacity ratio | | | 0.69 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | um of lost | | | | 14.0 | | | | | Intersection Capacity Utilization | | | 139.2% | IC | U Level o | of Service | | | Н | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | ## **C5** South Side Two-Way | | • | → | ← | • | \ | 4 | | |--|--------------|--------------|---------------|--------------|-------------------------|--------------|--| | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | | Lane Configurations | ሻ | † | † | 7 | ሻ | 7 | | | Volume (vph) | 70 | 555 | 355 | 90 | 120 | 60 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | | | Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | Frpb, ped/bikes | 1.00 | 1.00 | 1.00 | 0.72 | 1.00 | 0.89 | | | Flpb, ped/bikes | 0.88 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | Frt | 1.00 | 1.00 | 1.00 | 0.85 | 1.00 | 0.85 | | | Flt Protected | 0.95
1344 | 1.00 | 1.00
1610 | 1.00 | 0.95 | 1.00 | | | Satd. Flow (prot) Flt Permitted | 0.42 | 1626
1.00 | 1.00 | 1005
1.00 | 1487
0.95 | 1223
1.00 | | | Satd. Flow (perm) | 598 | 1626 | 1610 | 1005 | 1487 | 1223 | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | Adj. Flow (vph) | 78 | 617 | 394 | 100 | 133 | 67 | | | RTOR Reduction (vph) | 0 | 017 | 0 | 52 | 0 | 50 | | | Lane Group Flow (vph) | 78 | 617 | 394 | 48 | 133 | 17 | | | Confl. Peds. (#/hr) | 190 | 017 | 004 | 190 | 130 | 50 | | | Heavy Vehicles (%) | 5% | 4% | 5% | 3% | 8% | 4% | | | Turn Type | Perm | .,, | | Perm | | Perm | | | Protected Phases | | 2 | 6 | | 4 | | | | Permitted Phases | 2 | | | 6 | | 4 | | | Actuated Green, G (s) | 57.4 | 57.4 | 57.4 | 57.4 | 31.0 | 31.0 | | | Effective Green, g (s) | 57.4 | 57.4 | 57.4 | 57.4 | 31.0 | 31.0 | | | Actuated g/C Ratio | 0.48 | 0.48 | 0.48 | 0.48 | 0.26 | 0.26 | | | Clearance Time (s) | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | | | Vehicle Extension (s) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | | Lane Grp Cap (vph) | 286 | 778 | 770 | 481 | 384 | 316 | | | v/s Ratio Prot | | c0.38 | 0.24 | | c0.09 | | | | v/s Ratio Perm | 0.13 | | | 0.05 | | 0.01 | | | v/c Ratio | 0.27 | 0.79 | 0.51 | 0.10 | 0.35 | 0.05 | | | Uniform Delay, d1 | 18.8 | 26.3 | 21.6 | 17.1 | 36.2 | 33.5 | | | Progression Factor | 1.00 | 1.00 | 0.38 | 0.13 | 1.00 | 1.00 | | | Incremental
Delay, d2 | 2.3 | 8.2 | 2.3 | 0.4 | 0.5 | 0.1 | | | Delay (s)
Level of Service | 21.1
C | 34.5
C | 10.4
B | 2.6
A | 36.8
D | 33.6
C | | | Approach Delay (s) | U | 33.0 | 8.9 | A | 35.7 | U | | | Approach LOS | | 00.0
C | Α | | 55.7
D | | | | •• | | | | | | | | | Intersection Summary | | | 04.0 | 1.1 | OM Laural | -f Oi | | | HCM Values to Conscitute to | _ | | 24.8 | H | CIVI Level | of Service | | | HCM Volume to Capacity rati
Actuated Cycle Length (s) | U | | 0.64
120.0 | c. | ım of loct | time (a) | | | Intersection Capacity Utilization | on | | 68.3% | | um of lost
U Level o | | | | Analysis Period (min) | UIT | | 15 | 10 | O Level (| i Service | | | c Critical Lane Group | | | 13 | | | | | | o ontiour Lane Group | | | | | | | | | | ۶ | → | • | • | ← | • | • | † | / | > | ļ | 4 | |-------------------------------|----------|----------|-------|-------|------------|------------|-------|----------|----------|-------------|-------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | † | | ሻ | ₽ | | | 4 | | | 4 | | | Volume (vph) | 25 | 650 | 0 | 5 | 375 | 5 | 0 | 0 | 5 | 0 | 0 | 70 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 3.0 | 6.0 | | 7.0 | 6.0 | | | 7.0 | | | 6.0 | | | Lane Util. Factor | 1.00 | 1.00 | | 1.00 | 1.00 | | | 1.00 | | | 1.00 | | | Frt | 1.00 | 1.00 | | 1.00 | 1.00 | | | 0.86 | | | 0.86 | | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | | 1.00 | | | 1.00 | | | Satd. Flow (prot) | 1606 | 1610 | | 1575 | 1623 | | | 1434 | | | 1463 | | | Flt Permitted | 0.46 | 1.00 | | 0.95 | 1.00 | | | 1.00 | | | 1.00 | | | Satd. Flow (perm) | 771 | 1610 | | 1575 | 1623 | | | 1434 | | | 1463 | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 28 | 722 | 0 | 6 | 417 | 6 | 0 | 0 | 6 | 0 | 0 | 78 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 68 | 0 | | Lane Group Flow (vph) | 28 | 722 | 0 | 6 | 423 | 0 | 0 | 6 | 0 | 0 | 10 | 0 | | Heavy Vehicles (%) | 0% | 5% | 2% | 2% | 4% | 0% | 2% | 2% | 2% | 0% | 2% | 0% | | Turn Type | pm+pt | | | Prot | | | Split | | | Split | | | | Protected Phases | 5 | 2 | | 1 | 6 | | 8 | 8 | | 4 10 | 4 10 | | | Permitted Phases | 2 | | | | | | | | | | | | | Actuated Green, G (s) | 72.6 | 68.6 | | 1.4 | 70.0 | | | 2.0 | | | 16.0 | | | Effective Green, g (s) | 72.6 | 68.6 | | 1.4 | 70.0 | | | 2.0 | | | 16.0 | | | Actuated g/C Ratio | 0.60 | 0.57 | | 0.01 | 0.58 | | | 0.02 | | | 0.13 | | | Clearance Time (s) | 3.0 | 6.0 | | 7.0 | 6.0 | | | 7.0 | | | | | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | | | 3.0 | | | | | | Lane Grp Cap (vph) | 494 | 920 | | 18 | 947 | | | 24 | | | 195 | | | v/s Ratio Prot | 0.00 | c0.45 | | c0.00 | 0.26 | | | c0.00 | | | c0.01 | | | v/s Ratio Perm | 0.03 | | | | | | | | | | | | | v/c Ratio | 0.06 | 0.78 | | 0.33 | 0.45 | | | 0.25 | | | 0.05 | | | Uniform Delay, d1 | 9.8 | 20.0 | | 58.8 | 14.1 | | | 58.3 | | | 45.4 | | | Progression Factor | 0.54 | 0.63 | | 0.73 | 1.62 | | | 1.00 | | | 1.00 | | | Incremental Delay, d2 | 0.0 | 5.3 | | 10.0 | 1.4 | | | 5.4 | | | 0.1 | | | Delay (s) | 5.3 | 17.9 | | 53.0 | 24.2 | | | 63.7 | | | 45.5 | | | Level of Service | Α | В | | D | С | | | E | | | D | | | Approach Delay (s) | | 17.4 | | | 24.6 | | | 63.7 | | | 45.5 | | | Approach LOS | | В | | | С | | | Е | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | y | | 21.8 | H | CM Level | of Service | | | С | | | | | HCM Volume to Capacity ra | tio | | 0.63 | | | | | | | | | | | Actuated Cycle Length (s) | | | 120.0 | Sı | um of lost | time (s) | | | 32.0 | | | | | Intersection Capacity Utiliza | tion | | 57.2% | IC | U Level o | of Service | | | В | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | c Critical Lane Group | | ۶ | - | \rightarrow | • | • | • | 4 | † | ~ | > | ţ | 4 | |-----------------------------------|------|---------|---------------|------|------------|------------|------|----------|------|-------------|-------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | , | | | ¥ | f) | | | 4 | | | 4 | | | Volume (vph) | 0 | 650 | 0 | 0 | 375 | 20 | 0 | 0 | 0 | 10 | 0 | 10 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | 6.0 | | | 6.0 | | | | | | 7.0 | | | Lane Util. Factor | | 1.00 | | | 1.00 | | | | | | 1.00 | | | Frt | | 1.00 | | | 0.99 | | | | | | 0.93 | | | Flt Protected | | 1.00 | | | 1.00 | | | | | | 0.98 | | | Satd. Flow (prot) | | 1610 | | | 1614 | | | | | | 1472 | | | FIt Permitted | | 1.00 | | | 1.00 | | | | | | 0.89 | | | Satd. Flow (perm) | | 1610 | | | 1614 | | | | | | 1348 | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 0 | 722 | 0 | 0 | 417 | 22 | 0 | 0 | 0 | 11 | 0 | 11 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | | Lane Group Flow (vph) | 0 | 722 | 0 | 0 | 438 | 0 | 0 | 0 | 0 | 0 | 13 | 0 | | Heavy Vehicles (%) | 5% | 5% | 50% | 50% | 4% | 4% | 50% | 50% | 50% | 5% | 5% | 4% | | Turn Type | Perm | | | Prot | | | Perm | | | Perm | | | | Protected Phases | | 2 | | 1 | 6 | | | 8 | | | 4 | | | Permitted Phases | 2 | | | | | | 8 | | | 4 | | | | Actuated Green, G (s) | | 84.0 | | | 84.0 | | | | | | 23.0 | | | Effective Green, g (s) | | 84.0 | | | 84.0 | | | | | | 23.0 | | | Actuated g/C Ratio | | 0.70 | | | 0.70 | | | | | | 0.19 | | | Clearance Time (s) | | 6.0 | | | 6.0 | | | | | | 7.0 | | | Vehicle Extension (s) | | 3.0 | | | 3.0 | | | | | | 3.0 | | | Lane Grp Cap (vph) | | 1127 | | | 1130 | | | | | | 258 | | | v/s Ratio Prot | | c0.45 | | | 0.27 | | | | | | | | | v/s Ratio Perm | | | | | | | | | | | c0.01 | | | v/c Ratio | | 0.64 | | | 0.39 | | | | | | 0.05 | | | Uniform Delay, d1 | | 9.8 | | | 7.4 | | | | | | 39.6 | | | Progression Factor | | 0.85 | | | 0.56 | | | | | | 1.00 | | | Incremental Delay, d2 | | 2.1 | | | 0.9 | | | | | | 0.1 | | | Delay (s) | | 10.5 | | | 5.0 | | | | | | 39.7 | | | Level of Service | | В | | | Α | | | | | | D | | | Approach Delay (s) | | 10.5 | | | 5.0 | | | 0.0 | | | 39.7 | | | Approach LOS | | В | | | Α | | | Α | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 9.0 | H | CM Level | of Service | e | | Α | | | | | HCM Volume to Capacity ratio | | | 0.51 | | | | | | | | | | | Actuated Cycle Length (s) | | | 120.0 | Sı | um of lost | time (s) | | | 13.0 | | | | | Intersection Capacity Utilization | 1 | | 57.2% | IC | U Level c | of Service | | | В | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | c Critical Lane Group | | ၨ | → | • | • | ← | • | • | † | / | > | ļ | 4 | |-----------------------------------|----------|----------|--------|------|------------|------------|------|----------|------|-------------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | र्स | 7 | | ₽ | | ሻ | ĵ₃ | | ሻ | ĵ∍ | | | Volume (vph) | 45 | 580 | 35 | 0 | 330 | 75 | 10 | 15 | 10 | 45 | 30 | 55 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | 6.0 | 7.0 | | 6.0 | | 7.0 | 7.0 | | 7.0 | 7.0 | | | Lane Util. Factor | | 1.00 | 1.00 | | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | | Frpb, ped/bikes | | 1.00 | 1.00 | | 0.95 | | 1.00 | 0.92 | | 1.00 | 0.93 | | | Flpb, ped/bikes | | 0.99 | 1.00 | | 1.00 | | 0.92 | 1.00 | | 0.81 | 1.00 | | | Frt | | 1.00 | 0.85 | | 0.98 | | 1.00 | 0.94 | | 1.00 | 0.90 | | | Flt Protected | | 1.00 | 1.00 | | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (prot) | | 1600 | 1437 | | 1482 | | 1285 | 1349 | | 1087 | 1418 | | | Flt Permitted | | 0.92 | 1.00 | | 1.00 | | 0.70 | 1.00 | | 0.74 | 1.00 | | | Satd. Flow (perm) | | 1472 | 1437 | | 1482 | | 942 | 1349 | | 845 | 1418 | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 50 | 644 | 39 | 0 | 367 | 83 | 11 | 17 | 11 | 50 | 33 | 61 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 49 | 0 | | Lane Group Flow (vph) | 0 | 694 | 39 | 0 | 444 | 0 | 11 | 28 | 0 | 50 | 45 | 0 | | Confl. Peds. (#/hr) | 110 | | 50 | 50 | | 110 | 35 | | 75 | 75 | | 35 | | Heavy Vehicles (%) | 1% | 5% | 0% | 10% | 5% | 8% | 15% | 7% | 10% | 20% | 0% | 0% | | Turn Type | Perm | | custom | | | | Perm | | | Perm | | | | Protected Phases | | 2 | 5 | | 6 | | | 8 | | | 4 | | | Permitted Phases | 2 | | | | | | 8 | | | 4 | | | | Actuated Green, G (s) | | 84.0 | 4.8 | | 72.2 | | 23.0 | 23.0 | | 23.0 | 23.0 | | | Effective Green, g (s) | | 84.0 | 4.8 | | 72.2 | | 23.0 | 23.0 | | 23.0 | 23.0 | | | Actuated g/C Ratio | | 0.70 | 0.04 | | 0.60 | | 0.19 | 0.19 | | 0.19 | 0.19 | | | Clearance Time (s) | | 6.0 | 7.0 | | 6.0 | | 7.0 | 7.0 | | 7.0 | 7.0 | | | Vehicle Extension (s) | | 3.0 | 3.0 | | 3.0 | | 3.0 | 3.0 | | 3.0 | 3.0 | | | Lane Grp Cap (vph) | | 1030 | 57 | | 892 | | 181 | 259 | | 162 | 272 | | | v/s Ratio Prot | | | 0.03 | | 0.30 | | | 0.02 | | | 0.03 | | | v/s Ratio Perm | | c0.47 | | | | | 0.01 | | | c0.06 | | | | v/c Ratio | | 0.67 | 0.68 | | 0.50 | | 0.06 | 0.11 | | 0.31 | 0.16 | | | Uniform Delay, d1 | | 10.2 | 56.9 | | 13.6 | | 39.7 | 40.0 | | 41.7 | 40.5 | | | Progression Factor | | 0.57 | 1.34 | | 1.43 | | 1.00 | 1.00 | | 1.00 | 1.00 | | | Incremental Delay, d2 | | 2.7 | 23.1 | | 1.9 | | 0.1 | 0.2 | | 1.1 | 0.3 | | | Delay (s) | | 8.5 | 99.1 | | 21.4 | | 39.8 | 40.2 | | 42.8 | 40.8 | | | Level of Service | | Α | F | | С | | D | D | | D | D | | | Approach Delay (s) | |
13.3 | | | 21.4 | | | 40.1 | | | 41.5 | | | Approach LOS | | В | | | С | | | D | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 19.7 | H | CM Level | of Servic | е | | В | | | | | HCM Volume to Capacity ratio | | | 0.60 | | | | | | | | | | | Actuated Cycle Length (s) | | | 120.0 | | um of lost | . , | | | 13.0 | | | | | Intersection Capacity Utilization | 1 | | 97.2% | IC | U Level o | of Service | | | F | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | Description: Queen's Quay / Re | ees / Ra | disson W | est | | | | | | | | | | | | - | • | • | • | • | <i>></i> | | |-------------------------------|-------------|----------|-------|---------|------------|-------------|--| | Movement | EBT | EBR | WBL | WBT | NBL | NBR | | | Lane Configurations | | | | | | 7 | | | Volume (vph) | 635 | 0 | 0 | 405 | 0 | 15 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | 6.0 | | | 6.0 | | 7.0 | | | Lane Util. Factor | 1.00 | | | 1.00 | | 1.00 | | | Frt | 1.00 | | | 1.00 | | 0.86 | | | Flt Protected | 1.00 | | | 1.00 | | 1.00 | | | Satd. Flow (prot) | 1610 | | | 1610 | | 975 | | | Flt Permitted | 1.00 | | | 1.00 | | 1.00 | | | Satd. Flow (perm) | 1610 | | | 1610 | | 975 | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | Adj. Flow (vph) | 706 | 0 | 0 | 450 | 0 | 17 | | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 0 | 0 | | | Lane Group Flow (vph) | 706 | 0 | 0 | 450 | 0 | 17 | | | Heavy Vehicles (%) | 5% | 0% | 0% | 5% | 0% | 50% | | | Turn Type | | | | | | custom | | | Protected Phases | 2 | | | 6 | | 8 | | | Permitted Phases | | | | | | | | | Actuated Green, G (s) | 102.8 | | | 102.8 | | 4.2 | | | Effective Green, g (s) | 102.8 | | | 102.8 | | 4.2 | | | Actuated g/C Ratio | 0.86 | | | 0.86 | | 0.04 | | | Clearance Time (s) | 6.0 | | | 6.0 | | 7.0 | | | Vehicle Extension (s) | 3.0 | | | 3.0 | | 3.0 | | | Lane Grp Cap (vph) | 1379 | | | 1379 | | 34 | | | v/s Ratio Prot | c0.44 | | | 0.28 | | c0.02 | | | v/s Ratio Perm | | | | | | | | | v/c Ratio | 0.51 | | | 0.33 | | 0.50 | | | Uniform Delay, d1 | 2.2 | | | 1.7 | | 56.9 | | | Progression Factor | 1.01 | | | 0.25 | | 1.00 | | | Incremental Delay, d2 | 1.1 | | | 0.6 | | 11.1 | | | Delay (s) | 3.3 | | | 1.0 | | 68.0 | | | Level of Service | Α | | | Α | | Ε | | | Approach Delay (s) | 3.3 | | | 1.0 | 68.0 | | | | Approach LOS | А | | | Α | Е | | | | Intersection Summary | | | | | | | | | HCM Average Control Dela | У | | 3.3 | Н | CM Level | of Service | | | HCM Volume to Capacity ra | | | 0.51 | | | | | | Actuated Cycle Length (s) | | | 120.0 | Sı | um of lost | time (s) | | | Intersection Capacity Utiliza | ation | | 56.3% | | U Level c | | | | Analysis Period (min) | | | 15 | | | | | | Description: Queens Quay | / Robertson | Crescent | | | | | | | c Critical Lane Group | | | | | | | | | | ۶ | → | • | • | ← | • | • | † | / | / | Ţ | ✓ | |-----------------------------------|----------|------------|-----------|------|------------|------------|------|-----------|----------|----------|-----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | 7 | † | | ሻ | ₽ | | ሻ | ₽ | | ሻ | 1> | | | Volume (vph) | 80 | 570 | 0 | 55 | 375 | 25 | 0 | 0 | 5 | 75 | 35 | 30 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 6.0 | 6.0 | | 7.0 | 6.0 | | | 7.0 | | 7.0 | 7.0 | | | Lane Util. Factor | 1.00 | 1.00 | | 1.00 | 1.00 | | | 1.00 | | 1.00 | 1.00 | | | Frpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 0.98 | | | 1.00 | | 1.00 | 0.96 | | | Flpb, ped/bikes | 0.80 | 1.00 | | 1.00 | 1.00 | | | 1.00 | | 0.74 | 1.00 | | | Frt | 1.00 | 1.00 | | 1.00 | 0.99 | | | 0.85 | | 1.00 | 0.93 | | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (prot) | 1241 | 1610 | | 1575 | 1505 | | | 1409 | | 1168 | 1489 | | | Flt Permitted | 0.51 | 1.00 | | 0.95 | 1.00 | | | 1.00 | | 0.75 | 1.00 | | | Satd. Flow (perm) | 660 | 1610 | | 1575 | 1505 | | | 1409 | | 926 | 1489 | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 89 | 633 | 0 | 61 | 417 | 28 | 0 | 0 | 6 | 83 | 39 | 33 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 25 | 0 | | Lane Group Flow (vph) | 89 | 633 | 0 | 61 | 443 | 0 | 0 | 6 | 0 | 83 | 47 | 0 | | Confl. Peds. (#/hr) | 140 | | | | | 140 | | | | 100 | | 30 | | Heavy Vehicles (%) | 4% | 5% | 2% | 2% | 9% | 4% | 2% | 2% | 2% | 2% | 2% | 0% | | Turn Type | Perm | | | Prot | | | Perm | | | Perm | | | | Protected Phases | _ | 2 | | 1 | 6 | | _ | 8 | | _ | 4 | | | Permitted Phases | 2 | | | | | | 8 | | | 4 | | | | Actuated Green, G (s) | 69.3 | 69.3 | | 7.7 | 84.0 | | | 23.0 | | 23.0 | 23.0 | | | Effective Green, g (s) | 69.3 | 69.3 | | 7.7 | 84.0 | | | 23.0 | | 23.0 | 23.0 | | | Actuated g/C Ratio | 0.58 | 0.58 | | 0.06 | 0.70 | | | 0.19 | | 0.19 | 0.19 | | | Clearance Time (s) | 6.0 | 6.0 | | 7.0 | 6.0 | | | 7.0 | | 7.0 | 7.0 | | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | | | 3.0 | | 3.0 | 3.0 | | | Lane Grp Cap (vph) | 381 | 930 | | 101 | 1054 | | | 270 | | 177 | 285 | | | v/s Ratio Prot | | c0.39 | | 0.04 | c0.29 | | | 0.00 | | | 0.03 | | | v/s Ratio Perm | 0.13 | 0.00 | | 0.00 | 0.40 | | | 0.00 | | c0.09 | 0.40 | | | v/c Ratio | 0.23 | 0.68 | | 0.60 | 0.42 | | | 0.02 | | 0.47 | 0.16 | | | Uniform Delay, d1 | 12.4 | 17.6 | | 54.7 | 7.7 | | | 39.4 | | 43.1 | 40.5 | | | Progression Factor | 0.38 | 0.46 | | 0.80 | 1.25 | | | 1.00 | | 1.00 | 1.00 | | | Incremental Delay, d2 | 1.1 | 3.1 | | 8.1 | 1.0 | | | 0.0 | | 2.0 | 0.3 | | | Delay (s) | 5.8 | 11.2 | | 51.9 | 10.6 | | | 39.4 | | 45.0 | 40.8 | | | Level of Service | Α | B | | D | B | | | D | | D | D | | | Approach Delay (s) Approach LOS | | 10.5
B | | | 15.5
B | | | 39.4
D | | | 43.0
D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 16.1 | Н | CM Level | of Service | e | | В | | | | | HCM Volume to Capacity ratio |) | | 0.62 | | | | | | | | | | | Actuated Cycle Length (s) | | | 120.0 | S | um of lost | time (s) | | | 19.0 | | | | | Intersection Capacity Utilization | n | | 75.0% | | U Level c | | | | D | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | Description: Queen's Quay / L | ower Sin | ncoe / Har | bourfront | East | | | | | | | | | | | - | • | • | ← | 1 | / | | |-------------------------------|----------|--------|-------|----------|------------|------------|------| | Movement | EBT | EBR | WBL | WBT | NBL | NBR | | | Lane Configurations | † | 7 | | † | ች | 7 | | | Volume (vph) | 630 | 20 | 0 | 510 | 5 | 15 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | 6.0 | 7.0 | | 6.0 | 7.0 | 7.0 | | | Lane Util. Factor | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | | | Frt | 1.00 | 0.85 | | 1.00 | 1.00 | 0.85 | | | Flt Protected | 1.00 | 1.00 | | 1.00 | 0.95 | 1.00 | | | Satd. Flow (prot) | 1610 | 1437 | | 1566 | 1606 | 1437 | | | Flt Permitted | 1.00 | 1.00 | | 1.00 | 0.95 | 1.00 | | | Satd. Flow (perm) | 1610 | 1437 | | 1566 | 1606 | 1437 | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | | Adj. Flow (vph) | 700 | 22 | 0 | 567 | 6 | 17 | | | RTOR Reduction (vph) | 0 | 4 | 0 | 0 | 0 | 14 | | | Lane Group Flow (vph) | 700 | 18 | 0 | 567 | 6 | 3 | | | Heavy Vehicles (%) | 5% | 0% | 0% | 8% | 0% | 0% | | | Turn Type | | custom | | | | Perm | | | Protected Phases | 2 | 5 | | 6 | 8 | | | | Permitted Phases | | | | | | 8 | | | Actuated Green, G (s) | 84.0 | 4.8 | | 72.2 | 23.0 | 23.0 | | | Effective Green, g (s) | 84.0 | 4.8 | | 72.2 | 23.0 | 23.0 | | | Actuated g/C Ratio | 0.70 | 0.04 | | 0.60 | 0.19 | 0.19 | | | Clearance Time (s) | 6.0 | 7.0 | | 6.0 | 7.0 | 7.0 | | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | 3.0 | | | Lane Grp Cap (vph) | 1127 | 57 | | 942 | 308 | 275 | | | v/s Ratio Prot | c0.43 | 0.01 | | 0.36 | c0.00 | | | | //s Ratio Perm | | | | | | 0.00 | | | v/c Ratio | 0.62 | 0.32 | | 0.60 | 0.02 | 0.01 | | | Uniform Delay, d1 | 9.6 | 56.0 | | 14.9 | 39.4 | 39.3 | | | Progression Factor | 0.69 | 1.22 | | 0.76 | 1.00 | 1.00 | | | Incremental Delay, d2 | 2.0 | 2.5 | | 2.6 | 0.0 | 0.0 | | | Delay (s) | 8.6 | 70.6 | | 14.0 | 39.4 | 39.3 | | | Level of Service | Α | Е | | В | D | D | | | Approach Delay (s) | 10.5 | | | 14.0 | 39.3 | | | | Approach LOS | В | | | В | D | | | | Intersection Summary | | | | | | | | | HCM Average Control Dela | , | | 12.5 | H | CM Level | of Service | В | | HCM Volume to Capacity ra | atio | | 0.49 | | | | | | Actuated Cycle Length (s) | | | 120.0 | Sı | um of lost | time (s) | 13.0 | | Intersection Capacity Utiliza | ation | | 56.0% | IC | U Level c | f Service | В | | Analysis Period (min) | | | 15 | | | | | | | ۶ | → | * | • | + | • | 1 | † | / | / | + | ✓ | |---|------------|----------|----------|-----------|-------------|------------|----------|----------|---------|-----------|----------|-----------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | 7 | ↑ | | ሻ | + | 7 | | 4 | | 7 | + | 7 | | Volume (vph) | 110 | 535 | 0 | 30 | 385 | 130 | 45 | 60 | 10 | 110 | 30 | 100 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 6.0 | 6.0 | | 7.0 | 6.0 | 6.0 | | 7.0 | | 7.0 | 7.0 | 7.0 | | Lane Util. Factor | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | | 1.00 | | 1.00 | 1.00 | 1.00 | | Frpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 1.00 | 0.63 | | 0.98 | | 1.00 | 1.00 | 0.28 | | Flpb, ped/bikes | 0.80 | 1.00 | | 1.00 | 1.00 | 1.00 | | 0.73 | | 0.84 | 1.00 | 1.00 | | Frt | 1.00 | 1.00 | | 1.00 | 1.00 | 0.85 |
| 0.99 | | 1.00 | 1.00 | 0.85 | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | 1.00 | | 0.98 | | 0.95 | 1.00 | 1.00 | | Satd. Flow (prot) | 1203 | 1580 | | 1606 | 1595 | 867 | | 1180 | | 1304 | 1691 | 398 | | Flt Permitted | 0.51 | 1.00 | | 0.95 | 1.00 | 1.00 | | 0.86 | | 0.66 | 1.00 | 1.00 | | Satd. Flow (perm) | 650 | 1580 | 0.00 | 1606 | 1595 | 867 | 0.00 | 1039 | 0.00 | 906 | 1691 | 398 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 122 | 594 | 0 | 33 | 428 | 144 | 50 | 67 | 11 | 122 | 33 | 111 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 0 | 48 | 0 | 100 | 0 | 100 | 0 | 86 | | Lane Group Flow (vph) Confl. Peds. (#/hr) | 122
150 | 594 | 0
170 | 33
170 | 428 | 96
150 | 0
655 | 128 | 0
85 | 122
85 | 33 | 25
655 | | Heavy Vehicles (%) | 7% | 7% | 6% | 0% | 6% | 4% | 0% | 0% | 0% | 65
4% | 0% | 1% | | | | 1 70 | 0 % | | 070 | | | 070 | 070 | | 070 | | | Turn Type Protected Phases | Perm | 2 | | Prot
1 | 6 | Perm | Perm | 8 | | Perm | 4 | Perm | | Permitted Phases | 2 | Z | | ļ | 0 | 6 | 8 | 0 | | 4 | 4 | 4 | | Actuated Green, G (s) | 68.6 | 68.6 | | 4.8 | 80.4 | 80.4 | 0 | 26.6 | | 26.6 | 26.6 | 26.6 | | Effective Green, g (s) | 68.6 | 68.6 | | 4.8 | 80.4 | 80.4 | | 26.6 | | 26.6 | 26.6 | 26.6 | | Actuated g/C Ratio | 0.57 | 0.57 | | 0.04 | 0.67 | 0.67 | | 0.22 | | 0.22 | 0.22 | 0.22 | | Clearance Time (s) | 6.0 | 6.0 | | 7.0 | 6.0 | 6.0 | | 7.0 | | 7.0 | 7.0 | 7.0 | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | 3.0 | | 3.0 | | 3.0 | 3.0 | 3.0 | | Lane Grp Cap (vph) | 372 | 903 | | 64 | 1069 | 581 | | 230 | | 201 | 375 | 88 | | v/s Ratio Prot | 012 | c0.38 | | 0.02 | c0.27 | 001 | | 200 | | 201 | 0.02 | 00 | | v/s Ratio Perm | 0.19 | 00.00 | | 0.02 | 00.21 | 0.11 | | 0.12 | | c0.13 | 0.02 | 0.06 | | v/c Ratio | 0.33 | 0.66 | | 0.52 | 0.40 | 0.17 | | 0.56 | | 0.61 | 0.09 | 0.28 | | Uniform Delay, d1 | 13.5 | 17.6 | | 56.5 | 8.9 | 7.4 | | 41.5 | | 42.0 | 37.1 | 38.7 | | Progression Factor | 0.31 | 0.45 | | 1.00 | 1.00 | 1.00 | | 1.00 | | 1.00 | 1.00 | 1.00 | | Incremental Delay, d2 | 1.9 | 3.0 | | 6.9 | 1.1 | 0.6 | | 2.9 | | 5.1 | 0.1 | 1.7 | | Delay (s) | 6.0 | 11.0 | | 63.3 | 10.0 | 8.0 | | 44.4 | | 47.1 | 37.2 | 40.5 | | Level of Service | Α | В | | Е | В | Α | | D | | D | D | D | | Approach Delay (s) | | 10.1 | | | 12.5 | | | 44.4 | | | 43.1 | | | Approach LOS | | В | | | В | | | D | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 18.6 | Н | CM Level | of Service | | | В | | | | | HCM Volume to Capacity ra | tio | | 0.64 | | | | | | | | | | | Actuated Cycle Length (s) | | | 120.0 | | um of lost | | | | 19.0 | | | | | Intersection Capacity Utiliza | tion | | 80.8% | IC | CU Level of | of Service | | | D | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | * | • | + | • | 1 | † | / | / | + | -√ | |-------------------------------|-------|----------|-------|------|------------|------------|------|----------|----------|----------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | f) | | ሻ | † | 7 | ሻ | ₽ | | ሻ | 1• | | | Volume (vph) | 115 | 520 | 20 | 50 | 675 | 210 | 5 | 65 | 50 | 80 | 10 | 300 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width | 3.0 | 3.5 | 3.0 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | | Total Lost time (s) | 3.0 | 6.0 | | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | | 6.0 | 6.0 | | | Lane Util. Factor | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | 1.00 | 1.00 | | | Frpb, ped/bikes | 1.00 | 0.99 | | 1.00 | 1.00 | 0.75 | 1.00 | 0.77 | | 1.00 | 1.00 | | | Flpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | 0.82 | 1.00 | | 0.58 | 1.00 | | | Frt | 1.00 | 0.99 | | 1.00 | 1.00 | 0.85 | 1.00 | 0.93 | | 1.00 | 0.85 | | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (prot) | 1486 | 1553 | | 1575 | 1595 | 1038 | 1310 | 1224 | | 892 | 1418 | | | FIt Permitted | 0.15 | 1.00 | | 0.42 | 1.00 | 1.00 | 0.32 | 1.00 | | 0.67 | 1.00 | | | Satd. Flow (perm) | 229 | 1553 | | 696 | 1595 | 1038 | 437 | 1224 | | 634 | 1418 | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 128 | 578 | 22 | 56 | 750 | 233 | 6 | 72 | 56 | 89 | 11 | 333 | | RTOR Reduction (vph) | 0 | 1 | 0 | 0 | 0 | 77 | 0 | 28 | 0 | 0 | 165 | 0 | | Lane Group Flow (vph) | 128 | 599 | 0 | 56 | 750 | 156 | 6 | 100 | 0 | 89 | 179 | 0 | | Confl. Peds. (#/hr) | 180 | | 165 | | | 180 | 200 | | 275 | 275 | | | | Heavy Vehicles (%) | 2% | 7% | 0% | 2% | 6% | 4% | 0% | 0% | 0% | 4% | 0% | 2% | | Turn Type | pm+pt | | | Perm | | Perm | Perm | | | Perm | | | | Protected Phases | 5 | 2 | | | 6 | | | 8 | | | 4 | | | Permitted Phases | 2 | | | 6 | | 6 | 8 | | | 4 | | | | Actuated Green, G (s) | 63.4 | 63.4 | | 51.7 | 51.7 | 51.7 | 27.6 | 27.6 | | 27.6 | 27.6 | | | Effective Green, g (s) | 63.4 | 63.4 | | 51.7 | 51.7 | 51.7 | 27.6 | 27.6 | | 27.6 | 27.6 | | | Actuated g/C Ratio | 0.62 | 0.62 | | 0.50 | 0.50 | 0.50 | 0.27 | 0.27 | | 0.27 | 0.27 | | | Clearance Time (s) | 3.0 | 6.0 | | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | | 6.0 | 6.0 | | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | 3.0 | 3.0 | | | Lane Grp Cap (vph) | 247 | 956 | | 349 | 801 | 521 | 117 | 328 | | 170 | 380 | | | v/s Ratio Prot | 0.04 | c0.39 | | | c0.47 | | | 0.08 | | | 0.13 | | | v/s Ratio Perm | 0.27 | | | 0.08 | | 0.15 | 0.01 | | | c0.14 | | | | v/c Ratio | 0.52 | 0.63 | | 0.16 | 0.94 | 0.30 | 0.05 | 0.31 | | 0.52 | 0.47 | | | Uniform Delay, d1 | 15.3 | 12.4 | | 13.9 | 24.1 | 15.0 | 28.0 | 30.1 | | 32.1 | 31.6 | | | Progression Factor | 1.00 | 1.00 | | 1.36 | 1.28 | 1.90 | 1.00 | 1.00 | | 1.00 | 1.00 | | | Incremental Delay, d2 | 1.8 | 3.1 | | 0.6 | 13.8 | 0.9 | 0.2 | 0.5 | | 2.9 | 0.9 | | | Delay (s) | 17.2 | 15.5 | | 19.5 | 44.6 | 29.4 | 28.2 | 30.6 | | 35.0 | 32.5 | | | Level of Service | В | В | | В | D | С | С | С | | С | С | | | Approach Delay (s) | | 15.8 | | | 39.9 | | | 30.5 | | | 33.0 | | | Approach LOS | | В | | | D | | | С | | | С | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Dela | • | | 30.5 | Н | CM Level | of Service | е | | С | | | | | HCM Volume to Capacity ra | atio | | 0.81 | | | | | | | | | | | Actuated Cycle Length (s) | | | 103.0 | | um of lost | | | | 18.0 | | | | | Intersection Capacity Utiliza | ation | | 82.4% | IC | U Level o | of Service | | | Е | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | | ۶ | → | + | • | / | 4 | |-----------------------------------|----------|----------|---------|------|------------|------------| | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | Lane Configurations | <u> </u> | <u> </u> | <u></u> | 7 | ሻ | 7 | | Volume (vph) | 100 | 500 | 735 | 115 | 90 | 240 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | | Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Frpb, ped/bikes | 1.00 | 1.00 | 1.00 | 0.93 | 1.00 | 0.88 | | Flpb, ped/bikes | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Frt | 1.00 | 1.00 | 1.00 | 0.85 | 1.00 | 0.85 | | Flt Protected | 0.95 | 1.00 | 1.00 | 1.00 | 0.95 | 1.00 | | Satd. Flow (prot) | 1523 | 1595 | 1595 | 1187 | 1545 | 1224 | | Flt Permitted | 0.21 | 1.00 | 1.00 | 1.00 | 0.95 | 1.00 | | Satd. Flow (perm) | 337 | 1595 | 1595 | 1187 | 1545 | 1224 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 111 | 556 | 817 | 128 | 100 | 267 | | RTOR Reduction (vph) | 0 | 0 | 0 | 27 | 0 | 99 | | Lane Group Flow (vph) | 111 | 556 | 817 | 101 | 100 | 168 | | Confl. Peds. (#/hr) | 85 | | | 85 | 60 | 55 | | Heavy Vehicles (%) | 4% | 6% | 6% | 12% | 4% | 3% | | Turn Type | Perm | | | Perm | | Perm | | Protected Phases | | 2 | 6 | | 4 | | | Permitted Phases | 2 | | | 6 | | 4 | | Actuated Green, G (s) | 64.0 | 64.0 | 64.0 | 64.0 | 27.0 | 27.0 | | Effective Green, g (s) | 64.0 | 64.0 | 64.0 | 64.0 | 27.0 | 27.0 | | Actuated g/C Ratio | 0.62 | 0.62 | 0.62 | 0.62 | 0.26 | 0.26 | | Clearance Time (s) | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | | Vehicle Extension (s) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | Lane Grp Cap (vph) | 209 | 991 | 991 | 738 | 405 | 321 | | v/s Ratio Prot | | 0.35 | c0.51 | | 0.06 | | | v/s Ratio Perm | 0.33 | | | 0.08 | | c0.14 | | v/c Ratio | 0.53 | 0.56 | 0.82 | 0.14 | 0.25 | 0.52 | | Uniform Delay, d1 | 11.0 | 11.3 | 15.1 | 8.1 | 30.0 | 32.5 | | Progression Factor | 1.04 | 1.03 | 1.00 | 1.00 | 1.00 | 1.00 | | Incremental Delay, d2 | 7.7 | 1.9 | 7.8 | 0.4 | 0.3 | 1.5 | | Delay (s) | 19.1 | 13.6 | 22.9 | 8.5 | 30.3 | 34.0 | | Level of Service | В | В | С | Α | С | С | | Approach Delay (s) | | 14.5 | 20.9 | | 33.0 | | | Approach LOS | | В | С | | С | | | Intersection Summary | | | | | | | | HCM Average Control Delay | | | 21.0 | Н | CM Level | of Service | | HCM Volume to Capacity ratio |) | | 0.74 | | | | | Actuated Cycle Length (s) | | | 103.0 | Sı | ım of lost | time (s) | | Intersection Capacity Utilization | n | | 88.8% | | | of Service | | Analysis Period (min) | | | 15 | | | | | c Critical Lane Group | | | | | | | | | ۶ | → | ← | • | / | 1 | | |---|--------------|--------------|---------------|--------------|--------------|--------------|---| | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | | Lane Configurations | ሻ | † | † | 7 | ሻ | 7 | | | Volume (vph) | 70 | 620 | 580 | 155 | 95 | 95 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | | | Lane Util. Factor | 1.00 | 1.00 |
1.00 | 1.00 | 1.00 | 1.00 | | | Frpb, ped/bikes | 1.00 | 1.00 | 1.00 | 0.72 | 1.00 | 0.89 | | | Flpb, ped/bikes | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | Frt | 1.00 | 1.00 | 1.00 | 0.85 | 1.00 | 0.85 | | | Flt Protected | 0.95 | 1.00 | 1.00 | 1.00 | 0.95 | 1.00 | | | Satd. Flow (prot) Flt Permitted | 1606
0.24 | 1642
1.00 | 1674
1.00 | 1024
1.00 | 1545
0.95 | 1247
1.00 | | | Satd. Flow (perm) | 399 | 1642 | 1674 | 1024 | 1545 | 1247 | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | | Adj. Flow (vph) | 74 | 653 | 611 | 163 | 100 | 100 | | | RTOR Reduction (vph) | 0 | 000 | 0 | 68 | 0 | 74 | | | Lane Group Flow (vph) | 74 | 653 | 611 | 95 | 100 | 26 | | | Confl. Peds. (#/hr) | 190 | 000 | 011 | 190 | 130 | 50 | | | Heavy Vehicles (%) | 0% | 3% | 1% | 1% | 4% | 2% | | | Turn Type | Perm | | .,, | Perm | .,, | Perm | | | Protected Phases | | 2 | 6 | | 4 | | | | Permitted Phases | 2 | | | 6 | | 4 | | | Actuated Green, G (s) | 57.4 | 57.4 | 57.4 | 57.4 | 31.0 | 31.0 | | | Effective Green, g (s) | 57.4 | 57.4 | 57.4 | 57.4 | 31.0 | 31.0 | | | Actuated g/C Ratio | 0.48 | 0.48 | 0.48 | 0.48 | 0.26 | 0.26 | | | Clearance Time (s) | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | | | Vehicle Extension (s) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | | Lane Grp Cap (vph) | 191 | 785 | 801 | 490 | 399 | 322 | | | v/s Ratio Prot | | c0.40 | 0.36 | | c0.06 | | | | v/s Ratio Perm | 0.19 | 0.00 | 0 = 0 | 0.09 | 0.0- | 0.02 | | | v/c Ratio | 0.39 | 0.83 | 0.76 | 0.19 | 0.25 | 0.08 | | | Uniform Delay, d1 | 20.0 | 27.1 | 25.7 | 18.0 | 35.3 | 33.7 | | | Progression Factor | 1.00 | 1.00 | 0.97 | 1.27 | 1.00 | 1.00 | | | Incremental Delay, d2 | 5.8 | 10.0 | 5.3 | 0.7 | 0.3 | 0.1 | | | Delay (s)
Level of Service | 25.9
C | 37.1
D | 30.2
C | 23.5
C | 35.6
D | 33.8
C | | | Approach Delay (s) | C | 36.0 | 28.8 | C | 34.7 | U | | | Approach LOS | | 50.0
D | 20.0
C | | C | | | | ·· | | | | | Ū | | | | Intersection Summary | | | 20.0 | , | OMAL | -40 | | | HCM Average Control Delay | 1_ | | 32.6 | H | UM Level | of Service | | | HCM Volume to Capacity rational Actuated Cycle Length (s) | U | | 0.63
120.0 | c. | ım of loca | time (e) | 3 | | Intersection Capacity Utilizati | on | | 79.1% | | um of lost | of Service | | | Analysis Period (min) | Off | | 19.1% | 10 | O LEVEL | JI OCI VICE | | | c Critical Lane Group | | | 10 | | | | | | 5 Shillour Lario Group | | | | | | | | | | ٠ | - | • | • | ← | • | 4 | † | / | / | ţ | 1 | |-------------------------------|-------|----------|-------|------|-------------|------------|-------|----------|----------|------|------|--------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ħ | † | | 7 | f) | | | 4 | | | | 7 | | Volume (vph) | 45 | 670 | 0 | 10 | 685 | 10 | 0 | 0 | 5 | 0 | 0 | 50 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 3.0 | 6.0 | | 7.0 | 6.0 | | | 7.0 | | | | 6.0 | | Lane Util. Factor | 1.00 | 1.00 | | 1.00 | 1.00 | | | 1.00 | | | | 1.00 | | Frt | 1.00 | 1.00 | | 1.00 | 1.00 | | | 0.86 | | | | 0.86 | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | | 1.00 | | | | 1.00 | | Satd. Flow (prot) | 1606 | 1642 | | 1606 | 1655 | | | 1463 | | | | 1463 | | Flt Permitted | 0.22 | 1.00 | | 0.95 | 1.00 | | | 1.00 | | | | 1.00 | | Satd. Flow (perm) | 374 | 1642 | | 1606 | 1655 | | | 1463 | | | | 1463 | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 47 | 705 | 0 | 11 | 721 | 11 | 0 | 0 | 5 | 0 | 0 | 53 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 46 | | Lane Group Flow (vph) | 47 | 705 | 0 | 11 | 732 | 0 | 0 | 5 | 0 | 0 | 0 | 7 | | Heavy Vehicles (%) | 0% | 3% | 0% | 0% | 2% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | | Turn Type | pm+pt | | | Prot | | | Split | | | | | custom | | Protected Phases | 5 | 2 | | 1 | 6 | | 8 | 8 | | | | | | Permitted Phases | 2 | | | | | | | | | | | 4 10 | | Actuated Green, G (s) | 74.0 | 68.4 | | 1.6 | 68.4 | | | 2.0 | | | | 16.0 | | Effective Green, g (s) | 74.0 | 68.4 | | 1.6 | 68.4 | | | 2.0 | | | | 16.0 | | Actuated g/C Ratio | 0.62 | 0.57 | | 0.01 | 0.57 | | | 0.02 | | | | 0.13 | | Clearance Time (s) | 3.0 | 6.0 | | 7.0 | 6.0 | | | 7.0 | | | | | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | | | 3.0 | | | | | | Lane Grp Cap (vph) | 288 | 936 | | 21 | 943 | | | 24 | | | | 195 | | v/s Ratio Prot | c0.01 | 0.43 | | 0.01 | c0.44 | | | c0.00 | | | | | | v/s Ratio Perm | 0.09 | | | | | | | | | | | c0.00 | | v/c Ratio | 0.16 | 0.75 | | 0.52 | 0.78 | | | 0.21 | | | | 0.04 | | Uniform Delay, d1 | 13.0 | 19.4 | | 58.8 | 19.9 | | | 58.2 | | | | 45.3 | | Progression Factor | 0.41 | 0.49 | | 0.99 | 0.83 | | | 1.00 | | | | 1.00 | | Incremental Delay, d2 | 0.2 | 4.2 | | 16.5 | 4.7 | | | 4.3 | | | | 0.1 | | Delay (s) | 5.5 | 13.8 | | 74.8 | 21.1 | | | 62.5 | | | | 45.4 | | Level of Service | Α | В | | Е | С | | | Е | | | | D | | Approach Delay (s) | | 13.3 | | | 21.9 | | | 62.5 | | | 45.4 | | | Approach LOS | | В | | | С | | | E | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Dela | | | 18.7 | Н | CM Level | of Service | 9 | | В | | | | | HCM Volume to Capacity ra | atio | | 0.60 | | | | | | | | | | | Actuated Cycle Length (s) | | | 120.0 | | um of lost | | | | 28.0 | | | | | Intersection Capacity Utiliza | ation | | 73.2% | IC | CU Level of | of Service | | | D | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | c Critical Lane Group | | ۶ | - | • | • | ← | • | 4 | † | / | > | Ţ | 1 | |-----------------------------------|------|----------|-------|------|-------------|------------|------|----------|------|-------------|-------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ħ | ^ | | ň | f) | | | 4 | | | 4 | | | Volume (vph) | 5 | 665 | 0 | 0 | 710 | 30 | 0 | 0 | 0 | 10 | 0 | 20 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 6.0 | 6.0 | | | 6.0 | | | | | | 6.0 | | | Lane Util. Factor | 1.00 | 1.00 | | | 1.00 | | | | | | 1.00 | | | Frt | 1.00 | 1.00 | | | 0.99 | | | | | | 0.91 | | | Flt Protected | 0.95 | 1.00 | | | 1.00 | | | | | | 0.98 | | | Satd. Flow (prot) | 1606 | 1642 | | | 1649 | | | | | | 1515 | | | Flt Permitted | 0.28 | 1.00 | | | 1.00 | | | | | | 0.93 | | | Satd. Flow (perm) | 467 | 1642 | | | 1649 | | | | | | 1432 | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 5 | 700 | 0 | 0 | 747 | 32 | 0 | 0 | 0 | 11 | 0 | 21 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 17 | 0 | | Lane Group Flow (vph) | 5 | 700 | 0 | 0 | 778 | 0 | 0 | 0 | 0 | 0 | 15 | 0 | | Heavy Vehicles (%) | 0% | 3% | 0% | 0% | 2% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | | Turn Type | Perm | | | Prot | | | Perm | | | Perm | | | | Protected Phases | | 2 | | 1 | 6 | | | 8 | | | 4 | | | Permitted Phases | 2 | | | | | | 8 | | | 4 | | | | Actuated Green, G (s) | 84.0 | 84.0 | | | 84.0 | | | | | | 24.0 | | | Effective Green, g (s) | 84.0 | 84.0 | | | 84.0 | | | | | | 24.0 | | | Actuated g/C Ratio | 0.70 | 0.70 | | | 0.70 | | | | | | 0.20 | | | Clearance Time (s) | 6.0 | 6.0 | | | 6.0 | | | | | | 6.0 | | | Vehicle Extension (s) | 3.0 | 3.0 | | | 3.0 | | | | | | 3.0 | | | Lane Grp Cap (vph) | 327 | 1149 | | | 1154 | | | | | | 286 | | | v/s Ratio Prot | | 0.43 | | | c0.47 | | | | | | | | | v/s Ratio Perm | 0.01 | | | | | | | | | | c0.01 | | | v/c Ratio | 0.02 | 0.61 | | | 0.67 | | | | | | 0.05 | | | Uniform Delay, d1 | 5.5 | 9.4 | | | 10.2 | | | | | | 38.8 | | | Progression Factor | 0.14 | 0.81 | | | 1.57 | | | | | | 1.00 | | | Incremental Delay, d2 | 0.1 | 1.9 | | | 2.4 | | | | | | 0.1 | | | Delay (s) | 0.8 | 9.5 | | | 18.4 | | | | | | 38.9 | | | Level of Service | Α | Α | | | В | | | | | | D | | | Approach Delay (s) | | 9.4 | | | 18.4 | | | 0.0 | | | 38.9 | | | Approach LOS | | Α | | | В | | | Α | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 14.7 | H | CM Level | of Service | e | | В | | | | | HCM Volume to Capacity ration | כ | | 0.54 | | | | | | | | | | | Actuated Cycle Length (s) | | | 120.0 | | um of lost | ` ' | | | 12.0 | | | | | Intersection Capacity Utilization | on | | 61.9% | IC | CU Level of | of Service | | | В | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | c Critical Lane Group | | ᄼ | - | • | • | ← | • | • | † | ~ | > | ţ | 1 | |-----------------------------------|----------|----------|--------|------|------------|------------|------|----------|------|-------------|-------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 4 | 7 | | ₽ | | 7 | ₽ | | 7 | ₽ | | | Volume (vph) | 55 | 595 | 25 | 0 | 610 | 65 | 15 | 25 | 15 | 50 | 45 | 115 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | 6.0 | 7.0 | | 6.0 | | 7.0 | 7.0 | | 7.0 | 7.0 | | | Lane Util. Factor | | 1.00 | 1.00 | | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | | Frpb, ped/bikes | | 1.00 | 1.00 | | 0.97 | | 1.00 | 0.92 | | 1.00 | 0.92 | | | Flpb, ped/bikes | | 1.00 | 1.00 | | 1.00 | | 0.93 | 1.00 | | 0.82 | 1.00 | | | Frt | | 1.00 | 0.85 | | 0.99 | | 1.00 | 0.94 | | 1.00 | 0.89 | | | Flt Protected | | 1.00 | 1.00 | | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (prot) | | 1595 | 1437 | | 1596 | | 1498 | 1466 | | 1213 | 1389 | | | Flt Permitted | | 0.70 | 1.00 | | 1.00 | | 0.57 | 1.00 | | 0.73 | 1.00 | | | Satd. Flow (perm) | | 1115 | 1437 | | 1596 | | 893 | 1466 | | 932 | 1389 | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |
0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 58 | 626 | 26 | 0 | 642 | 68 | 16 | 26 | 16 | 53 | 47 | 121 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 78 | 0 | | Lane Group Flow (vph) | 0 | 684 | 26 | 0 | 707 | 0 | 16 | 42 | 0 | 53 | 90 | 0 | | Confl. Peds. (#/hr) | 110 | | 50 | 50 | | 110 | 35 | | 75 | 75 | | 35 | | Heavy Vehicles (%) | 1% | 6% | 0% | 0% | 2% | 0% | 0% | 0% | 0% | 8% | 0% | 0% | | Turn Type | Perm | | custom | | | | Perm | | | Perm | | | | Protected Phases | | 2 | 5 | | 6 | | | 8 | | | 4 | | | Permitted Phases | 2 | | | | | | 8 | | | 4 | | | | Actuated Green, G (s) | | 84.0 | 4.2 | | 72.8 | | 23.0 | 23.0 | | 23.0 | 23.0 | | | Effective Green, g (s) | | 84.0 | 4.2 | | 72.8 | | 23.0 | 23.0 | | 23.0 | 23.0 | | | Actuated g/C Ratio | | 0.70 | 0.04 | | 0.61 | | 0.19 | 0.19 | | 0.19 | 0.19 | | | Clearance Time (s) | | 6.0 | 7.0 | | 6.0 | | 7.0 | 7.0 | | 7.0 | 7.0 | | | Vehicle Extension (s) | | 3.0 | 3.0 | | 3.0 | | 3.0 | 3.0 | | 3.0 | 3.0 | | | Lane Grp Cap (vph) | | 781 | 50 | | 968 | | 171 | 281 | | 179 | 266 | | | v/s Ratio Prot | | | 0.02 | | 0.44 | | | 0.03 | | | c0.07 | | | v/s Ratio Perm | | c0.61 | | | | | 0.02 | | | 0.06 | | | | v/c Ratio | | 0.88 | 0.52 | | 0.73 | | 0.09 | 0.15 | | 0.30 | 0.34 | | | Uniform Delay, d1 | | 14.0 | 56.9 | | 16.7 | | 39.9 | 40.4 | | 41.6 | 41.9 | | | Progression Factor | | 2.54 | 0.68 | | 0.43 | | 1.00 | 1.00 | | 1.00 | 1.00 | | | Incremental Delay, d2 | | 10.9 | 7.6 | | 4.3 | | 0.2 | 0.2 | | 0.9 | 8.0 | | | Delay (s) | | 46.4 | 46.1 | | 11.4 | | 40.2 | 40.6 | | 42.5 | 42.7 | | | Level of Service | | D | D | | В | | D | D | | D | D | | | Approach Delay (s) | | 46.4 | | | 11.4 | | | 40.5 | | | 42.6 | | | Approach LOS | | D | | | В | | | D | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 31.1 | H | CM Level | of Servic | е | | С | | | | | HCM Volume to Capacity ratio | | | 0.76 | | | | | | | | | | | Actuated Cycle Length (s) | | | 120.0 | | um of lost | | | | 13.0 | | | | | Intersection Capacity Utilization | า | | 113.8% | IC | U Level c | of Service | | | Н | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | Description: Queen's Quay / Re | ees / Ra | disson W | est | | | | | | | | | | | | - | \rightarrow | • | ← | • | / | | |-------------------------------|----------|---------------|-------|----------|------------|------------|--| | Movement | EBT | EBR | WBL | WBT | NBL | NBR | | | Lane Configurations | A | | | A | | 7 | | | Volume (vph) | 660 | 0 | 0 | 675 | 0 | 30 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | 6.0 | | | 6.0 | | 7.0 | | | Lane Util. Factor | 1.00 | | | 1.00 | | 1.00 | | | Frt | 1.00 | | | 1.00 | | 0.86 | | | Flt Protected | 1.00 | | | 1.00 | | 1.00 | | | Satd. Flow (prot) | 1610 | | | 1610 | | 975 | | | Flt Permitted | 1.00 | | | 1.00 | | 1.00 | | | Satd. Flow (perm) | 1610 | | | 1610 | | 975 | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | | Adj. Flow (vph) | 695 | 0 | 0 | 711 | 0 | 32 | | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 0 | 0 | | | Lane Group Flow (vph) | 695 | 0 | 0 | 711 | 0 | 32 | | | Heavy Vehicles (%) | 5% | 0% | 0% | 5% | 0% | 50% | | | Turn Type | | | | | | custom | | | Protected Phases | 2 | | | 6 | | 8 | | | Permitted Phases | | | | | | | | | Actuated Green, G (s) | 99.9 | | | 99.9 | | 7.1 | | | Effective Green, g (s) | 99.9 | | | 99.9 | | 7.1 | | | Actuated g/C Ratio | 0.83 | | | 0.83 | | 0.06 | | | Clearance Time (s) | 6.0 | | | 6.0 | | 7.0 | | | Vehicle Extension (s) | 3.0 | | | 3.0 | | 3.0 | | | Lane Grp Cap (vph) | 1340 | | | 1340 | | 58 | | | v/s Ratio Prot | 0.43 | | | c0.44 | | c0.03 | | | v/s Ratio Perm | | | | | | | | | v/c Ratio | 0.52 | | | 0.53 | | 0.55 | | | Uniform Delay, d1 | 3.0 | | | 3.0 | | 54.9 | | | Progression Factor | 0.35 | | | 0.37 | | 1.00 | | | Incremental Delay, d2 | 0.8 | | | 1.2 | | 10.9 | | | Delay (s) | 1.8 | | | 2.3 | | 65.8 | | | Level of Service | Α | | | Α | | Е | | | Approach Delay (s) | 1.8 | | | 2.3 | 65.8 | | | | Approach LOS | Α | | | Α | Е | | | | Intersection Summary | | | | | | | | | HCM Average Control Dela | ay | | 3.5 | Н | CM Level | of Service | | | HCM Volume to Capacity ra | | | 0.53 | | | | | | Actuated Cycle Length (s) | | | 120.0 | Sı | ım of lost | time (s) | | | Intersection Capacity Utiliza | ation | | 57.8% | | | of Service | | | Analysis Period (min) | | | 15 | | | | | | c Critical Lane Group | | | | | | | | | | ۶ | → | • | • | ← | • | 1 | † | / | / | + | 4 | |-----------------------------------|----------|-----------|-----------|------|------------|-----------|------|-----------|------|----------|-----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | † | | ሻ | ₽ | | 7 | f) | | ሻ | f) | | | Volume (vph) | 120 | 570 | 0 | 20 | 620 | 80 | 15 | 45 | 35 | 90 | 5 | 45 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 6.0 | 6.0 | | 7.0 | 6.0 | | 7.0 | 7.0 | | 7.0 | 7.0 | | | Lane Util. Factor | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | | Frpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 0.96 | | 1.00 | 1.00 | | 1.00 | 0.91 | | | Flpb, ped/bikes | 0.89 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 0.77 | 1.00 | | | Frt | 1.00 | 1.00 | | 1.00 | 0.98 | | 1.00 | 0.93 | | 1.00 | 0.86 | | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (prot) | 1395 | 1610 | | 1606 | 1561 | | 1606 | 1579 | | 1175 | 1299 | | | Flt Permitted | 0.34 | 1.00 | | 0.95 | 1.00 | | 0.72 | 1.00 | | 0.70 | 1.00 | | | Satd. Flow (perm) | 496 | 1610 | | 1606 | 1561 | | 1223 | 1579 | | 869 | 1299 | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 126 | 600 | 0 | 21 | 653 | 84 | 16 | 47 | 37 | 95 | 5 | 47 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 38 | 0 | | Lane Group Flow (vph) | 126 | 600 | 0 | 21 | 733 | 0 | 16 | 84 | 0 | 95 | 14 | 0 | | Confl. Peds. (#/hr) | 140 | | | | | 140 | | | | 100 | | 30 | | Heavy Vehicles (%) | 3% | 5% | 0% | 0% | 2% | 1% | 0% | 0% | 0% | 5% | 0% | 3% | | Turn Type | Perm | | | Prot | | | Perm | | | Perm | | | | Protected Phases | | 2 | | 1 | 6 | | _ | 8 | | | 4 | | | Permitted Phases | 2 | | | | | | 8 | | | 4 | | | | Actuated Green, G (s) | 73.8 | 73.8 | | 3.0 | 83.8 | | 23.2 | 23.2 | | 23.2 | 23.2 | | | Effective Green, g (s) | 73.8 | 73.8 | | 3.0 | 83.8 | | 23.2 | 23.2 | | 23.2 | 23.2 | | | Actuated g/C Ratio | 0.61 | 0.61 | | 0.02 | 0.70 | | 0.19 | 0.19 | | 0.19 | 0.19 | | | Clearance Time (s) | 6.0 | 6.0 | | 7.0 | 6.0 | | 7.0 | 7.0 | | 7.0 | 7.0 | | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | 3.0 | | | Lane Grp Cap (vph) | 305 | 990 | | 40 | 1090 | | 236 | 305 | | 168 | 251 | | | v/s Ratio Prot | | 0.37 | | 0.01 | c0.47 | | | 0.05 | | | 0.01 | | | v/s Ratio Perm | 0.25 | 0.04 | | 0.50 | 0.07 | | 0.01 | 0.00 | | c0.11 | 0.00 | | | v/c Ratio | 0.41 | 0.61 | | 0.53 | 0.67 | | 0.07 | 0.28 | | 0.57 | 0.06 | | | Uniform Delay, d1 | 11.9 | 14.2 | | 57.8 | 10.3 | | 39.6 | 41.2 | | 43.8 | 39.5 | | | Progression Factor | 1.13 | 1.06 | | 0.73 | 1.50 | | 1.00 | 1.00 | | 1.00 | 1.00 | | | Incremental Delay, d2 | 2.9 | 1.9 | | 9.0 | 2.5 | | 0.1 | 0.5 | | 4.3 | 0.1 | | | Delay (s) | 16.4 | 17.0 | | 51.3 | 18.0 | | 39.7 | 41.7 | | 48.1 | 39.6 | | | Level of Service | В | 16.0 | | D | B | | D | D | | D | D | | | Approach Delay (s) Approach LOS | | 16.9
B | | | 18.9
B | | | 41.4
D | | | 45.1
D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 21.6 | H | CM Level | of Servic | e | | С | | | | | HCM Volume to Capacity ratio |) | | 0.65 | | | | | | | | | | | Actuated Cycle Length (s) | | | 120.0 | Sı | um of lost | time (s) | | | 13.0 | | | | | Intersection Capacity Utilization | on | | 85.8% | | U Level c | | | | Е | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | Description: Queen's Quay / L | ower Sim | coe / Har | bourfront | East | | | | | | | | | | | - | • | • | ← | • | / | | |--------------------------------|---------|--------|-------|----------|------------|------------|--| | Movement | EBT | EBR | WBL | WBT | NBL | NBR | | | Lane Configurations | | 7 | | † | | 7 | | | Volume (vph) | 670 | 25 | 0 | 750 | 10 | 10 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | 6.0 | 7.0 | | 6.0 | 7.0 | 7.0 | | | Lane Util. Factor | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | | | Frt | 1.00 | 0.85 | | 1.00 | 1.00 | 0.85 | | | Flt Protected | 1.00 | 1.00 | | 1.00 | 0.95 | 1.00 | | | Satd. Flow (prot) | 1842 | 1597 | | 1879 | 1785 | 1597 | | | Flt Permitted | 1.00 | 1.00 | | 1.00 | 0.95 | 1.00 | | | Satd. Flow (perm) | 1842 | 1597 | | 1879 | 1785 | 1597 | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | | Adj. Flow (vph) | 705 | 26 | 0 | 789 | 11 | 11 | | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 0 | 0 | | | Lane Group Flow (vph) | 705 | 26 | 0 | 789 | 11 | 11 | | | Heavy Vehicles (%) | 2% | 0% | 0% | 0% | 0% | 0% | | | Turn Type | | custom | | | | Perm | | | Protected Phases | 2 | 5 | | 6 | 8 | | | | Permitted Phases | | | | | | 8 | | | Actuated Green, G (s) | 84.0 | 4.2 | | 72.8 | 23.0 | 23.0 | | | Effective Green, g (s) | 84.0 | 4.2 | | 72.8 | 23.0 | 23.0 | | | Actuated g/C Ratio | 0.70 | 0.04 | | 0.61 | 0.19 | 0.19 | | | Clearance Time (s) | 6.0 | 7.0 | | 6.0 | 7.0 | 7.0 | | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | 3.0 | | | Lane Grp Cap (vph) | 1289 | 56 | | 1140 | 342 | 306 | | | v/s Ratio Prot | c0.38 | 0.02 | | c0.42 | 0.01 | | | | v/s Ratio Perm | | | | | | c0.01 | | | v/c Ratio | 0.55 | 0.46 | | 0.69 | 0.03 | 0.04 | | | Uniform Delay, d1 |
8.7 | 56.8 | | 16.0 | 39.4 | 39.5 | | | Progression Factor | 0.83 | 1.04 | | 0.58 | 1.00 | 1.00 | | | Incremental Delay, d2 | 1.4 | 5.0 | | 2.8 | 0.0 | 0.0 | | | Delay (s) | 8.7 | 64.1 | | 12.2 | 39.5 | 39.5 | | | Level of Service | Α | Е | | В | D | D | | | Approach Delay (s) | 10.6 | | | 12.2 | 39.5 | | | | Approach LOS | В | | | В | D | | | | Intersection Summary | | | | | | | | | HCM Average Control Delay | | | 11.8 | H | CM Level | of Service | | | HCM Volume to Capacity rat | tio | | 0.55 | | | | | | Actuated Cycle Length (s) | | | 120.0 | | ım of lost | | | | Intersection Capacity Utilizat | ion | | 58.6% | IC | U Level c | of Service | | | Analysis Period (min) | | | 15 | | | | | | | ۶ | → | * | • | ← | • | 1 | † | ~ | / | ↓ | 4 | |-----------------------------------|-----------|----------|-------|------|-------------|------------|------|----------|------|----------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | † | | ሻ | † | 7 | | - ↔ | | ሻ | ↑ | 7 | | Volume (vph) | 80 | 600 | 0 | 25 | 645 | 260 | 15 | 20 | 15 | 80 | 35 | 90 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 6.0 | 6.0 | | 7.0 | 6.0 | 6.0 | | 7.0 | | 7.0 | 7.0 | 7.0 | | Lane Util. Factor | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | | 1.00 | | 1.00 | 1.00 | 1.00 | | Frpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 1.00 | 0.63 | | 0.93 | | 1.00 | 1.00 | 0.28 | | Flpb, ped/bikes | 0.88 | 1.00 | | 1.00 | 1.00 | 1.00 | | 0.80 | | 0.81 | 1.00 | 1.00 | | Frt | 1.00 | 1.00 | | 1.00 | 1.00 | 0.85 | | 0.96 | | 1.00 | 1.00 | 0.85 | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | 1.00 | | 0.99 | | 0.95 | 1.00 | 1.00 | | Satd. Flow (prot) | 1407 | 1610 | | 1606 | 1674 | 902 | | 1186 | | 1264 | 1691 | 402 | | Flt Permitted | 0.37 | 1.00 | | 0.95 | 1.00 | 1.00 | | 0.92 | | 0.72 | 1.00 | 1.00 | | Satd. Flow (perm) | 553 | 1610 | | 1606 | 1674 | 902 | | 1104 | | 961 | 1691 | 402 | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 84 | 632 | 0 | 26 | 679 | 274 | 16 | 21 | 16 | 84 | 37 | 95 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 0 | 87 | 0 | 0 | 0 | 0 | 0 | 75 | | Lane Group Flow (vph) | 84 | 632 | 0 | 26 | 679 | 187 | 0 | 53 | 0 | 84 | 37 | 20 | | Confl. Peds. (#/hr) | 150 | | 170 | 170 | | 150 | 655 | | 85 | 85 | | 655 | | Heavy Vehicles (%) | 0% | 5% | 0% | 0% | 1% | 0% | 0% | 0% | 0% | 3% | 0% | 0% | | Turn Type | Perm | | | Prot | | Perm | Perm | | | Perm | | Perm | | Protected Phases | | 2 | | 1 | 6 | | | 8 | | | 4 | | | Permitted Phases | 2 | | | | | 6 | 8 | | | 4 | | 4 | | Actuated Green, G (s) | 70.8 | 70.8 | | 4.2 | 82.0 | 82.0 | | 25.0 | | 25.0 | 25.0 | 25.0 | | Effective Green, g (s) | 70.8 | 70.8 | | 4.2 | 82.0 | 82.0 | | 25.0 | | 25.0 | 25.0 | 25.0 | | Actuated g/C Ratio | 0.59 | 0.59 | | 0.04 | 0.68 | 0.68 | | 0.21 | | 0.21 | 0.21 | 0.21 | | Clearance Time (s) | 6.0 | 6.0 | | 7.0 | 6.0 | 6.0 | | 7.0 | | 7.0 | 7.0 | 7.0 | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | 3.0 | | 3.0 | | 3.0 | 3.0 | 3.0 | | Lane Grp Cap (vph) | 326 | 950 | | 56 | 1144 | 616 | | 230 | | 200 | 352 | 84 | | v/s Ratio Prot | | c0.39 | | 0.02 | c0.41 | | | | | | 0.02 | | | v/s Ratio Perm | 0.15 | | | | | 0.21 | | 0.05 | | c0.09 | | 0.05 | | v/c Ratio | 0.26 | 0.67 | | 0.46 | 0.59 | 0.30 | | 0.23 | | 0.42 | 0.11 | 0.24 | | Uniform Delay, d1 | 11.9 | 16.6 | | 56.8 | 10.1 | 7.6 | | 39.5 | | 41.2 | 38.4 | 39.5 | | Progression Factor | 0.37 | 0.55 | | 1.00 | 1.00 | 1.00 | | 1.00 | | 1.00 | 1.00 | 1.00 | | Incremental Delay, d2 | 1.6 | 3.1 | | 6.0 | 2.3 | 1.3 | | 0.5 | | 1.4 | 0.1 | 1.4 | | Delay (s) | 6.1 | 12.3 | | 62.8 | 12.4 | 8.9 | | 40.0 | | 42.6 | 38.6 | 41.0 | | Level of Service | Α | В | | E | В | Α | | D | | D | D | D | | Approach Delay (s) | | 11.6 | | | 12.7 | | | 40.0 | | | 41.2 | | | Approach LOS | | В | | | В | | | D | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 16.2 | Н | CM Level | of Service |) | | В | | | | | HCM Volume to Capacity ratio |) | | 0.62 | | | | | | | | | | | Actuated Cycle Length (s) | | | 120.0 | | um of lost | | | | 19.0 | | | | | Intersection Capacity Utilization | n | | 96.1% | IC | CU Level of | of Service | | | F | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | Description: Queens Quay / You | ork Stree | t | | | | | | | | | | | | | • | → | • | • | + | • | • | † | ~ | / | + | 4 | |-------------------------------|-------|----------------|-------|------|------------|-------------|------|----------|------|----------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | (î | | Ť | † | 7 | 7 | f) | | Ť | f) | | | Volume (vph) | 185 | 720 | 0 | 50 | 675 | 235 | 5 | 20 | 30 | 95 | 30 | 65 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width | 3.0 | 3.5 | 3.0 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | | Total Lost time (s) | 3.0 | 6.0 | | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | | 6.0 | 6.0 | | | Lane Util. Factor | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | 1.00 | 1.00 | | | Frpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 1.00 | 0.75 | 1.00 | 0.69 | | 1.00 | 0.73 | | | Flpb, ped/bikes | 1.00 | 1.00 | | 0.90 | 1.00 | 1.00 | 0.67 | 1.00 | | 0.53 | 1.00 | | | Frt | 1.00 | 1.00 | | 1.00 | 1.00 | 0.85 | 1.00 | 0.91 | | 1.00 | 0.90 | | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (prot) | 1501 | 1610 | | 1442 | 1674 | 1048 | 1073 | 1060 | | 820 | 1112 | | | Flt Permitted | 0.17 | 1.00 | | 0.31 | 1.00 | 1.00 | 0.69 | 1.00 | | 0.72 | 1.00 | | | Satd. Flow (perm) | 263 | 1610 | | 466 | 1674 | 1048 | 782 | 1060 | | 624 | 1112 | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 195 | 758 | 0 | 53 | 711 | 247 | 5 | 21 | 32 | 100 | 32 | 68 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 0 | 64 | 0 | 24 | 0 | 0 | 50 | 0 | | Lane Group Flow (vph) | 195 | 758 | 0 | 53 | 711 | 183 | 5 | 29 | 0 | 100 | 50 | 0 | | Confl. Peds. (#/hr) | 180 | | 165 | 165 | | 180 | 200 | | 275 | 275 | | 200 | | Heavy Vehicles (%) | 1% | 5% | 0% | 0% | 1% | 3% | 0% | 0% | 0% | 4% | 0% | 0% | | Turn Type | pm+pt | | | Perm | | Perm | Perm | | | Perm | | | | Protected Phases | 5 | 2 | | | 6 | | | 8 | | | 4 | | | Permitted Phases | 2 | | | 6 | | 6 | 8 | | | 4 | | | | Actuated Green, G (s) | 63.8 | 63.8 | | 50.8 | 50.8 | 50.8 | 27.2 | 27.2 | | 27.2 | 27.2 | | | Effective Green, g (s) | 63.8 | 63.8 | | 50.8 | 50.8 | 50.8 | 27.2 | 27.2 | | 27.2 | 27.2 | | | Actuated g/C Ratio | 0.62 | 0.62 | | 0.49 | 0.49 | 0.49 | 0.26 | 0.26 | | 0.26 | 0.26 | | | Clearance Time (s) | 3.0 | 6.0 | | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | | 6.0 | 6.0 | | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | 3.0 | 3.0 | | | Lane Grp Cap (vph) | 283 | 997 | | 230 | 826 | 517 | 207 | 280 | | 165 | 294 | | | v/s Ratio Prot | 0.07 | c0.47 | | | c0.42 | | | 0.03 | | | 0.04 | | | v/s Ratio Perm | 0.36 | | | 0.11 | | 0.17 | 0.01 | | | c0.16 | | | | v/c Ratio | 0.69 | 0.76 | | 0.23 | 0.86 | 0.35 | 0.02 | 0.11 | | 0.61 | 0.17 | | | Uniform Delay, d1 | 15.4 | 14.1 | | 14.9 | 23.0 | 16.0 | 28.1 | 28.7 | | 33.2 | 29.2 | | | Progression Factor | 1.00 | 1.00 | | 1.15 | 1.04 | 1.24 | 1.00 | 1.00 | | 1.00 | 1.00 | | | Incremental Delay, d2 | 6.8 | 5.5 | | 1.7 | 8.8 | 1.4 | 0.0 | 0.2 | | 6.2 | 0.3 | | | Delay (s) | 22.2 | 19.5 | | 18.9 | 32.6 | 21.4 | 28.1 | 28.9 | | 39.4 | 29.5 | | | Level of Service | С | В | | В | С | С | С | С | | D | С | | | Approach Delay (s) | | 20.1 | | | 29.1 | | | 28.8 | | | 34.4 | | | Approach LOS | | С | | | С | | | С | | | С | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Dela | ıv | | 25.7 | Н | CM Level | of Service | e | | С | | | | | HCM Volume to Capacity ra | • | | 0.80 | - '' | CIVI LOVOI | 31 301 VIO | | | | | | | | Actuated Cycle Length (s) | | | 103.0 | S | um of lost | t time (s) | | | 18.0 | | | | | Intersection Capacity Utiliza | ation | | 98.8% | | | of Service | | | F | | | | | Analysis Period (min) | auon | | 15 | i C | JO LOVOI (| J. OCI VIOC | | | ' | | | | | Analysis i enou (illiii) | | | 10 | | | | | | | | | | | | • | → | ← | • | \ | 4 | | |---|--------------|--------------|--------------|--------------|--------------|--------------|--| | Movement | EBL | EBT | WBT | WBR | SBL | SBR | | | Lane Configurations | ሻ | ^ | ↑ | 7 | ሻ | 7 | | | Volume (vph) | 135 | 675 | 640 | 195 | 135 | 355 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | | | Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | Frpb, ped/bikes | 1.00 | 1.00 | 1.00 | 0.89 | 1.00 | 0.88 | | | Flpb, ped/bikes | 0.97 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | Frt Flt Protected | 1.00 | 1.00 | 1.00 | 0.85 | 1.00 | 0.85
1.00 | | | Satd. Flow (prot) | 0.95
1518 | 1.00
1595 | 1.00
1658 | 1.00
1217 | 0.95
1516 | 1261 | | | Flt Permitted | 0.30 | 1.00 | 1.00 | 1.00 | 0.95 | 1.00 | | | Satd. Flow (perm) | 476 | 1595 | 1658 | 1217 | 1516 | 1261 | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | | Adj. Flow (vph) | 142 | 711 | 674 | 205 | 142 | 374 | | | RTOR Reduction (vph) | 0 | 0 | 0 | 53 | 0 | 136 | | | Lane Group Flow (vph) | 142 | 711 | 674 | 152 | 142 | 238 | | | Confl. Peds. (#/hr) | 85 | | • • • | 85 | 60 | 55 | | | Heavy Vehicles (%) | 3% | 6% | 2% | 5% | 6% | 0% | | | Turn Type | Perm | | | Perm | | Perm | | | Protected Phases | | 2 | 6 | | 4 | | | | Permitted Phases | 2 | | | 6 | | 4 |
| | Actuated Green, G (s) | 64.0 | 64.0 | 64.0 | 64.0 | 27.0 | 27.0 | | | Effective Green, g (s) | 64.0 | 64.0 | 64.0 | 64.0 | 27.0 | 27.0 | | | Actuated g/C Ratio | 0.62 | 0.62 | 0.62 | 0.62 | 0.26 | 0.26 | | | Clearance Time (s) | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | | | Vehicle Extension (s) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | | Lane Grp Cap (vph) | 296 | 991 | 1030 | 756 | 397 | 331 | | | v/s Ratio Prot | | c0.45 | 0.41 | | 0.09 | | | | v/s Ratio Perm | 0.30 | 0.70 | 0.05 | 0.13 | 0.00 | c0.19 | | | v/c Ratio | 0.48 | 0.72 | 0.65 | 0.20 | 0.36 | 0.72 | | | Uniform Delay, d1 | 10.5 | 13.3 | 12.4 | 8.4 | 30.9 | 34.6 | | | Progression Factor
Incremental Delay, d2 | 0.88
4.0 | 1.00
3.3 | 1.00
3.2 | 1.00
0.6 | 1.00
0.6 | 1.00
7.3 | | | Delay (s) | 13.2 | 16.6 | 15.7 | 9.0 | 31.5 | 41.9 | | | Level of Service | 13.2
B | В | 13.7
B | 9.0
A | 31.3
C | 41.3
D | | | Approach Delay (s) | | 16.0 | 14.1 | Α | 39.0 | D D | | | Approach LOS | | В | В | | D | | | | Intersection Summary | | | | | | | | | HCM Average Control Delay | | | 20.6 | Н | CM Level | of Service | | | HCM Volume to Capacity ratio | 0 | | 0.72 | | | | | | Actuated Cycle Length (s) | | | 103.0 | | ım of lost | | | | Intersection Capacity Utilization | on | | 83.3% | IC | U Level c | of Service | | | Analysis Period (min) | | | 15 | | | | | | c Critical Lane Group | | | | | | | | | | ۶ | → | • | • | ← | • | 1 | † | ~ | / | + | ✓ | |---------------------------------------|--------------|--------------|--------|------|------------|------------|------|--------------|------|--------------|--------------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻሻ | ↑ ↑₽ | | | | | | ተኈ | | ሻ | ^ | | | Volume (vph) | 1540 | 2575 | 65 | 0 | 0 | 0 | 0 | 70 | 90 | 165 | 115 | 0 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 7.0 | 7.0 | | | | | | 7.0 | | 6.0 | 7.0 | | | Lane Util. Factor | 0.97 | 0.91 | | | | | | 0.95 | | 1.00 | 0.95 | | | Frpb, ped/bikes | 1.00 | 1.00 | | | | | | 1.00 | | 1.00 | 1.00 | | | Flpb, ped/bikes | 1.00 | 1.00 | | | | | | 1.00 | | 1.00 | 1.00 | | | Frt | 1.00 | 1.00 | | | | | | 0.92 | | 1.00 | 1.00 | | | Flt Protected | 0.95 | 1.00 | | | | | | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (prot) | 3395 | 4912 | | | | | | 3084 | | 1767 | 3433 | | | FIt Permitted | 0.95 | 1.00 | | | | | | 1.00 | | 0.47 | 1.00 | | | Satd. Flow (perm) | 3395 | 4912 | | | | | | 3084 | | 879 | 3433 | | | Peak-hour factor, PHF | 0.97 | 0.97 | 0.97 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 1588 | 2655 | 67 | 0 | 0 | 0 | 0 | 78 | 100 | 183 | 128 | 0 | | RTOR Reduction (vph) | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 41 | 0 | 0 | 0 | 0 | | Lane Group Flow (vph) | 1588 | 2720 | 0 | 0 | 0 | 0 | 0 | 137 | 0 | 183 | 128 | 0 | | Confl. Peds. (#/hr) | 00/ | 40/ | 20 | 00/ | 00/ | 00/ | 00/ | C 0/ | 00/ | 40/ | 40/ | 00/ | | Heavy Vehicles (%) | 2% | 4% | 3% | 0% | 0% | 0% | 0% | 6% | 6% | 1% | 4% | 0% | | Turn Type | Split | • | | | | | | • | | pm+pt | | | | Protected Phases | 2 | 2 | | | | | | 8 | | 7 | 4 | | | Permitted Phases | 00.5 | 00.5 | | | | | | 17.0 | | 4 | 27.5 | | | Actuated Green, G (s) | 92.5
92.5 | 92.5
92.5 | | | | | | 17.0
17.0 | | 37.5 | 37.5 | | | Effective Green, g (s) | 0.64 | 0.64 | | | | | | 0.12 | | 37.5
0.26 | 37.5
0.26 | | | Actuated g/C Ratio Clearance Time (s) | 7.0 | 7.0 | | | | | | 7.0 | | 6.0 | 7.0 | | | Vehicle Extension (s) | 3.0 | 3.0 | | | | | | 3.0 | | 3.0 | 3.0 | | | | 2181 | 3155 | | | | | | 364 | | 318 | 894 | | | Lane Grp Cap (vph) v/s Ratio Prot | 0.47 | c0.55 | | | | | | 0.04 | | c0.06 | 0.04 | | | v/s Ratio Prot
v/s Ratio Perm | 0.47 | 00.55 | | | | | | 0.04 | | c0.00 | 0.04 | | | v/c Ratio | 0.73 | 0.86 | | | | | | 0.38 | | 0.58 | 0.14 | | | Uniform Delay, d1 | 17.3 | 20.6 | | | | | | 58.6 | | 44.1 | 40.9 | | | Progression Factor | 1.00 | 1.00 | | | | | | 1.00 | | 1.00 | 1.00 | | | Incremental Delay, d2 | 2.2 | 3.4 | | | | | | 0.7 | | 2.5 | 0.1 | | | Delay (s) | 19.5 | 24.0 | | | | | | 59.3 | | 46.6 | 41.0 | | | Level of Service | 13.3
B | 24.0
C | | | | | | 55.5
E | | 70.0
D | 41.0
D | | | Approach Delay (s) | | 22.3 | | | 0.0 | | | 59.3 | | | 44.3 | | | Approach LOS | | C | | | A | | | E | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 25.1 | H | CM Level | of Service | ; | | С | | | | | HCM Volume to Capacity rat | io | | 0.77 | | | | | | | | | | | Actuated Cycle Length (s) | | | 144.0 | | um of lost | | | | 13.0 | | | | | Intersection Capacity Utilizati | ion | | 137.7% | IC | U Level o | of Service | | | Н | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | • | • | *_ | • | ሻ | † | ~ | / | ↓ | ¥J | |---|--------------|--------------|--------|-----------|-------------|-------------|--------------|--------------|------|----------|--------------|--------------| | Movement | EBL | EBT | EBR | WBL | WBR | WBR2 | NBL | NBT | NBR | SBL | SBT | SBR2 | | Lane Configurations | 77 | ↑ ↑₽ | | ሻ | 777 | | ሻ | ₽ | | | 4₽ | 7 | | Volume (vph) | 470 | 2315 | 45 | 10 | 940 | 135 | 10 | 25 | 100 | 190 | 75 | 10 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 6.0 | 6.0 | | 6.0 | 6.0 | | 8.0 | 8.0 | | | 8.0 | 8.0 | | Lane Util. Factor | 0.97 | 0.91 | | 1.00 | 0.76 | | 1.00 | 1.00 | | | 0.95 | 1.00 | | Frpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 0.97 | | 1.00 | 0.91 | | | 1.00 | 1.00 | | Flpb, ped/bikes
Frt | 1.00
1.00 | 1.00
1.00 | | 1.00 | 1.00 | | 1.00
1.00 | 1.00
0.88 | | | 0.94
1.00 | 1.00
0.85 | | FIt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | | | 0.97 | 1.00 | | Satd. Flow (prot) | 3330 | 4950 | | 1785 | 4089 | | 1750 | 1482 | | | 3162 | 1566 | | Flt Permitted | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.57 | 1.00 | | | 0.71 | 1.00 | | Satd. Flow (perm) | 3330 | 4950 | | 1785 | 4089 | | 1054 | 1482 | | | 2322 | 1566 | | Peak-hour factor, PHF | 0.97 | 0.97 | 0.97 | 0.91 | 0.91 | 0.91 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 485 | 2387 | 46 | 11 | 1033 | 148 | 11 | 28 | 111 | 211 | 83 | 11 | | RTOR Reduction (vph) | 0 | 1 | 0 | 0 | 14 | 0 | 0 | 84 | 0 | 0 | 0 | 8 | | Lane Group Flow (vph) | 485 | 2432 | 0 | 11 | 1167 | 0 | 11 | 55 | 0 | 0 | 294 | 3 | | Confl. Peds. (#/hr) | 5 | | 40 | 40 | | 5 | | | 80 | 80 | | | | Heavy Vehicles (%) | 4% | 3% | 13% | 0% | 2% | 2% | 2% | 5% | 1% | 2% | 4% | 2% | | Turn Type | Prot | | | Prot | custom | | Perm | | | Perm | | Perm | | Protected Phases | 5 | 2 | | 1 | | | | 8 | | | 4 | | | Permitted Phases | | | | | 6 | | 8 | | | 4 | | 4 | | Actuated Green, G (s) | 26.8 | 60.6 | | 4.4 | 38.2 | | 27.0 | 27.0 | | | 27.0 | 27.0 | | Effective Green, g (s) | 26.8 | 60.6 | | 4.4 | 38.2 | | 27.0 | 27.0 | | | 27.0 | 27.0 | | Actuated g/C Ratio | 0.24 | 0.54 | | 0.04 | 0.34 | | 0.24 | 0.24 | | | 0.24 | 0.24 | | Clearance Time (s) | 6.0 | 6.0 | | 6.0 | 6.0 | | 8.0 | 8.0 | | | 8.0 | 8.0 | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | 3.0 | | | 3.0 | 3.0 | | Lane Grp Cap (vph) | 797 | 2678 | | 70 | 1395 | | 254 | 357 | | | 560 | 378 | | v/s Ratio Prot | c0.15 | c0.49 | | 0.01 | 0.00 | | 0.04 | 0.04 | | | 0.40 | 2.22 | | v/s Ratio Perm | 0.04 | 0.04 | | 0.40 | 0.29 | | 0.01 | 0.45 | | | c0.13 | 0.00 | | v/c Ratio | 0.61 | 0.91 | | 0.16 | 0.84 | | 0.04 | 0.15 | | | 0.52 | 0.01 | | Uniform Delay, d1 | 37.9 | 23.2 | | 52.0 | 34.0 | | 32.6 | 33.5 | | | 36.9 | 32.3 | | Progression Factor
Incremental Delay, d2 | 1.00
1.3 | 1.00
5.8 | | 1.11 | 0.36
5.0 | | 1.00
0.1 | 1.00
0.2 | | | 1.00
0.9 | 1.00 | | Delay (s) | 39.3 | 29.0 | | 58.7 | 17.3 | | 32.7 | 33.7 | | | 37.8 | 32.3 | | Level of Service | 39.3
D | 29.0
C | | 30.7
E | 17.3
B | | 32.7
C | 33.7
C | | | 37.0
D | 32.3
C | | Approach Delay (s) | | 30.7 | | | | | J | 33.6 | | | 37.6 | J | | Approach LOS | | C | | | | | | C | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Dela | у | | 27.9 | H | HCM Leve | l of Servic | е | | С | | | | | HCM Volume to Capacity ra | | | 0.75 | | | | | | | | | _ | | Actuated Cycle Length (s) | | | 112.0 | | Sum of los | | | | 14.0 | | | | | Intersection Capacity Utiliza | ation | | 113.4% | | CU Level | of Service | | | Н | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | • | 1 | † | / | / | ↓ | 4 | </th <th>t</th> <th></th> | t | | |-----------------------------------|-------|------------|-------|------|------------|------------|----------|----------|------|---------------------------|------|--| | Movement | EBL2 | EBT | EBR | NBL | NBT | NBR2 | SBL | SBT | SBR | SWR | SWR2 | | | Lane Configurations | Ť | ∱ ⊅ | | 7 | ₽ | | Ť | ₽ | | ががだ | | | | Volume (vph) | 85 | 1150 | 115 | 25 | 70 | 10 | 95 | 25 | 50 | 1010 | 115 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | 6.0 | 6.0 | | 7.0 | 7.0 | | 7.0 | 7.0 | | 6.0 | | | | Lane Util. Factor | 1.00 | 0.95 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 0.76 | | | | Frpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 0.99 | | 1.00 | 0.94 | | 0.97 | | | | Flpb, ped/bikes | 1.00 | 1.00 | | 0.93 | 1.00 | | 0.97 | 1.00 | | 1.00 | | | | Frt | 1.00 | 0.99 | | 1.00 | 0.98 | | 1.00 | 0.90 | | 1.00 | | | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | | 1.00 | | | | Satd. Flow (prot) | 1648 | 3383 | | 1603 | 1757 | | 1735 | 1204 | | 3951 | | | | Flt Permitted | 0.95 | 1.00 | | 0.70 | 1.00 | | 0.70 | 1.00 | |
1.00 | | | | Satd. Flow (perm) | 1648 | 3383 | | 1186 | 1757 | | 1277 | 1204 | | 3951 | | | | Peak-hour factor, PHF | 0.94 | 0.94 | 0.94 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.91 | 0.91 | | | Adj. Flow (vph) | 90 | 1223 | 122 | 28 | 78 | 11 | 106 | 28 | 56 | 1110 | 126 | | | RTOR Reduction (vph) | 0 | 7 | 0 | 0 | 4 | 0 | 0 | 40 | 0 | 10 | 0 | | | Lane Group Flow (vph) | 90 | 1338 | 0 | 28 | 85 | 0 | 106 | 44 | 0 | 1226 | 0 | | | Confl. Peds. (#/hr) | 5 | | 10 | 80 | | 30 | 30 | | 80 | | 5 | | | Heavy Vehicles (%) | 8% | 4% | 2% | 3% | 5% | 0% | 0% | 15% | 40% | 6% | 3% | | | Turn Type | pm+pt | | | Perm | | | Perm | | | custom | | | | Protected Phases | 5 | 2 | | | 8 | | | 4 | | | | | | Permitted Phases | 2 | | | 8 | | | 4 | | | 6 | | | | Actuated Green, G (s) | 67.0 | 67.0 | | 32.0 | 32.0 | | 32.0 | 32.0 | | 55.4 | | | | Effective Green, g (s) | 67.0 | 67.0 | | 32.0 | 32.0 | | 32.0 | 32.0 | | 55.4 | | | | Actuated g/C Ratio | 0.60 | 0.60 | | 0.29 | 0.29 | | 0.29 | 0.29 | | 0.49 | | | | Clearance Time (s) | 6.0 | 6.0 | | 7.0 | 7.0 | | 7.0 | 7.0 | | 6.0 | | | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | | | | Lane Grp Cap (vph) | 986 | 2024 | | 339 | 502 | | 365 | 344 | | 1954 | | | | v/s Ratio Prot | 0.00 | c0.40 | | | 0.05 | | | 0.04 | | | | | | v/s Ratio Perm | 0.05 | | | 0.02 | | | c0.08 | | | 0.31 | | | | v/c Ratio | 0.09 | 0.66 | | 0.08 | 0.17 | | 0.29 | 0.13 | | 0.63 | | | | Uniform Delay, d1 | 9.6 | 15.0 | | 29.3 | 30.0 | | 31.2 | 29.7 | | 20.7 | | | | Progression Factor | 0.93 | 1.31 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 0.50 | | | | Incremental Delay, d2 | 0.0 | 1.1 | | 0.1 | 0.2 | | 0.4 | 0.2 | | 0.7 | | | | Delay (s) | 9.0 | 20.6 | | 29.4 | 30.2 | | 31.6 | 29.8 | | 11.1 | | | | Level of Service | A | С | | С | С | | С | С | | В | | | | Approach Delay (s) | | 19.9 | | | 30.0 | | | 30.8 | | | | | | Approach LOS | | В | | | С | | | С | | | | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 17.3 | H | CM Level | of Servic | е | | В | | | | | HCM Volume to Capacity rati | 0 | | 0.54 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | um of lost | | | | 13.0 | | | | | Intersection Capacity Utilization | on | | 99.2% | IC | U Level | of Service | | | F | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | • | / | ← | • | *1 | † | ↓ | 4 | | | |-----------------------------------|-----------|----------|----------|----------|------------|------------|------------|------|------|--| | Movement | WBL2 | WBL | WBT | WBR | NBL2 | NBT | SBT | SBR2 | | | | Lane Configurations | | ሽኘኘ | ħβ | | | ^ | ∱ } | | | | | Volume (vph) | 65 | 1090 | 595 | 475 | 100 | 895 | 250 | 645 | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | Total Lost time (s) | | 6.0 | 6.0 | | | 8.0 | 8.0 | | | | | Lane Util. Factor | | 0.94 | 0.95 | | | 0.95 | 0.95 | | | | | Frpb, ped/bikes | | 1.00 | 0.98 | | | 1.00 | 1.00 | | | | | Flpb, ped/bikes | | 0.89 | 1.00 | | | 1.00 | 1.00 | | | | | Frt | | 1.00 | 0.93 | | | 1.00 | 0.89 | | | | | Flt Protected | | 0.95 | 1.00 | | | 1.00 | 1.00 | | | | | Satd. Flow (prot) | | 4214 | 3142 | | | 3354 | 3037 | | | | | Flt Permitted | | 0.95 | 1.00 | | | 0.62 | 1.00 | | | | | Satd. Flow (perm) | 0.05 | 4214 | 3142 | 0.05 | 0.00 | 2104 | 3037 | 0.00 | | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.90 | 0.90 | 0.90 | 0.90 | | | | Adj. Flow (vph) | 68 | 1147 | 626 | 500 | 111 | 994 | 278 | 717 | | | | RTOR Reduction (vph) | 0 | 0 | 68 | 0 | 0 | 0 | 140 | 0 | | | | Lane Group Flow (vph) | 0 | 1215 | 1058 | 0 | 0 | 1105 | 855 | 0 | | | | Confl. Peds. (#/hr) | 70
14% | 6% | 4% | 45
3% | 5% | 6% | 7% | 4% | | | | Heavy Vehicles (%) | | | 4% | 3% | | 070 | 1 70 | 470 | | | | Turn Type Protected Phases | Perm | Split | 6 | | pm+pt | 8 | 4 | | | | | Permitted Phases | 6 | 6 | 6 | | 3
8 | 0 | 4 | | | | | Actuated Green, G (s) | U | 36.0 | 36.0 | | 0 | 62.0 | 62.0 | | | | | Effective Green, g (s) | | 36.0 | 36.0 | | | 62.0 | 62.0 | | | | | Actuated g/C Ratio | | 0.32 | 0.32 | | | 0.55 | 0.55 | | | | | Clearance Time (s) | | 6.0 | 6.0 | | | 8.0 | 8.0 | | | | | Vehicle Extension (s) | | 3.0 | 3.0 | | | 3.0 | 3.0 | | | | | Lane Grp Cap (vph) | | 1355 | 1010 | | | 1165 | 1681 | | | | | v/s Ratio Prot | | 1000 | c0.34 | | | 1100 | 0.28 | | | | | v/s Ratio Perm | | 0.29 | 00.01 | | | c0.53 | 0.20 | | | | | v/c Ratio | | 0.90 | 1.05 | | | 0.95 | 0.51 | | | | | Uniform Delay, d1 | | 36.2 | 38.0 | | | 23.5 | 15.5 | | | | | Progression Factor | | 0.24 | 0.16 | | | 0.77 | 1.00 | | | | | Incremental Delay, d2 | | 1.0 | 24.5 | | | 10.4 | 0.2 | | | | | Delay (s) | | 9.5 | 30.7 | | | 28.5 | 15.8 | | | | | Level of Service | | Α | С | | | С | В | | | | | Approach Delay (s) | | | 19.7 | | | 28.5 | 15.8 | | | | | Approach LOS | | | В | | | С | В | | | | | Intersection Summary | | | | | | | | | | | | HCM Average Control Delay | | | 21.0 | Н | CM Level | of Service | | | С | | | HCM Volume to Capacity ratio |) | | 0.99 | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | S | um of lost | time (s) | | | 14.0 | | | Intersection Capacity Utilization | n | | 107.0% | | CU Level o | | | | G | | | Analysis Period (min) | | | 15 | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | ۶ | → | * | • | + | • | 1 | † | <i>></i> | / | + | ✓ | |-----------------------------------|------|----------|-------|------|-------------|------------|-------|----------|-------------|----------|-----------|--------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | | | | बाक्ति | | ሻ | ^ | | | + | 77 | | Volume (vph) | 0 | 0 | 0 | 165 | 2005 | 210 | 145 | 675 | 0 | 0 | 245 | 265 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | | | | 7.0 | | 7.0 | 7.0 | | | 7.0 | 7.0 | | Lane Util. Factor | | | | | 0.86 | | 1.00 | 0.95 | | | 1.00 | 0.88 | | Frpb, ped/bikes | | | | | 0.99 | | 1.00 | 1.00 | | | 1.00 | 1.00 | | Flpb, ped/bikes | | | | | 1.00 | | 0.70 | 1.00 | | | 1.00 | 1.00 | | Frt | | | | | 0.99 | | 1.00 | 1.00 | | | 1.00 | 0.85 | | Flt Protected | | | | | 1.00 | | 0.95 | 1.00 | | | 1.00 | 1.00 | | Satd. Flow (prot) | | | | | 6003 | | 1173 | 3400 | | | 1634 | 2703 | | Flt Permitted | | | | | 1.00 | | 0.51 | 1.00 | | | 1.00 | 1.00 | | Satd. Flow (perm) | | | | | 6003 | | 629 | 3400 | | | 1634 | 2703 | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.95 | 0.95 | 0.95 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 0 | 0 | 0 | 174 | 2111 | 221 | 161 | 750 | 0 | 0 | 272 | 294 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 213 | | Lane Group Flow (vph) | 0 | 0 | 0 | 0 | 2492 | 0 | 161 | 750 | 0 | 0 | 272 | 81 | | Confl. Peds. (#/hr) | | | | 35 | | 125 | 1405 | | | | | 1405 | | Heavy Vehicles (%) | 0% | 0% | 0% | 12% | 4% | 3% | 6% | 5% | 0% | 0% | 15% | 4% | | Turn Type | | | | Perm | | | Perm | | | | | custom | | Protected Phases | | | | | 6 | | | 8 | | | 4 | 3 | | Permitted Phases | | | | 6 | | | 8 | | | | | | | Actuated Green, G (s) | | | | | 36.0 | | 62.0 | 62.0 | | | 24.0 | 31.0 | | Effective Green, g (s) | | | | | 36.0 | | 62.0 | 62.0 | | | 24.0 | 31.0 | | Actuated g/C Ratio | | | | | 0.32 | | 0.55 | 0.55 | | | 0.21 | 0.28 | | Clearance Time (s) | | | | | 7.0 | | 7.0 | 7.0 | | | 7.0 | 7.0 | | Vehicle Extension (s) | | | | | 3.0 | | 3.0 | 3.0 | | | 3.0 | 3.0 | | Lane Grp Cap (vph) | | | | | 1930 | | 348 | 1882 | | | 350 | 748 | | v/s Ratio Prot | | | | | | | | 0.22 | | | c0.17 | 0.03 | | v/s Ratio Perm | | | | | 0.42 | | c0.26 | | | | | | | v/c Ratio | | | | | 1.29 | | 0.46 | 0.40 | | | 0.78 | 0.11 | | Uniform Delay, d1 | | | | | 38.0 | | 15.0 | 14.3 | | | 41.5 | 30.2 | | Progression Factor | | | | | 0.36 | | 0.49 | 0.46 | | | 1.00 | 1.00 | | Incremental Delay, d2 | | | | | 131.3 | | 0.7 | 0.1 | | | 10.4 | 0.3 | | Delay (s) | | | | | 145.0 | | 8.0 | 6.7 | | | 51.8 | 30.5 | | Level of Service | | 0.0 | | | F | | Α | A | | | D | С | | Approach Delay (s) Approach LOS | | 0.0
A | | | 145.0
F | | | 7.0
A | | | 40.8
D | | | | | /\ | | | ' | | | ,, | | | | | | Intersection Summary | | | 00.0 | | 0141 | | | | | | | | | HCM Average Control Delay | | | 98.6 | Н | CM Level | of Servic | е | | F | | | | | HCM Volume to Capacity ratio | | | 0.82 | | | C () | | | 44.0 | | | | | Actuated Cycle Length (s) | | | 112.0 | | um of lost | | | | 14.0 | | | | | Intersection Capacity Utilization | | | 87.3% | 10 | CU Level of | of Service | | | E | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | • | • | ← | 4 | 1 | † | / | / | Ţ | 4 | |-----------------------------------|------|----------|--------|------|--------------|------------|-----------|-------------|----------|----------|------------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | | | | 4 † † | | Ť | ^ | | | ∱ β | | | Volume (vph) | 0 | 0 | 0 | 105 | 2060 | 300 | 110 | 1170 | 0 | 0 | 125 | 230 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | | | | 7.0 | | 4.0 | 7.0 | | | 7.0 | | | Lane Util. Factor | | | | | 0.91 | | 1.00 | 0.95 | | | 0.95 | | | Frpb, ped/bikes | | | | | 0.98 | | 1.00 | 1.00 | | | 0.79 | | | Flpb, ped/bikes | | | | | 1.00 | | 0.93 | 1.00 | | | 1.00 | | | Frt | | | | | 0.98 | | 1.00 | 1.00 | | | 0.90 | | | Flt Protected | | | | | 1.00 | | 0.95 | 1.00 | | | 1.00 | | | Satd. Flow (prot) | | | | | 4747 | | 1567 | 3433 | | | 2348 | | | Flt Permitted | | | | | 1.00 | | 0.45 | 1.00 | | | 1.00 | | | Satd. Flow (perm) | | | | | 4747 | | 737 | 3433 | | |
2348 | | | Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.95 | 0.95 | 0.95 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 0 | 0 | 0 | 111 | 2168 | 316 | 122 | 1300 | 0 | 0 | 139 | 256 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 39 | 0 | | Lane Group Flow (vph) | 0 | 0 | 0 | 0 | 2593 | 0 | 122 | 1300 | 0 | 0 | 356 | 0 | | Confl. Peds. (#/hr) | | | | 130 | | 165 | 435 | | 290 | 290 | | 435 | | Heavy Vehicles (%) | 0% | 0% | 0% | 2% | 4% | 3% | 6% | 4% | 0% | 0% | 11% | 8% | | Turn Type | | | | Perm | | | pm+pt | | | | | | | Protected Phases | | | | _ | 6 | | 3 | 8 | | | 4 | | | Permitted Phases | | | | 6 | 4-0 | | 8 | | | | 44.0 | | | Actuated Green, G (s) | | | | | 47.0 | | 51.0 | 51.0 | | | 41.0 | | | Effective Green, g (s) | | | | | 47.0 | | 51.0 | 51.0 | | | 41.0 | | | Actuated g/C Ratio | | | | | 0.42 | | 0.46 | 0.46 | | | 0.37 | | | Clearance Time (s) | | | | | 7.0 | | 4.0 | 7.0 | | | 7.0 | | | Vehicle Extension (s) | | | | | 3.0 | | 3.0 | 3.0 | | | 3.0 | | | Lane Grp Cap (vph) | | | | | 1992 | | 380 | 1563 | | | 860 | | | v/s Ratio Prot | | | | | 0.55 | | 0.02 | c0.38 | | | 0.15 | | | v/s Ratio Perm | | | | | 0.55 | | 0.13 | 0.00 | | | 0.44 | | | v/c Ratio | | | | | 1.30 | | 0.32 | 0.83 | | | 0.41 | | | Uniform Delay, d1 | | | | | 32.5 | | 18.2 | 26.7 | | | 26.5 | | | Progression Factor | | | | | 1.00 | | 0.60 | 0.51
2.7 | | | 1.00 | | | Incremental Delay, d2 | | | | | 139.6 | | | | | | | | | Delay (s)
Level of Service | | | | | 172.1
F | | 11.2
B | 16.4
B | | | 26.9
C | | | Approach Delay (s) | | 0.0 | | | 172.1 | | Ь | 15.9 | | | 26.9 | | | Approach LOS | | Α | | | 172.1
F | | | 15.9
B | | | 20.9
C | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 108.8 | Н | CM Level | of Service | e | | F | | | | | HCM Volume to Capacity ratio | | | 1.06 | | | | - | | - | | | | | Actuated Cycle Length (s) | | | 112.0 | S | um of lost | time (s) | | | 14.0 | | | | | Intersection Capacity Utilization | | | 164.4% | | CU Level | | | | Н | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | - | • | • | ← | • | • | † | <i>></i> | > | ļ | 4 | |-----------------------------------|--------|------------|------------|----------|------------|------------|------|----------|-------------|-------------|--------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | ↑ ↑ | | | | | | ^ | | | 41₽ | | | Volume (vph) | 0 | 1215 | 50 | 0 | 0 | 0 | 0 | 1015 | 0 | 165 | 190 | 0 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.6 | 3.5 | 3.5 | 3.5 | 3.5 | | Total Lost time (s) | | 6.0 | | | | | | 8.0 | | | 8.0 | | | Lane Util. Factor | | 0.91 | | | | | | 0.95 | | | 0.95 | | | Frpb, ped/bikes | | 1.00 | | | | | | 1.00 | | | 1.00 | | | Flpb, ped/bikes | | 1.00 | | | | | | 1.00 | | | 1.00 | | | Frt | | 0.99 | | | | | | 1.00 | | | 1.00 | | | FIt Protected | | 1.00 | | | | | | 1.00 | | | 0.98 | | | Satd. Flow (prot) | | 4844 | | | | | | 3610 | | | 3237 | | | FIt Permitted | | 1.00 | | | | | | 1.00 | | | 0.54 | | | Satd. Flow (perm) | | 4844 | | | | | | 3610 | | | 1799 | | | Peak-hour factor, PHF | 0.94 | 0.94 | 0.94 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 0 | 1293 | 53 | 0 | 0 | 0 | 0 | 1128 | 0 | 183 | 211 | 0 | | RTOR Reduction (vph) | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Lane Group Flow (vph) | 0 | 1343 | 0 | 0 | 0 | 0 | 0 | 1128 | 0 | 0 | 394 | 0 | | Confl. Peds. (#/hr) | 30 | | 30 | | | | | | | 55 | | | | Heavy Vehicles (%) | 17% | 5% | 8% | 2% | 2% | 2% | 0% | 0% | 0% | 8% | 7% | 0% | | Turn Type | | | | | | | | | | pm+pt | | | | Protected Phases | | 2 | | | | | | 8 | | 7 | 4 | | | Permitted Phases | | | | | | | | | | 4 | | | | Actuated Green, G (s) | | 53.8 | | | | | | 44.2 | | | 44.2 | | | Effective Green, g (s) | | 53.8 | | | | | | 44.2 | | | 44.2 | | | Actuated g/C Ratio | | 0.48 | | | | | | 0.39 | | | 0.39 | | | Clearance Time (s) | | 6.0 | | | | | | 8.0 | | | 8.0 | | | Vehicle Extension (s) | | 3.0 | | | | | | 3.0 | | | 3.0 | | | Lane Grp Cap (vph) | | 2327 | | | | | | 1425 | | | 710 | | | v/s Ratio Prot | | c0.28 | | | | | | c0.31 | | | | | | v/s Ratio Perm | | | | | | | | | | | 0.22 | | | v/c Ratio | | 0.58 | | | | | | 0.79 | | | 2.51dl | | | Uniform Delay, d1 | | 20.9 | | | | | | 29.8 | | | 26.3 | | | Progression Factor | | 0.31 | | | | | | 1.00 | | | 0.82 | | | Incremental Delay, d2 | | 0.8 | | | | | | 3.1 | | | 8.0 | | | Delay (s) | | 7.3 | | | | | | 32.9 | | | 22.3 | | | Level of Service | | Α | | | | | | С | | | С | | | Approach Delay (s) | | 7.3 | | | 0.0 | | | 32.9 | | | 22.3 | | | Approach LOS | | Α | | | Α | | | С | | | С | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 19.5 | H | CM Level | of Service |) | | В | | | | | HCM Volume to Capacity ratio | | | 0.67 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | Sı | um of lost | time (s) | | | 14.0 | | | | | Intersection Capacity Utilization | | | 88.9% | | | of Service | | | Е | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | dl Defacto Left Lane. Recode | with 1 | though la | ne as a le | ft lane. | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | † | / | / | ↓ | <i>></i> | 4 | | | |-----------------------------------|--------------|--------------|--------------|----------|--------------|--------------|--------------|--------------|------|--| | Movement | EBL | EBT | NBT | NBR | SBL | SBT | NER | NER2 | | | | Lane Configurations | ň | 4₽ | ∱ } | | ň | ^ | 7 | 7 | | | | Volume (vph) | 820 | 1085 | 340 | 25 | 180 | 275 | 615 | 140 | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | Total Lost time (s) | 7.0 | 7.0 | 7.0 | | 7.0 | 7.0 | 7.0 | 7.0 | | | | Lane Util. Factor | 0.91 | 0.91 | 0.95 | | 1.00 | 0.95 | 1.00 | 1.00 | | | | Frpb, ped/bikes | 1.00 | 1.00 | 0.98 | | 1.00 | 1.00 | 1.00 | 1.00 | | | | Flpb, ped/bikes | 1.00 | 1.00 | 1.00 | | 0.85 | 1.00 | 1.00 | 1.00 | | | | Frt
Flt Protected | 1.00 | 1.00 | 0.99
1.00 | | 1.00 | 1.00 | 1.00 | 0.85 | | | | | 0.95
1557 | 0.99
3209 | 3312 | | 0.95
1424 | 1.00
3159 | 1.00
1842 | 1.00
1566 | | | | Satd. Flow (prot) Flt Permitted | 0.95 | 0.99 | 1.00 | | 0.48 | 1.00 | 1.00 | 1.00 | | | | Satd. Flow (perm) | 1557 | 3209 | 3312 | | 714 | 3159 | 1842 | 1566 | | | | Peak-hour factor, PHF | 0.94 | 0.94 | 0.90 | 0.90 | 0.90 | 0.90 | 0.94 | 0.94 | | | | Adj. Flow (vph) | 872 | 1154 | 378 | 28 | 200 | 306 | 654 | 149 | | | | RTOR Reduction (vph) | 0 | 0 | 5 | 0 | 0 | 0 | 004 | 71 | | | | Lane Group Flow (vph) | 654 | 1372 | 401 | 0 | 200 | 306 | 654 | 78 | | | | Confl. Peds. (#/hr) | 5 | 1012 | 101 | 310 | 310 | | 001 | | | | | Heavy Vehicles (%) | 4% | 6% | 5% | 0% | 7% | 13% | 2% | 2% | | | | Turn Type | Perm | | | | Perm | | custom | | | | | Protected Phases | | 2 | 8 | | | 4 | | | | | | Permitted Phases | 2 | | | | 4 | | 2 | 2 | | | | Actuated Green, G (s) | 59.0 | 59.0 | 39.0 | | 39.0 | 39.0 | 59.0 | 59.0 | | | | Effective Green, g (s) | 59.0 | 59.0 | 39.0 | | 39.0 | 39.0 | 59.0 | 59.0 | | | | Actuated g/C Ratio | 0.53 | 0.53 | 0.35 | | 0.35 | 0.35 | 0.53 | 0.53 | | | | Clearance Time (s) | 7.0 | 7.0 | 7.0 | | 7.0 | 7.0 | 7.0 | 7.0 | | | | Vehicle Extension (s) | 3.0 | 3.0 | 3.0 | | 3.0 | 3.0 | 3.0 | 3.0 | | | | Lane Grp Cap (vph) | 820 | 1690 | 1153 | | 249 | 1100 | 970 | 825 | | | | v/s Ratio Prot | | | 0.12 | | | 0.10 | | | | | | v/s Ratio Perm | 0.42 | 0.43 | | | c0.28 | | 0.36 | 0.05 | | | | v/c Ratio | 0.80 | 0.81 | 0.35 | | 0.80 | 0.28 | 0.67 | 0.10 | | | | Uniform Delay, d1 | 21.6 | 21.9 | 27.1 | | 33.0 | 26.3 | 19.4 | 13.2 | | | | Progression Factor | 0.47 | 0.46 | 1.00 | | 1.41 | 1.43 | 1.00 | 1.00 | | | | Incremental Delay, d2 | 7.4 | 4.1 | 0.2 | | 8.8 | 0.1 | 3.7 | 0.2 | | | | Delay (s)
Level of Service | 17.5
B | 14.1
B | 27.3
C | | 55.2
E | 37.8
D | 23.2
C | 13.4
B | | | | Approach Delay (s) | Б | 15.2 | 27.3 | | | 44.7 | U | D | | | | Approach LOS | | В | C C | | | D | | | | | | Intersection Summary | | | | | | | | | | | | HCM Average Control Delay | | | 21.8 | H | CM Level | of Servi | ce | | С | | | HCM Volume to Capacity ration | 0 | | 0.81 | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | um of lost | | | | 14.0 | | | Intersection Capacity Utilization | on | | 139.8% | IC | U Level o | f Service |) | | Н | | | Analysis Period (min) | | | 15 | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | A | † | 7 | ₩ | | لِر | • | × | 4 | 4 | × | t | |-----------------------------------|----------|------------|--------|----------|-------------|------------|------|------|------|------|------|------| | Movement | NBL | NBT | NBR | SBL | SBT | SBR | NEL | NET | NER | SWL | SWT | SWR | | Lane Configurations | | † } | | | ^ | | ሻ | 4₽ | | | | | | Volume (vph) | 0 | 170 | 145 | 0 | 230 | 0 | 1100 | 710 | 0 | 0 | 0 | 0 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | 7.0 | | | 7.0 | | 7.0 | 7.0 | | | | | | Lane Util. Factor | | 0.95 | | | 0.95 | | 0.91 | 0.91 | | | | | | Frpb, ped/bikes | | 0.99 | | | 1.00 | | 1.00 | 1.00 | | | | | | Flpb, ped/bikes | | 1.00 | | | 1.00 | | 1.00 | 1.00 | | | | | | Frt | | 0.93 | | | 1.00 | | 1.00 | 1.00 | | | | | | Flt Protected | | 1.00 | | | 1.00 | | 0.95 | 0.98 | | | | | | Satd. Flow (prot) | | 2997 | | | 3336 | | 1562 | 3150 | | | | | | Flt Permitted | | 1.00 | | | 1.00 | | 0.95 | 0.98 | | | | | | Satd. Flow (perm) | | 2997 | | | 3336 | | 1562 | 3150 | | | | | | Peak-hour factor, PHF
| 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.94 | 0.94 | 0.94 | 0.90 | 0.90 | 0.90 | | Adj. Flow (vph) | 0 | 189 | 161 | 0 | 256 | 0 | 1170 | 755 | 0 | 0 | 0 | 0 | | RTOR Reduction (vph) | 0 | 89 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Lane Group Flow (vph) | 0 | 261 | 0 | 0 | 256 | 0 | 632 | 1293 | 0 | 0 | 0 | 0 | | Confl. Peds. (#/hr) | | | 15 | | | | | | | | | | | Heavy Vehicles (%) | 0% | 12% | 7% | 0% | 7% | 0% | 4% | 8% | 0% | 0% | 0% | 0% | | Turn Type | | | | | | | Perm | | | | | | | Protected Phases | | 8 | | | 4 | | | 2 | | | | | | Permitted Phases | | | | | | | 2 | | | | | | | Actuated Green, G (s) | | 43.0 | | | 43.0 | | 55.0 | 55.0 | | | | | | Effective Green, g (s) | | 43.0 | | | 43.0 | | 55.0 | 55.0 | | | | | | Actuated g/C Ratio | | 0.38 | | | 0.38 | | 0.49 | 0.49 | | | | | | Clearance Time (s) | | 7.0 | | | 7.0 | | 7.0 | 7.0 | | | | | | Vehicle Extension (s) | | 3.0 | | | 3.0 | | 3.0 | 3.0 | | | | | | Lane Grp Cap (vph) | | 1151 | | | 1281 | | 767 | 1547 | | | | | | v/s Ratio Prot | | c0.09 | | | 0.08 | | | | | | | | | v/s Ratio Perm | | | | | | | 0.40 | 0.41 | | | | | | v/c Ratio | | 0.23 | | | 0.20 | | 0.82 | 0.84 | | | | | | Uniform Delay, d1 | | 23.3 | | | 23.0 | | 24.4 | 24.6 | | | | | | Progression Factor | | 1.00 | | | 1.01 | | 0.44 | 0.44 | | | | | | Incremental Delay, d2 | | 0.1 | | | 0.0 | | 6.5 | 3.6 | | | | | | Delay (s) | | 23.4 | | | 23.2 | | 17.3 | 14.4 | | | | | | Level of Service | | С | | | С | | В | В | | | | | | Approach Delay (s) | | 23.4 | | | 23.2 | | | 15.3 | | | 0.0 | | | Approach LOS | | С | | | С | | | В | | | Α | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 17.2 | H | CM Level | of Servic | е | | В | | | | | HCM Volume to Capacity ratio | | | 0.57 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | um of lost | | | | 14.0 | | | | | Intersection Capacity Utilization | | | 164.4% | IC | CU Level of | of Service | | | Н | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | * | • | ← | • | 1 | † | ~ | / | + | ✓ | |---------------------------------------|--------------|---------------|--------|------|------------|------------|------|--------------|------|--------------|--------------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | 1,4 | ↑ ↑₽ | | | | | | ተኈ | | ሻ | ^ | | | Volume (vph) | 855 | 2145 | 150 | 0 | 0 | 0 | 0 | 200 | 25 | 280 | 40 | 0 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 7.0 | 7.0 | | | | | | 7.0 | | 6.0 | 7.0 | | | Lane Util. Factor | 0.97 | 0.91 | | | | | | 0.95 | | 1.00 | 0.95 | | | Frpb, ped/bikes | 1.00 | 0.99 | | | | | | 1.00 | | 1.00 | 1.00 | | | Flpb, ped/bikes | 1.00 | 1.00 | | | | | | 1.00 | | 1.00 | 1.00 | | | Frt | 1.00 | 0.99 | | | | | | 0.98 | | 1.00 | 1.00 | | | Flt Protected | 0.95 | 1.00 | | | | | | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (prot) | 3395 | 4951 | | | | | | 3347 | | 1750 | 3400 | | | Flt Permitted | 0.95 | 1.00 | | | | | | 1.00 | | 0.44 | 1.00 | | | Satd. Flow (perm) | 3395 | 4951 | | | | | | 3347 | | 819 | 3400 | | | Peak-hour factor, PHF | 0.93 | 0.93 | 0.93 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 919 | 2306 | 161 | 0 | 0 | 0 | 0 | 211 | 26 | 295 | 42 | 0 | | RTOR Reduction (vph) | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | | Lane Group Flow (vph) | 919 | 2460 | 0 | 0 | 0 | 0 | 0 | 229 | 0 | 295 | 42 | 0 | | Confl. Peds. (#/hr) | 1 | 00/ | 60 | 60 | 00/ | 1 | 15 | 5 0/ | 40/ | 00/ | 50 / | 15 | | Heavy Vehicles (%) | 2% | 2% | 3% | 0% | 0% | 0% | 0% | 5% | 4% | 2% | 5% | 2% | | Turn Type | Split | • | | | | | | • | | pm+pt | 4 | | | Protected Phases | 2 | 2 | | | | | | 8 | | 7 | 4 | | | Permitted Phases | C4 0 | C4 0 | | | | | | 47.0 | | 4 | 27.0 | | | Actuated Green, G (s) | 61.0 | 61.0 | | | | | | 17.0 | | 37.0 | 37.0 | | | Effective Green, g (s) | 61.0
0.54 | 61.0
0.54 | | | | | | 17.0
0.15 | | 37.0
0.33 | 37.0
0.33 | | | Actuated g/C Ratio Clearance Time (s) | 7.0 | 7.0 | | | | | | 7.0 | | 6.0 | 7.0 | | | Vehicle Extension (s) | 3.0 | 3.0 | | | | | | 3.0 | | 3.0 | 3.0 | | | | | | | | | | | 508 | | 387 | | | | Lane Grp Cap (vph) v/s Ratio Prot | 1849
0.27 | 2697
c0.50 | | | | | | 0.07 | | c0.10 | 1123
0.01 | | | v/s Ratio Prot
v/s Ratio Perm | 0.27 | 00.50 | | | | | | 0.07 | | c0.10 | 0.01 | | | v/c Ratio | 0.50 | 0.91 | | | | | | 0.45 | | 0.76 | 0.04 | | | Uniform Delay, d1 | 15.9 | 23.1 | | | | | | 43.2 | | 30.9 | 25.4 | | | Progression Factor | 1.00 | 1.00 | | | | | | 1.00 | | 1.00 | 1.00 | | | Incremental Delay, d2 | 1.00 | 6.0 | | | | | | 0.6 | | 8.6 | 0.0 | | | Delay (s) | 16.9 | 29.1 | | | | | | 43.9 | | 39.5 | 25.4 | | | Level of Service | 10.3 | 23.1
C | | | | | | 45.5
D | | 09.0
D | 23.4
C | | | Approach Delay (s) | | 25.8 | | | 0.0 | | | 43.9 | | | 37.8 | | | Approach LOS | | C | | | A | | | D | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 27.9 | H | CM Level | of Service |) | | С | | | | | HCM Volume to Capacity ratio |) | | 0.83 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | ım of lost | | | | 13.0 | | | | | Intersection Capacity Utilization | n | | 148.1% | IC | U Level o | of Service | | | Н | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | ۶ | → | • | • | *_ | • | ሻ | † | / | / | ↓ | ¥J | |---------------------------------------|------------|--------------|--------|------------|--------------|-------------|--------------|--------------|----------|--------------|--------------|--------------| | Movement | EBL | EBT | EBR | WBL | WBR | WBR2 | NBL | NBT | NBR | SBL | SBT | SBR2 | | Lane Configurations | 14.4 | ተተኈ | | ሻ | 772 | | ሻ | ₽ | | ሻ | † | 7 | | Volume (vph) | 260 | 2150 | 40 | 25 | 1815 | 135 | 25 | 10 | 110 | 460 | 145 | 30 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | 6.0 | 6.0 | | 6.0 | 6.0 | | 8.0 | 8.0 | | 5.0 | 8.0 | 8.0 | | Lane Util. Factor | 0.97 | 0.91 | | 1.00 | *0.91 | | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | | Frpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 0.97 | | 1.00 | 0.89 | | 1.00 | 1.00 | 0.82 | | Flpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 1.00 | | 0.86 | 1.00 | | 0.96 | 1.00 | 1.00 | | Frt | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 0.86 | | 1.00 | 1.00 | 0.85 | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | 1.00 | | Satd. Flow (prot) | 3429 | 5010 | | 1653 | 4869 | | 1483 | 1450 | | 1673 | 1756 | 1277 | | Flt Permitted | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.66 | 1.00 | | 0.57 | 1.00 | 1.00 | | Satd. Flow (perm) | 3429 | 5010 | | 1653 | 4869 | | 1030 | 1450 | | 1004 | 1756 | 1277 | | Peak-hour factor, PHF | 0.93 | 0.93 | 0.93 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 280 | 2312 | 43 | 26 | 1911 | 142 | 26 | 11 | 116 | 484 | 153 | 32 | | RTOR Reduction (vph) | 0 | 2 | 0 | 0 | 7 | 0 | 0 | 88 | 0 | 0 | 0 | 19 | | Lane Group Flow (vph) | 280 | 2353 | 0 | 26 | 2046 | 0 | 26 | 39 | 0 | 484 | 153 | 13 | | Confl. Peds. (#/hr) | 5 | 00/ | 25 | 25 | 00/ | 5 | 135 | 00/ | 85 | 85 | 70/ | 135 | | Heavy Vehicles (%) | 1% | 2% | 0% | 8% | 2% | 5% | 4% | 0% | 0% | 2% | 7% | 3% | | Turn Type | Prot | 0 | | | custom | | Perm | 0 | | pm+pt | 4 | Perm | | Protected Phases | 5 | 2 | | 1 | ^ | | 0 | 8 | | 7 | 4 | 4 | | Permitted Phases | 0.4 | 40.4 | | 2.6 | 6 | | 8 | 07.0 | | 46.0 | 46.0 | 46.0 | | Actuated Green, G (s) | 9.4
9.4 | 42.4
42.4 | | 3.6
3.6 | 36.6
36.6 | | 27.0 | 27.0
27.0 | | 46.0 | 46.0 | 46.0
46.0 | | Effective Green, g (s) | 0.08 | 0.38 | | 0.03 | 0.33 | | 27.0
0.24 | 0.24 | | 46.0
0.41 | 46.0
0.41 | 0.41 | | Actuated g/C Ratio Clearance Time (s) | 6.0 | 6.0 | | 6.0 | 6.0 | | 8.0 | 8.0 | | 5.0 | 8.0 | 8.0 | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | 3.0 | 3.0 | | Lane Grp Cap (vph) | 288 | 1897 | | 53 | 1591 | | 248 | 350 | | 496 | 721 | 524 | | v/s Ratio Prot | c0.08 | c0.47 | | 0.02 | 1091 | | 240 | 0.03 | | c0.12 | 0.09 | 324 | | v/s Ratio Perm | 60.00 | CU.47 | | 0.02 | 0.42 | | 0.03 | 0.03 | | c0.12 | 0.09 | 0.01 | | v/c Ratio | 0.97 | 1.24 | | 0.49 | 1.29 | | 0.10 | 0.11 | | 0.98 | 0.21 | 0.01 | | Uniform Delay, d1 | 51.2 | 34.8 | | 53.3 | 37.7 | | 33.1 | 33.1 | | 31.2 | 21.3 | 19.6 | | Progression Factor | 0.85 | 0.61 | | 0.71 | 0.35 | | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | | Incremental Delay, d2 | 28.3 | 110.3 | | 1.8 | 129.9 | | 0.2 | 0.1 | | 33.9 | 0.1 | 0.0 | | Delay (s) | 71.7 | 131.5 | | 39.6 | 143.1 | | 33.3 | 33.3 | | 65.1 | 21.5 | 19.7 | | Level of Service | Ε | F | | D.0 | F | | C | C | | F | C | В | | Approach Delay (s) | _ | 125.2 | | | • | | | 33.3 | | _ | 52.9 | | | Approach LOS | | F | | | | | | С | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Dela | | | 120.1 | ŀ | HCM Leve | l of Servic | е | | F | | | | | HCM Volume to Capacity ra | atio | | 1.08 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | Sum of los | | | | 17.0 | | | | | Intersection Capacity Utiliza | ation | | 101.7% | | CU Level | of Service | | | G | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | | • | → | • | • | † | <i>></i> | / | | 4 | 4 | ŧ✓ | | |-----------------------------------|------|------------|--------|------|----------|-------------|----------|---------|------|--------|------|--| | Movement | EBL2 | EBT | EBR | NBL | NBT | NBR2 | SBL | SBT | SBR | SWR | SWR2 | | | Lane Configurations | Ť | ∱ ∱ | | 7 | † | | 7 | £ | | ががだ | |
| | Volume (vph) | 85 | 1080 | 75 | 80 | 135 | 60 | 140 | 60 | 75 | 1820 | 125 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Total Lost time (s) | 6.0 | 6.0 | | 7.0 | 7.0 | | 7.0 | 7.0 | | 6.0 | | | | Lane Util. Factor | 1.00 | 0.95 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 0.76 | | | | Frpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 0.99 | | 1.00 | 0.90 | | 0.96 | | | | Flpb, ped/bikes | 1.00 | 1.00 | | 0.85 | 1.00 | | 0.98 | 1.00 | | 1.00 | | | | Frt | 1.00 | 0.99 | | 1.00 | 0.95 | | 1.00 | 0.92 | | 1.00 | | | | Flt Protected | 0.95 | 1.00 | | 0.95 | 1.00 | | 0.95 | 1.00 | | 1.00 | | | | Satd. Flow (prot) | 1750 | 3424 | | 1523 | 1724 | | 1668 | 1375 | | 4023 | | | | Flt Permitted | 0.95 | 1.00 | | 0.67 | 1.00 | | 0.56 | 1.00 | | 1.00 | | | | Satd. Flow (perm) | 1750 | 3424 | | 1069 | 1724 | | 992 | 1375 | | 4023 | | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | | Adj. Flow (vph) | 89 | 1137 | 79 | 84 | 142 | 63 | 147 | 63 | 79 | 1916 | 132 | | | RTOR Reduction (vph) | 0 | 4 | 0 | 0 | 14 | 0 | 0 | 40 | 0 | 6 | 0 | | | Lane Group Flow (vph) | 89 | 1212 | 0 | 84 | 191 | 0 | 147 | 102 | 0 | 2042 | 0 | | | Confl. Peds. (#/hr) | 20 | | 15 | 170 | | 25 | 25 | | 170 | | 20 | | | Heavy Vehicles (%) | 2% | 3% | 3% | 0% | 4% | 0% | 5% | 5% | 18% | 2% | 5% | | | Turn Type | Prot | | | Perm | | | Perm | | | custom | | | | Protected Phases | 5 | 2 | | | 8 | | | 4 | | | | | | Permitted Phases | | | | 8 | | | 4 | | | 6 | | | | Actuated Green, G (s) | 7.0 | 67.0 | | 32.0 | 32.0 | | 32.0 | 32.0 | | 54.0 | | | | Effective Green, g (s) | 7.0 | 67.0 | | 32.0 | 32.0 | | 32.0 | 32.0 | | 54.0 | | | | Actuated g/C Ratio | 0.06 | 0.60 | | 0.29 | 0.29 | | 0.29 | 0.29 | | 0.48 | | | | Clearance Time (s) | 6.0 | 6.0 | | 7.0 | 7.0 | | 7.0 | 7.0 | | 6.0 | | | | Vehicle Extension (s) | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | 3.0 | | 3.0 | | | | Lane Grp Cap (vph) | 109 | 2048 | | 305 | 493 | | 283 | 393 | | 1940 | | | | v/s Ratio Prot | 0.05 | c0.35 | | | 0.11 | | | 0.07 | | | | | | v/s Ratio Perm | | | | 0.08 | | | c0.15 | | | c0.51 | | | | v/c Ratio | 0.82 | 0.59 | | 0.28 | 0.39 | | 0.52 | 0.26 | | 1.05 | | | | Uniform Delay, d1 | 51.9 | 14.0 | | 31.0 | 32.1 | | 33.6 | 30.9 | | 29.0 | | | | Progression Factor | 0.60 | 1.89 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 0.28 | | | | Incremental Delay, d2 | 4.4 | 0.1 | | 0.5 | 0.5 | | 1.6 | 0.4 | | 25.3 | | | | Delay (s) | 35.3 | 26.5 | | 31.5 | 32.6 | | 35.2 | 31.2 | | 33.4 | | | | Level of Service | D | С | | С | С | | D | С | | С | | | | Approach Delay (s) | | 27.1 | | | 32.3 | | | 33.2 | | | | | | Approach LOS | | С | | | С | | | С | | | | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 31.2 | H | CM Leve | of Servic | е | | С | | | | | HCM Volume to Capacity ratio | | | 0.86 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | | t time (s) | | | 19.0 | | | | | Intersection Capacity Utilization | n | | 113.3% | IC | U Level | of Service | | | Н | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | • | F | ← | • | * | † | ļ | 4 | | |------|--|--|---|--|---|--|---|---| | WBL2 | WBL | WBT | WBR | NBL2 | NBT | SBT | SBR2 | | | | ሕኻኻ | ↑ 1≽ | | ሻ | | ↑ ↑ | | | | 50 | 1870 | 655 | 85 | 160 | 620 | 585 | 790 | | | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | 6.0 | 6.0 | | 6.0 | 8.0 | 8.0 | | | | | 0.94 | 0.95 | | 1.00 | 1.00 | 0.95 | | | | | 1.00 | 1.00 | | 1.00 | 1.00 | 1.00 | | | | | 0.89 | 1.00 | | 1.00 | 1.00 | 1.00 | | | | | 1.00 | 0.98 | | 1.00 | 1.00 | 0.91 | | | | | 0.95 | 1.00 | | 0.95 | 1.00 | 1.00 | 4399 | 3385 | | 164 | 1807 | 3150 | | | | 0.93 | 0.93 | 0.93 | 0.93 | 0.95 | 0.95 | 0.95 | 0.95 | | | 54 | 2011 | 704 | 91 | 168 | 653 | 616 | 832 | | | 0 | 0 | 9 | 0 | 0 | 0 | 132 | 0 | | | 0 | 2065 | 786 | 0 | 168 | 653 | 1316 | 0 | | | 45 | | | | | | | | | | 13% | 1% | 4% | 1% | 2% | 4% | 3% | 4% | | | Perm | Split | | | pm+pt | | | | | | | 6 | 6 | | 3 | 8 | 4 | | | | 6 | | | | 8 | | | | | | | 49.0 | 49.0 | | 49.0 | 49.0 | 39.0 | | | | | 49.0 | 49.0 | | 49.0 | 49.0 | 39.0 | | | | | 0.44 | 0.44 | | 0.44 | 0.44 | 0.35 | | | | | 6.0 | | | 6.0 | 8.0 | 8.0 | | | | | 3.0 | 3.0 | | 3.0 | 3.0 | 3.0 | | | | | 1925 | 1481 | | 128 | 791 | 1097 | | | | | | 0.23 | | 0.05 | c0.36 | 0.42 | | | | | 0.47 | | | c0.53 | | | | | | | 1.07 | 0.53 | | 1.31 | 0.83 | 1.23dr | | | | | 31.5 | 23.1 | | 32.0 | 27.7 | 36.5 | | | | | 0.28 | | | 2.84 | 1.61 | 1.00 | | | | | 37.5 | 0.5 | | 161.9 | 3.1 | 98.7 | | | | | 46.2 | 5.6 | | 252.7 | 47.8 | 135.2 | | | | | D | Α | | F | D | F | | | | | | 34.9 | | | 89.7 | 135.2 | | | | | | С | | | F | F | | | | | | | | | | | | | | | | 72.0 | Н | CM Level | of Servi | ce | | Е | | | | 1.15 | | | | | | | | | | 112.0 | S | um of lost | t time (s) | | | 14.0 | | n | | 103.6% | | | |) | | G | | | | 15 | | | | | | | | | | | | | | | | | | | 0.93
54
0
0
45
13%
Perm
6 | 50 1870 1900 1900 6.0 0.94 1.00 0.89 1.00 0.95 4399 0.95 4399 0.93 54 2011 0 0 2065 45 13% 1% Perm Split 6 6 49.0 49.0 0.44 6.0 3.0 1925 0.47 1.07 31.5 0.28 37.5 46.2 D | 50 1870 655 1900 1900 1900 6.0 6.0 0.94 0.95 1.00 1.00 0.89 1.00 1.00 0.98 0.95 1.00 4399 3385 0.95 1.00 4399 3385 0.95 1.00 4399 3385 0.95 786 45 13% 1% 4% Perm Split 6 6 6 49.0 49.0 49.0 49.0 49.0 49.0 0.44 0.44 6.0 6.0 3.0 3.0 1925 1481 0.23 0.47 1.07 0.53 31.5 23.1 0.28 0.22 37.5 0.5 46.2 5.6 D A 34.9 C 72.0 1.15 112.0 n 103.6% | 50 1870 655 85 1900 1900 1900 1900 6.0 6.0 6.0 0.94 0.95 1.00 1.00 0.89 1.00 1.00 0.98 0.95 1.00 4399 3385 0.95 1.00 4399 3385 0.95 1.00 4399 3385 0.93 0.93 0.93 54 2011 704 91 0 0 9 0 0 2065 786 0 45 13% 1% 4% 1% Perm Split 6 6 6 49.0 49.0 49.0 49.0 49.0 49.0 0.44 0.44 6.0 6.0 3.0 3.0 1925 1481 0.23 0.47 1.07 0.53 31.5 23.1 0.28 0.22 37.5 0.5 46.2 5.6 D A 34.9 C 72.0 H 1.15 112.0 S n 103.6% IC | 50 1870 655 85 160 1900 1900 1900 1900 1900 6.0 6.0 6.0
6.0 0.94 0.95 1.00 1.00 1.00 1.00 0.89 1.00 0.98 1.00 0.95 1.00 0.95 1.00 0.95 4399 3385 1750 0.95 1.00 0.09 4399 3385 164 0.93 0.93 0.93 0.93 0.95 54 2011 704 91 168 0 0 0 9 0 0 0 2065 786 0 168 45 13% 1% 4% 1% 2% Perm Split pm+pt 6 6 6 3 6 8 49.0 49.0 49.0 49.0 49.0 49.0 0.44 0.44 0.44 6.0 6.0 6.0 6.0 3.0 3.0 3.0 3.0 1925 1481 128 0.23 0.05 0.47 c0.53 1.07 0.53 1.31 31.5 23.1 32.0 0.28 0.22 2.84 37.5 0.5 161.9 46.2 5.6 252.7 D A F 34.9 C | 50 1870 655 85 160 620 1900 1900 1900 1900 1900 1900 6.0 6.0 6.0 6.0 8.0 0.94 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.89 1.00 0.95 1.00 1.00 0.95 1.00 0.95 1.00 4399 3385 1750 1807 0.95 1.00 0.09 1.00 4399 3385 164 1807 0.93 0.93 0.93 0.93 0.95 0.95 54 2011 704 91 168 653 0 0 9 0 0 0 0 2065 786 0 168 653 45 13% 1% 4% 1% 2% 4% Perm Split pm+pt 6 6 6 3 8 8 49.0 49.0 49.0 49.0 49.0 49.0 49.0 49.0 | 1900 1.00 | 1870 655 85 160 620 585 790 | | | ۶ | → | • | • | ← | • | 1 | † | <i>></i> | / | ↓ | ✓ | |--|------|----------|--------------|------|---------------------------|-----------|--------------|-----------|-------------|----------|-----------|--------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | | | | बाक्ति | | ሻ | 44 | | | + | 77 | | Volume (vph) | 0 | 0 | 0 | 100 | 2220 | 150 | 115 | 525 | 0 | 0 | 345 | 455 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | | | | 7.0 | | 7.0 | 7.0 | | | 7.0 | 7.0 | | Lane Util. Factor | | | | | 0.86 | | 1.00 | 0.95 | | | 1.00 | 0.88 | | Frpb, ped/bikes | | | | | 0.99 | | 1.00 | 1.00 | | | 1.00 | 1.00 | | Flpb, ped/bikes | | | | | 1.00 | | 0.78 | 1.00 | | | 1.00 | 1.00 | | Frt | | | | | 0.99 | | 1.00 | 1.00 | | | 1.00 | 0.85 | | Flt Protected | | | | | 1.00 | | 0.95 | 1.00 | | | 1.00 | 1.00 | | Satd. Flow (prot) | | | | | 6100 | | 1374 | 3336 | | | 1773 | 2729 | | Flt Permitted | | | | | 1.00 | | 0.38 | 1.00 | | | 1.00 | 1.00 | | Satd. Flow (perm) | | | | | 6100 | | 543 | 3336 | | | 1773 | 2729 | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.93 | 0.93 | 0.93 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 0 | 0 | 0 | 108 | 2387 | 161 | 121 | 553 | 0 | 0 | 363 | 479 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 373 | | Lane Group Flow (vph) | 0 | 0 | 0 | 0 | 2649 | 0 | 121 | 553 | 0 | 0 | 363 | 106 | | Confl. Peds. (#/hr) | | | | 30 | | 135 | 1370 | | 445 | | | 1370 | | Heavy Vehicles (%) | 0% | 0% | 0% | 4% | 3% | 5% | 1% | 7% | 0% | 0% | 6% | 3% | | Turn Type | | | | Perm | | | Perm | | | | | custom | | Protected Phases | | | | | 6 | | | 8 | | | 4 | 3 | | Permitted Phases | | | | 6 | | | 8 | | | | | | | Actuated Green, G (s) | | | | | 49.0 | | 49.0 | 49.0 | | | 24.0 | 18.0 | | Effective Green, g (s) | | | | | 49.0 | | 49.0 | 49.0 | | | 24.0 | 18.0 | | Actuated g/C Ratio | | | | | 0.44 | | 0.44 | 0.44 | | | 0.21 | 0.16 | | Clearance Time (s) | | | | | 7.0 | | 7.0 | 7.0 | | | 7.0 | 7.0 | | Vehicle Extension (s) | | | | | 3.0 | | 3.0 | 3.0 | | | 3.0 | 3.0 | | Lane Grp Cap (vph) | | | | | 2669 | | 238 | 1460 | | | 380 | 439 | | v/s Ratio Prot | | | | | | | | 0.17 | | | c0.20 | 0.04 | | v/s Ratio Perm | | | | | 0.43 | | c0.22 | | | | | | | v/c Ratio | | | | | 0.99 | | 0.51 | 0.38 | | | 0.96 | 0.24 | | Uniform Delay, d1 | | | | | 31.3 | | 22.8 | 21.2 | | | 43.5 | 41.0 | | Progression Factor | | | | | 0.56 | | 0.69 | 0.66 | | | 1.00 | 1.00 | | Incremental Delay, d2 | | | | | 9.2 | | 0.8 | 0.1 | | | 34.4 | 1.3 | | Delay (s) | | | | | 26.6 | | 16.4 | 14.2 | | | 77.8 | 42.4 | | Level of Service | | 0.0 | | | С | | В | В | | | E | D | | Approach Delay (s) Approach LOS | | 0.0
A | | | 26.6
C | | | 14.6
B | | | 57.7
E | | | Intersection Summary | | , , | | | | | | _ | | | _ | | | | | | 20.0 | L | CM Lovel | of Consid | | | С | | | | | HCM Average Control Delay HCM Volume to Capacity ratio | | | 30.9
0.84 | П | CM Level | or servic | - | | U | | | | | Actuated Cycle Length (s) | | | 112.0 | C | um of lost | time (a) | | | 14.0 | | | | | Intersection Capacity Utilization | | | 92.1% | | Uni or iosi
CU Level o | | | | 14.0
F | | | | | Analysis Period (min) | | | 15 | 10 | LEVEI (| oelvice | | | Г | | | | | c Critical Lane Group | | | 10 | | | | | | | | | | | Contical Lane Group | | | | | | | | | | | | | | | ۶ | → | • | • | ← | • | 4 | † | / | / | ↓ | 4 | |-----------------------------------|---------|------------|----------|------------|---------------|------------|-------|----------|------|----------|------------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | | | | 4 † \$ | | Ť | ^ | | | ∱ ∱ | | | Volume (vph) | 0 | 0 | 0 | 110 | 1925 | 100 | 170 | 705 | 0 | 0 | 175 | 390 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | | | | 7.0 | | 4.0 | 7.0 | | | 7.0 | | | Lane Util. Factor | | | | | 0.91 | | 1.00 | 0.95 | | | 0.95 | | | Frpb, ped/bikes | | | | | 0.99 | | 1.00 | 1.00 | | | 0.74 | | | Flpb, ped/bikes | | | | | 0.99 | | 0.98 | 1.00 | | | 1.00 | | | Frt | | | | | 0.99 | | 1.00 | 1.00 | | | 0.90 | | | Flt Protected | | | | | 1.00 | | 0.95 | 1.00 | | | 1.00 | | | Satd. Flow (prot) | | | | | 4915 | | 1674 | 3433 | | | 2205 | | | Flt Permitted | | | | | 1.00 | | 0.25 | 1.00 | | | 1.00 | | | Satd. Flow (perm) | | | | | 4915 | | 445 | 3433 | | | 2205 | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.93 | 0.93 | 0.93 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 0 | 0 | 0 | 118 | 2070 | 108 | 179 | 742 | 0 | 0 | 184 | 411 | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 18 | 0 | | Lane Group Flow (vph) | 0 | 0 | 0 | 0 | 2292 | 0 | 179 | 742 | 0 | 0 | 577 | 0 | | Confl. Peds. (#/hr) | 90 | | 65 | 65 | | 90 | 490 | | 290 | 290 | | 490 | | Heavy Vehicles (%) | 0% | 0% | 0% | 0% | 2% | 7% | 4% | 4% | 0% | 0% | 11% | 5% | | Turn Type | | | | Perm | | | pm+pt | | | | | | | Protected Phases | | | | | 6 | | 3 | 8 | | | 4 | | | Permitted Phases | | | | 6 | | | 8 | | | | | | | Actuated Green, G (s) | | | | | 56.4 | | 41.6 | 41.6 | | | 30.6 | | | Effective Green, g (s) | | | | | 56.4 | | 41.6 | 41.6 | | | 30.6 | | | Actuated g/C Ratio | | | | | 0.50 | | 0.37 | 0.37 | | | 0.27 | | | Clearance Time (s) | | | | | 7.0 | | 4.0 | 7.0 | | | 7.0 | | | Vehicle Extension (s) | | | | | 3.0 | | 3.0 | 3.0 | | | 3.0 | | | Lane Grp Cap (vph) | | | | | 2475 | | 242 | 1275 | | | 602 | | | v/s Ratio Prot | | | | | | | c0.05 | 0.22 | | | c0.26 | | | v/s Ratio Perm | | | | | 0.47 | | 0.23 | | | | | | | v/c Ratio | | | | | 0.93 | | 0.74 | 0.58 | | | 1.25dr | | | Uniform Delay, d1 | | | | | 25.9 | | 28.0 | 28.2 | | | 40.1 | | | Progression Factor | | | | | 1.00 | | 0.82 | 0.86 | | | 1.00 | | | Incremental Delay, d2 | | | | | 7.4 | | 8.3 | 0.5 | | | 26.3 | | | Delay (s) | | | | | 33.3 | | 31.3 | 24.9 | | | 66.4 | | | Level of Service | | | | | С | | С | С | | | E | | | Approach Delay (s) | | 0.0 | | | 33.3 | | | 26.1 | | | 66.4 | | | Approach LOS | | Α | | | С | | | С | | | E | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 36.7 | Н | CM Level | of Service | e | | D | | | | | HCM Volume to Capacity ratio | | | 0.93 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | um of lost | | | | 18.0 | | | | | Intersection Capacity Utilization | 1 | | 138.9% | IC | CU Level o | of Service | | | Н | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | dr Defacto Right Lane. Reco | de with | 1 though I | ane as a | right lane | €. | | | | | | | | c Critical Lane Group | | ۶ | → | • | • | ← | 4 | 1 | † | <i>></i> | - | † | ✓ | |-----------------------------------|------|-----------------|-------|------|------------|------------|------|----------|-------------|-------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | ተተ _ጉ | | | | | | ^ | | ¥ | † | | | Volume (vph) | 0 | 1265 | 40 | 0 | 0 | 0 | 0 | 795 | 0 | 470 | 165 | 0 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.6 | 3.5 | 3.5 | 3.5 | 3.5 | | Total Lost time (s)
| | 6.0 | | | | | | 8.0 | | 4.0 | 8.0 | | | Lane Util. Factor | | 0.91 | | | | | | 0.95 | | 1.00 | 1.00 | | | Frpb, ped/bikes | | 1.00 | | | | | | 1.00 | | 1.00 | 1.00 | | | Flpb, ped/bikes | | 1.00 | | | | | | 1.00 | | 1.00 | 1.00 | | | Frt | | 1.00 | | | | | | 1.00 | | 1.00 | 1.00 | | | Flt Protected | | 1.00 | | | | | | 1.00 | | 0.95 | 1.00 | | | Satd. Flow (prot) | | 4903 | | | | | | 3471 | | 1716 | 1756 | | | Flt Permitted | | 1.00 | | | | | | 1.00 | | 0.12 | 1.00 | | | Satd. Flow (perm) | | 4903 | | | | | | 3471 | | 216 | 1756 | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 0 | 1332 | 42 | 0 | 0 | 0 | 0 | 837 | 0 | 495 | 174 | 0 | | RTOR Reduction (vph) | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Lane Group Flow (vph) | 0 | 1371 | 0 | 0 | 0 | 0 | 0 | 837 | 0 | 495 | 174 | 0 | | Confl. Peds. (#/hr) | 35 | | 15 | 15 | | 35 | 835 | | 55 | 55 | | 835 | | Heavy Vehicles (%) | 0% | 4% | 5% | 0% | 0% | 0% | 0% | 4% | 4% | 4% | 7% | 0% | | Turn Type | | | | | | | | | | pm+pt | | | | Protected Phases | | 2 | | | | | | 8 | | 7 | 4 | | | Permitted Phases | | | | | | | | | | 4 | | | | Actuated Green, G (s) | | 35.5 | | | | | | 29.5 | | 62.5 | 62.5 | | | Effective Green, g (s) | | 35.5 | | | | | | 29.5 | | 62.5 | 62.5 | | | Actuated g/C Ratio | | 0.32 | | | | | | 0.26 | | 0.56 | 0.56 | | | Clearance Time (s) | | 6.0 | | | | | | 8.0 | | 4.0 | 8.0 | | | Vehicle Extension (s) | | 3.0 | | | | | | 3.0 | | 3.0 | 3.0 | | | Lane Grp Cap (vph) | | 1554 | | | | | | 914 | | 509 | 980 | | | v/s Ratio Prot | | c0.28 | | | | | | 0.24 | | c0.25 | 0.10 | | | v/s Ratio Perm | | | | | | | | | | c0.29 | | | | v/c Ratio | | 0.88 | | | | | | 0.92 | | 0.97 | 0.18 | | | Uniform Delay, d1 | | 36.3 | | | | | | 40.0 | | 32.1 | 12.1 | | | Progression Factor | | 0.47 | | | | | | 1.00 | | 1.46 | 0.29 | | | Incremental Delay, d2 | | 6.4 | | | | | | 13.5 | | 6.9 | 0.0 | | | Delay (s) | | 23.5 | | | | | | 53.6 | | 53.6 | 3.6 | | | Level of Service | | C | | | 0.0 | | | D | | D | A | | | Approach Delay (s) | | 23.5 | | | 0.0 | | | 53.6 | | | 40.6 | | | Approach LOS | | С | | | Α | | | D | | | D | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 36.2 | H | CM Level | of Service | | | D | | | | | HCM Volume to Capacity ratio | | | 0.89 | - | | | | | 10.0 | | | | | Actuated Cycle Length (s) | | | 112.0 | | um of lost | | | | 10.0 | | | | | Intersection Capacity Utilization | | | 88.4% | IC | U Level o | of Service | | | Е | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | | ۶ | → | † | / | / | ↓ | <i>></i> | 4 | | | | |---------------------------------|--------------|--------------|--------------|----------|--------------|--------------|--------------|--------------|------|--|--| | Movement | EBL | EBT | NBT | NBR | SBL | SBT | NER | NER2 | | | | | Lane Configurations | ř | 4₽ | ∱ } | | * | ^ | 7 | 7 | | | | | Volume (vph) | 870 | 1215 | 400 | 75 | 295 | 140 | 660 | 20 | | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | | Total Lost time (s) | 7.0 | 7.0 | 7.0 | | 6.0 | 7.0 | 7.0 | 7.0 | | | | | Lane Util. Factor | 0.91 | 0.91 | 0.95 | | 1.00 | 0.95 | 1.00 | 1.00 | | | | | Frpb, ped/bikes | 1.00 | 1.00 | 0.95 | | 1.00 | 1.00 | 1.00 | 0.76 | | | | | Flpb, ped/bikes | 0.98 | 1.00 | 1.00 | | 0.98 | 1.00 | 1.00 | 1.00 | | | | | Frt
Flt Protected | 1.00 | 1.00 | 0.98
1.00 | | 1.00 | 1.00 | 0.85 | 0.85 | | | | | | 0.95
1548 | 0.99
3289 | 3007 | | 0.95
1688 | 1.00
3275 | 1.00
1536 | 1.00
1177 | | | | | Satd. Flow (prot) Flt Permitted | 0.95 | 0.99 | 1.00 | | 0.20 | 1.00 | 1.00 | 1.00 | | | | | Satd. Flow (perm) | 1548 | 3289 | 3007 | | 355 | 3275 | 1536 | 1177 | | | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | | | | Adj. Flow (vph) | 916 | 1279 | 421 | 79 | 311 | 147 | 695 | 21 | | | | | RTOR Reduction (vph) | 0 | 0 | 14 | 0 | 0 | 0 | 033 | 10 | | | | | Lane Group Flow (vph) | 714 | 1481 | 486 | 0 | 311 | 147 | 695 | 11 | | | | | Confl. Peds. (#/hr) | 10 | 1101 | 100 | 290 | 290 | | 000 | 125 | | | | | Heavy Vehicles (%) | 3% | 3% | 10% | 7% | 4% | 9% | 4% | 3% | | | | | Turn Type | Perm | | | | pm+pt | | custom | | | | | | Protected Phases | | 2 | 8 | | 7 | 4 | | | | | | | Permitted Phases | 2 | | | | 4 | | 2 | 2 | | | | | Actuated Green, G (s) | 59.2 | 59.2 | 19.8 | | 38.8 | 38.8 | 59.2 | 59.2 | | | | | Effective Green, g (s) | 59.2 | 59.2 | 19.8 | | 38.8 | 38.8 | 59.2 | 59.2 | | | | | Actuated g/C Ratio | 0.53 | 0.53 | 0.18 | | 0.35 | 0.35 | 0.53 | 0.53 | | | | | Clearance Time (s) | 7.0 | 7.0 | 7.0 | | 6.0 | 7.0 | 7.0 | 7.0 | | | | | Vehicle Extension (s) | 3.0 | 3.0 | 3.0 | | 3.0 | 3.0 | 3.0 | 3.0 | | | | | Lane Grp Cap (vph) | 818 | 1738 | 532 | | 278 | 1135 | 812 | 622 | | | | | v/s Ratio Prot | | | 0.16 | | c0.13 | 0.04 | | | | | | | v/s Ratio Perm | c0.46 | 0.45 | | | c0.26 | | 0.45 | 0.01 | | | | | v/c Ratio | 0.87 | 0.85 | 0.91 | | 1.12 | 0.13 | 0.86 | 0.02 | | | | | Uniform Delay, d1 | 23.1 | 22.6 | 45.3 | | 31.6 | 25.0 | 22.7 | 12.6 | | | | | Progression Factor | 0.54 | 0.54 | 1.00 | | 1.25 | 1.13 | 1.00 | 1.00 | | | | | Incremental Delay, d2 | 8.4 | 3.6 | 20.2 | | 67.7 | 0.0 | 11.2 | 0.1 | | | | | Delay (s)
Level of Service | 20.9
C | 15.9
B | 65.4
E | | 107.1
F | 28.4
C | 34.0
C | 12.6
B | | | | | Approach Delay (s) | U | 17.5 | 65.4 | | Г | 81.8 | U | Ь | | | | | Approach LOS | | В | 03.4
E | | | F | | | | | | | Intersection Summary | | | | | | | | | | | | | HCM Average Control Delay | | | 34.2 | Н | CM Level | of Servi | ce | | С | | | | HCM Volume to Capacity rat | | | 0.93 | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | | um of lost | | | | 13.0 | | | | Intersection Capacity Utilizati | ion | | 134.8% | IC | U Level o | of Service |) | | Н | | | | Analysis Period (min) | | | 15 | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | | *1 | † | ۴ | ¥ | | لر | • | × | 4 | 4 | × | t | |-----------------------------------|------|------------|--------|------|--------------|------------|------|------|------|------|------|------| | Movement | NBL | NBT | NBR | SBL | SBT | SBR | NEL | NET | NER | SWL | SWT | SWR | | Lane Configurations | | ∱ ∱ | | | ^ | | 7 | 4₽ | | | | | | Volume (vph) | 0 | 110 | 255 | 0 | 275 | 0 | 750 | 1415 | 0 | 0 | 0 | 0 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Total Lost time (s) | | 7.0 | | | 7.0 | | 7.0 | 7.0 | | | | | | Lane Util. Factor | | 0.95 | | | 0.95 | | 0.91 | 0.91 | | | | | | Frpb, ped/bikes | | 0.93 | | | 1.00 | | 1.00 | 1.00 | | | | | | Flpb, ped/bikes | | 1.00 | | | 1.00 | | 1.00 | 1.00 | | | | | | Frt | | 0.90 | | | 1.00 | | 1.00 | 1.00 | | | | | | Flt Protected | | 1.00 | | | 1.00 | | 0.95 | 1.00 | | | | | | Satd. Flow (prot) | | 2835 | | | 3570 | | 1547 | 3249 | | | | | | Flt Permitted | | 1.00 | | | 1.00 | | 0.95 | 1.00 | | | | | | Satd. Flow (perm) | | 2835 | | | 3570 | | 1547 | 3249 | | | | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Adj. Flow (vph) | 0 | 116 | 268 | 0 | 289 | 0 | 789 | 1489 | 0 | 0 | 0 | 0 | | RTOR Reduction (vph) | 0 | 38 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Lane Group Flow (vph) | 0 | 346 | 0 | 0 | 289 | 0 | 710 | 1568 | 0 | 0 | 0 | 0 | | Confl. Peds. (#/hr) | 90 | | 65 | 65 | | 90 | | | | | | | | Heavy Vehicles (%) | 0% | 6% | 5% | 0% | 0% | 0% | 5% | 5% | 0% | 0% | 0% | 0% | | Turn Type | | | | | | | Perm | | | | | | | Protected Phases | | 8 | | | 4 | | | 2 | | | | | | Permitted Phases | | | | | | | 2 | | | | | | | Actuated Green, G (s) | | 26.0 | | | 26.0 | | 72.0 | 72.0 | | | | | | Effective Green, g (s) | | 26.0 | | | 26.0 | | 72.0 | 72.0 | | | | | | Actuated g/C Ratio | | 0.23 | | | 0.23 | | 0.64 | 0.64 | | | | | | Clearance Time (s) | | 7.0 | | | 7.0 | | 7.0 | 7.0 | | | | | | Vehicle Extension (s) | | 3.0 | | | 3.0 | | 3.0 | 3.0 | | | | | | Lane Grp Cap (vph) | | 658 | | | 829 | | 995 | 2089 | | | | | | v/s Ratio Prot | | c0.12 | | | 0.08 | | | | | | | | | v/s Ratio Perm | | | | | | | 0.46 | 0.48 | | | | | | v/c Ratio | | 0.53 | | | 0.35 | | 0.71 | 0.75 | | | | | | Uniform Delay, d1 | | 37.6 | | | 35.9 | | 13.2 | 13.8 | | | | | | Progression Factor | | 1.00 | | | 0.94 | | 0.28 | 0.27 | | | | | | Incremental Delay, d2 | | 8.0 | | | 0.1 | | 1.9 | 1.1 | | | | | | Delay (s) | | 38.4 | | | 33.7 | | 5.5 | 4.9 | | | | | | Level of Service | | D | | | С | | Α | Α | | | | | | Approach Delay (s) | | 38.4 | | | 33.7 | | | 5.1 | | | 0.0 | | | Approach LOS | | D | | | С | | | Α | | | Α | | | Intersection Summary | | | | | | | | | | | | | | HCM Average Control Delay | | | 12.2 | H | CM Level | of Service | Э | | В | | | | | HCM Volume to Capacity ratio | | | 0.69 | | | | | | | | | | | Actuated Cycle Length (s) | | | 112.0 | Sı | um of lost | time (s) | | | 14.0 | | | | | Intersection Capacity Utilization | | | 138.9% | | | of Service | | | Н | | | | | Analysis Period (min) | | | 15 | | | | | | | | | | | c Critical Lane Group | | | | | | | | | | | | | Appendix D Transit Analysis -VISSIM Modelling ## **D1 Technical Assumptions Memo** ## **MEMO** TO: TTC **PREPARED BY:** MRC / ARUP **DATE:** May 7, 2008 **SUBJECT:** Queens Quay Transit in the Middle VISSIM Assumptions The assumptions and parameters stated below are identical to the transit in the south side options. #### **Transit** Acceleration Rates (Streetcar) $Max = 1.8 \text{m/s}^2$ $Desired = 1.4 \text{m/s}^2$ Deceleration Rates (Streetcar) $Max = -2.6m/s^2$ Desired = -1.6m/s² - Acceleration and Deceleration rates are for all speeds Speed Profile (Streetcar) 48-53km/h (linear curve) Transit Stop Data Boarding Time = 0.5s / passenger (assuming 4 doors proof of payment) Alighting Time = 0.5s / passenger (assuming 4
doors) Door Cycle Time = 5s Skipping is possible at all stops #### **Dummy Stops** - A dwell time of 45s with standard deviation of 30s - Dummy stops occur at the beginning of streetcar lines to provide a randomness entering the system - Skipping is possible at dummy stops Streetcar Length = 28m Queens Quay west transit inputs are provided by Jim Sinikas from TTC on April 15, 2008 (see tables below). The occupancy rate (persons per vehicle) is calculated by the initial onboard number divided by the number of street cars. ## **Queens Quay West – Spadina Route (turns north on Spadina)** Eastbound - 10 minute headway (6 streetcars per hour) | | Ons | Offs | Offs as % of load | Onboard | |---------|------|------|-------------------|---------| | | | | | 387 | | Spadina | 27 | 44 | 11.4% | 351 | | Rees | 123 | 5 | 1.4% | 383 | | Simcoe | 122 | 5 | 1.3% | 415 | | York | 135 | 31 | 7.5% | 425 | | Bay | 406* | 31 | 7.3% | | ^{*}Transit riders will board the first arriving streetcar Westbound - 10 minute headway (6 streetcars per hour) | | Ons | Offs | Offs as % of load | Onboard | |---------|-----|------|-------------------|---------| | | | | | 802 | | Bay | 40 | 71 | 8.9% | 771 | | York | 20 | 17 | 2.2% | 774 | | Simcoe | 20 | 17 | 2.2% | 777 | | Rees | 14 | 22 | 2.8% | 769 | | Spadina | 47 | 24 | 3.1% | 792 | ## Queens Quay West – Waterfront West Route (continues west through Spadina) Eastbound - 4 minute headway (15 streetcars per hour) | | Ons | Offs | Offs as % of load | Onboard | |---------|------|------|-------------------|---------| | | | | | 902 | | Spadina | 27 | 102 | 11.3% | 819 | | Rees | 123 | 11 | 1.3% | 894 | | Simcoe | 122 | 11 | 1.2% | 968 | | York | 135 | 72 | 7.4% | 990 | | Bay | 406* | 72 | 7.3% | | ^{*}Transit riders will board the first arriving streetcar Westbound - 4 minute headway (15 streetcars per hour) | Westbound - 4 minute neadway (10 streeted 5 per nour) | | | | | | |---|-----|------|-------------------|---------|--| | | Ons | Offs | Offs as % of load | Onboard | | | | | | | 1870 | | | Bay | 93 | 165 | 8.8% | 1798 | | | York | 46 | 41 | 2.3% | 1803 | | | Simcoe | 46 | 41 | 2.3% | 1808 | | | Rees | 31 | 50 | 2.8% | 1879 | | | Spadina | 109 | 56 | 3.0% | 1842 | | Date: May 7, 2008 Page 3 #### **East Bay Front – Waterfront East Route** Eastbound - 1 minute 43 second headways (35 streetcars per hour) | | Ons | Offs | Offs as % | Onboard | | |------------|-----|------|-----------|---------|--| | | | | of load | | | | | | | | 3128 | | | Bay | 105 | 808 | 25.8% | 2425 | | | Freeland | 45 | 679 | 28.0% | 1791 | | | Jarvis | 3 | 170 | 9.5% | 1624 | | | Sherbourne | 34 | 376 | 23.2% | 1282 | | | Small | 46 | 90 | 7.0% | 1238 | | | Trinity | 9 | 12 | 1.0% | 1235 | | | Cherry | 11 | 23 | 1.9% | | | Westbound -1 minute 43 second headways (35 streetcars per hour) | | Ons | Offs | Offs as % | Onboard | |------------|------|------|-----------|---------| | | | | of load | | | | | | | 3010 | | Cherry | 405 | 18 | 0.6% | 3397 | | Trinity | 43 | 10 | 0.3% | 3430 | | Small | 354 | 35 | 1.0% | 3749 | | Sherbourne | 311 | 26 | 0.7% | 4034 | | Jarvis | 309 | 36 | 0.9% | 4307 | | Freeland | 217 | 41 | 1.0% | 4483 | | Bay | 406* | 417 | 9.3% | | #### Signal Phasing NEMA files attached and built in the models do not reflect the proposed signal phasing plan. Signal phasing plan is provide in hard copy in a separate file. Signal head and stop sign locations reflect proposed configuration of the project area. #### **Traffic** Car and Truck Speed Profile = 50 - 60 km/h Car length = 4.11 to 4.76m (default) Truck length = 10.2m (default) Left turn reduced speed area = 25 km/h (car) = 20 km/h (truck) Right turn reduced speed area = 15 km/h (car) = 12 km/h (truck) Truck percentage is assumed to be 5% for the entire model. Balanced traffic volumes provided by BA Group and Arup Queens Quay VISSIM Assumptions Date: May 7, 2008 Page 4 Signal timings provided by BA Group and Arup #### **Travel Time Measurement Setup** Travel time measurements have been setup from intersection to intersection, station to station stop, and full length for the four transit lines (see attached travel time segments.xls for exact locations). #### Settings Driving Behaviour (Default) #### Car Acceleration Rates (Default) #### Maximum Acceleration #### **Desired Acceleration** #### Maximum Deceleration #### **Desired Deceleration** #### **HGV** Acceleration Rates (Default) #### Maximum Acceleration #### **Desired Acceleration** #### Maximum Deceleration #### **Desired Deceleration** ## D2 Transit Signal Priority Analysis # Transit Signal Priority Analysis Queens Quay Corridor Toronto, ON ## Prepared by: PTV America, Inc. 1128 NE 2nd St., Ste. 204 Corvallis, OR 97330 541-754-6836 www.ptvamerica.com May 15, 2008 ## **Document Control Information** | Short title | TSP Analysis Results – Queens Quay Corridor | |-----------------|--| | Client: | Prime Consultant – McCormick Rankin Corporation | | Contractor: | PTV America, Inc. (subconsultant to McCormick Rankin Corporation) | | Order no.: | | | Reviewed by: | Jim Dale, PE | | Version: | 1 | | Author: | Thomas Bauer, PE, PTOE | | Created on: | 5/15/2008 | | Last saved: | 5/19/2008 | | Location saved: | C:\Projects\997 Toronto LRT Priority\Report\PTV Queens Quai LRT Control Analysis.doc | May 15, 2008 PTV America, Inc. ## **Table of Contents** | 1 | Introd | duction | 1 | |---|--------|--|----| | 2 | LRT S | Signal Control Strategy | 1 | | | 2.1 | Control Strategy Selection Process | 1 | | | 2.2 | Proposed LRT Signal Control Philosophy | 2 | | 3 | Analy | sis Scenarios | 7 | | | 3.1 | Scenario 1 – Queens Quay Portals | 7 | | | 3.2 | Scenario 2 – Bay Street Portal | 7 | | 4 | Evalu | nation Approach | 9 | | 5 | Trans | sit Results | 10 | | | 5.1 | LRT Travel Time and Speed | 10 | | | 5.2 | LRT Delay | 11 | | 6 | Traffi | c Results | 12 | | | 6.1 | Traffic Intersection Movement Delay | 12 | | 7 | Conc | lusion | 12 | Appendix A - VISSIM Simulation Output Data for Queens Quay Portals Scenario Appendix B - VISSIM Simulation Output Data for Bay Street Portal Scenario #### 1 Introduction Transit signal priority (TSP) is designed to provide a preferential treatment to light rail trains at signalized intersections. If properly designed, TSP can expedite the passage of trains through signalized intersections, thereby reducing delays and travel times. Consequently, TSP has the potential to increase delays for other roadway users such as pedestrians and automobile traffic. And, in some cases, TSP can increase signal delays for trains travelling in the opposite direction. These benefits and impacts will vary from one signal to another according to track alignment, transit frequency, station location, levels of congestion, signal timing plans, TSP logic and a number of other factors that influence TSP performance. In summary, every location is different. Therefore, it is essential to analyze TSP in order to understand its benefits as well as impacts. This report documents the analysis of TSP along Queens Quay between Spadina Avenue and Cherry Street. The analysis is conducted in the PM-peak hour using the VISSIM multi-modal microscopic simulation software. VISSIM has been used extensively throughout the world to assess the benefits and impacts of TSP under a variety of transportation conditions. The following sections provide the context for which TSP was analyzed along Queens Quay. Critical to understanding the results of any TSP analysis is the explanation of how TSP is coded in the analysis. A section is devoted to discussing the LRT signal control strategy implemented in the VISSIM simulation models. Next, descriptions of the two geometric scenarios are provided. The performance measures analyzed in this study and the corresponding results are then presented. The final section presents the study conclusions. ## 2 LRT Signal Control Strategy #### 2.1 Control Strategy Recommendation Recommendations for the proposed signal control strategy for the Queens Quay corridor are based on three control objectives represented below in order of importance: - 1. Minimize LRT travel time - 2. Maximize pedestrian crossing opportunities - 3. Preserve vehicular access to Queens Quay area Based on their experience working on over 30 LRT projects in North America, PTV considered the application of three potential LRT control strategies. Each strategy is described as follows: - Full signal priority without fixed background signal cycle this strategy was dismissed because of the combination of short blocks, very high train frequency and short cycle lengths with LRT-opposing phases only being served their minimum times. Full priority without a background cycle is especially unsuited for high train frequencies as arranging the phase sequence for one train almost certainly results in blocking the oncoming train. - Full signal preemption without fixed background signal cycle this strategy was dismissed because of the very high train frequency. The highly disruptive nature of this LRT control strategy would result in numerous skipped phases which in turn would significantly diminish vehicular access and pedestrian service. - Partial signal priority with fixed background signal cycle optimized for LRT progression — this strategy was selected and is described in detail below. ## 2.2 Proposed LRT Signal Control Philosophy The proposed LRT signal control strategy for the Queens Quay corridor is based on a fixed background signal cycle. The recommended background cycle time is defined by the LRT headway and thus different for the East (103 seconds) and West (120 seconds) sides of the corridor. Signal offsets are determined based on the expected LRT progression including LRT operating speed, service acceleration and deceleration as well as anticipated dwell times at each LRT
station. However, excessive auto traffic queuing as observed during the initial simulation runs resulted in a compromise between LRT and auto traffic signal progression for the final recommended signal coordination plan. Figures 1 through 4 on the following pages depict the proposed background signal timing plans. The background signal timing plan ensures the light rail vehicles progress through the entire corridor without major signal delay if their station dwell times are as planned. Realistically, dwell times will vary from one train to the next and thus the LRT signal control system needs to be flexible enough to deal with those dwell time variations. However, any cycle modification for one train has to ensure that it does not come at the expense of another, possibly oncoming train. Furthermore, a special signal control treatment is only recommended for trains with longer than anticipated dwell times. Trains with shorter dwell times will simply have to wait the time between actual dwell and anticipated dwell so that they can take advantage of the progression green band to the next station. This is also important for maintaining regular train headways and thus avoiding train bunching. Therefore, only extending the LRT green by up to10 seconds is recommended as the LRT priority treatment for extraordinary long dwell times. However, as all LRT-conflicting phases are only served to their minimum times, any LRT green extension in one cycle results in shortening the potential LRT green window in the following cycle. Figure 1: LRT Time-Space Diagram for Background Signal Timing Plan for East Section (Queens Quay Portals Scenario) ¹ Cycle length 103 seconds; eastbound LRT in blue and orange; westbound LRT in purple and green; eastbound LRT green band in light green; westbound LRT green band in dark green; mid-block LRT stations vertical blue lines Figure 2: LRT Time-Space Diagram for Background Signal Timing Plan for West Section (Queens Quay Portals Scenario)² ² Cycle length 120 seconds; eastbound LRT in blue; westbound LRT in orange and blue; eastbound LRT green band in light green; westbound LRT green band in dark green; midblock LRT stations vertical blue lines Figure 3: LRT Time-Space Diagram for Background Signal Timing Plan for East Section (Bay Street Portal Scenario) $^{ extst{ in}}$ ³ Cycle length 103 seconds; eastbound LRT in blue and orange; westbound LRT in purple and green; eastbound LRT green band in light green; westbound LRT green band in dark green; mid-block LRT stations vertical blue lines Figure 4: LRT Time-Space Diagram for Background Signal Timing Plan for West Section (Bay Street Portal Scenario)⁴ ⁴ Cycle length 120 seconds; eastbound LRT in blue; westbound LRT in orange and blue; eastbound LRT green band in light green; westbound LRT green band in dark green; mid-block LRT stations vertical blue lines ## 3 Analysis Scenarios The following scenarios were analyzed and modeled in VISSIM for the PM-peak hour using the timing plans from above: - Scenario 1. Queens Quay Portals - Scenario 2. Bay Street Portal #### 3.1 Scenario 1 – Queens Quay Portals Scenario 1 incorporates at-grade, side-running LRT tracks to the south of Queens Quay. Access to the new LRT tracks is provided by extending the Bay Street tunnel under the intersection of Queens Quay at Bay Street with tunnel portals to the north and south of the Bay Street intersection. The underground LRT junction under the Bay Street intersection is simulated with the switch area protected by LRT signal control. #### 3.2 Scenario 2 – Bay Street Portal Scenario 2 incorporates the same side-running LRT alignment as Scenario 1, but does not feature the Bay Street intersection grade separation. LRT tracks exit the Bay Street tunnel just north of the Bay Street at Harbour Street intersection. The LRT switch area is protected by the traffic signal at Bay Street and Queens Quay. The VISSIM microscopic simulation for Scenario 2 shows that the proposed at-grade LRT junction does not provide enough train capacity for the proposed train schedule and thus long back-ups for southbound trains were observed during the simulation (see Figure 5 below). As a result, all reported LRT and auto traffic measures of effectiveness for this scenario have to be interpreted with that upstream junction bottleneck in mind and thus all output interpretation is focused on the Queens Quay Portals scenario. Figure 5: Southbound train back-up at Bay Street/Queens Quay intersection for Bay Street Portal scenario ## 4 Evaluation Approach Three primary measures of effectiveness (MOEs) were selected to evaluate the benefits and impacts of LRT signal priority along Queens Quay. The following MOEs for the simulation time period from 900 seconds to 4500 seconds are reported for each scenario and averaged over 10 VISSIM runs with different random seeds (seed numbers 60 through 69). - 1. LRT Travel Time and Speed - 2. LRT Delay - 3. Traffic Intersection Movement Delay **LRT Travel Time and Speed** is measured by computing the mean, minimum, maximum and standard deviation in LRT travel times. Travel times are reported in the eastbound and westbound directions for each intersection as well as for larger analysis sections. Travel time results are converted into speed for the longer analysis sections. **LRT Delay** is intended to assess the impact of signal control on LRT operations. The mean, minimum, maximum and standard deviation in LRT intersection delay values are reported. **Traffic Intersection Movement Delay** describes the expected service quality of signalized intersections for general purpose auto traffic. The primary purpose of this MOE is to report any locations where expected traffic delays exceed the acceptably minimum service levels. Mean, minimum and maximum traffic movement delay values are reported. The above MOEs are presented in the next two sections. Section 5 describes the analysis results for transit operations, while Section 6 describes the analysis results for automobile traffic. All numeric VISSIM simulation output can be found in the appendices. ### 5 Transit Results ### 5.1 LRT Travel Time and Speed The VISSIM simulation analysis shows that the proposed LRT signal control strategy results in relatively low LRT travel times for both analysis scenarios. LRT speeds range between 13.4 and 17.5 km/h for the Queens Quay (QQ) Portals scenario and 9.0 and 20.3 km/h for the Bay Street Portal scenario. The comparison of segment speeds between the two scenarios shows the impacts of train bunching and the assumed one-block train separation rule on LRT travel time and speeds. As mentioned above, the Bay Street Portal scenario does not provide adequate LRT crossing capacity at the intersection of Bay Street at Queens Quay. Therefore, this intersection effectively meters LRT flow in southbound direction into the study area (the same is of course true for trains leaving the study area in the northbound direction). Six of the eight travel time sections listed below include this capacity constraint and thus show higher travel time (lower speeds) for the Bay Street Portal scenario (refer to Table 1 below). However, travel time segments #10000 (Cherry stop to QQ Portal) and #10001 (QQ Portal to Cherry stop) do not include the Bay Street bottleneck. Even though both scenarios maintain the exact same geometry and signal control for these two travel time segments, the travel time and speed results are better for the Bay Street Portal scenario than the Queens Quay Portals scenario. The only difference between both scenarios in this segment is the higher number of trains served for the Queens Quay Portals scenario (13% higher for segment #10000 and 27% higher for segment #10001). This is a clear indication of the impact of train bunching on LRT travel speeds along Queens Quay. Table 1: Average LRT Travel Time and Speed for Main Corridor Segments | Segment | QQ Pa | ortals | Bay Stree | t Portal | |---|-----------|-----------|-----------|-----------| | Cherry stop to QQ Portal (west of Freeland) | 354.6 sec | 16.8 km/h | 349.9 sec | 17.0 km/h | | QQ Portal (west of Freeland) to Cherry stop | 358.5 sec | 16.6 km/h | 293.5 sec | 20.3 km/h | | Cherry to north of Harbour | 434.8 sec | 13.7 km/h | 544.1 sec | 10.9 km/h | | North of Harbour to Cherry | 444.6 sec | 13.4 km/h | 660.5 sec | 9.0 km/h | | West of Spadina and QQ to north of Harbour | 340.1 sec | 17.5 km/h | 546.5 sec | 10.9 km/h | | North of Harbour to west of Spadina and QQ | 366.1 sec | 16.2 km/h | 421.5 sec | 14.1 km/h | | North of Spadina and QQ to north of Harbour | 404.3 sec | 14.7 km/h | 470.2 sec | 12.6 km/h | | North of Harbour to north of Spadina and QQ | 352.9 sec | 16.9 km/h | 563.0 sec | 10.6 km/h | In addition to average speed and travel time, travel time variation is very important for the LRT operator. This measure of effectiveness provides a good indicator of expected schedule reliability. Using Scenario 1 (Queens Quay Portals) as the evaluation basis, travel time standard deviation for the main corridor travel time segments ranges from 9.0 to 23.7 seconds. This is well below the planned train headway and thus in an acceptable range. Figure 6 below shows travel time histograms of observed travel times along the two corridor segments. Figure 6: Observation-based LRT travel time histograms for Queens Quay Portals scenario ### 5.2 LRT Delay In addition to train bunching, LRT signal delay is a primary contributor to LRT corridor travel time and thus the objective of the proposed LRT signal control strategy is to minimize LRT signal delay. The simulation analysis results in an average LRT signal delay of 21.5 seconds for the Queens Quay Portals scenario. Traffic signal offset coordination fully optimized for LRT progression proved to result in unacceptable automobile traffic queuing and congestion. Therefore, the initial offset progression plans were adjusted to maintain
reasonable traffic operation. As a result, certain intersections cause longer LRT signal delays as trains have to wait for the next progression band. However, the proposed signal offset plans are designed to place these designated signal waiting locations at nearside stops to avoid an additional LRT stop and thus minimize the impact on LRT ride comfort. The Sherborne station nearside of the intersection of Queens Quay at Sherborne in the eastbound direction is a good example for such a designated signal waiting location. VISSIM reports an average LRT signal delay at that intersection of 41.6 seconds, double the overall LRT signal delay. ### 6 Traffic Results ### **6.1 Traffic Intersection Movement Delay** The VISSIM microscopic simulation models result in an average intersection movement delay of 27 seconds for the Queens Quay Portals scenario. This result indicates reasonably good automobile traffic operations. The following three intersections are the worst performing intersections from an traffic delay perspective: - Queens Quay at Spadina Avenue - Queens Quay at Bay Street - Bay Street at Harbour Street ### 7 Conclusion The transit signal priority analysis for the Queens Quay corridor reveals that the recommended LRT signal control strategy for this corridor consists of a train progression optimized fixed-time signal timing plan combined with LRT green extension capability. Analyzing the proposed LRT signal control strategy with VISSIM results in the following conclusions: - The Bay Street Portal scenario is not feasible because of severe LRT crossing capacity constraints at the Bay Street/Queens Quay intersection. - LRT operating speeds are expected to fall in a range between 13.4 km/h and 17.5 km/h. - LRT travel time standard deviation is expected to be in an acceptable range from 9.0 to 23.7 seconds, well below the planned train headway and thus good for schedule reliability. - An assumed one-block train separation rule to avoid train bunching results in LRT operating speed reduction. - Compromises in the favorable LRT progression signal offsets due to excessive automobile traffic queuing result in increased LRT delay at specific intersections where trains are expected to fall out of the signal progression band. The signal timing plan is designed to have this occur preferably at nearside stops to avoid additional LRT stops. - There are no severe traffic hotspots along Queens Quay. ### Appendix A VISSIM Simulation Output Data for Queens Quay Portals Scenario May 15, 2008 PTV America, Inc. | | | | Length No. o | | TravelTime | | | | Delay | | | | speed (km/n) | (h) | |---|----------------------|----------------------|--------------|------------|------------|-------|--------|-------------|-------------|------|-------|---------|--------------|----------| | Inbound Eastbound (Spadina to Union) | | | (m) Vehicles | es Average | Std. Dev. | Max. | Min. A | Average St. | St. Dev Max | | Min | Average | Min | Max | | Travel Time Segment | From Exit of | To Exit of | | | | | | | | | | | | | | 4001 | Lower Spadina | | 21 | | | 108.5 | 95.3 | 44.2 | 3.7 | 49.3 | 37.0 | | | 4 | | 4003 | | Lower Simroe | 21 | | | 55.0 | 52.7 | 19.6 | 6:0 | 21.4 | 18.8 | | | | | 4003 | Lower Simroe | York | 21 | 67.2 | 5.5 | 79.8 | 0.09 | 36.5 | 5.2 | 48.6 | 29.8 | | | | | 4004 | York | Вау | 20 | | | 59.7 | 49.5 | 22.1 | 3.5 | 28.0 | 17.3 | | | | | | | | | | | | | | | | | | | L | | Inbound Westbound (Cherry to Union) | erry to Union) | | <u>.</u> | | | | | | | | | | | | | Travel Time Segment | From Exit of | To Exit of | | | | | | | | | | | | | | 212 | Bav | Harbour | 55.5 | 38.8 | 0.3 | 39.3 | 38.4 | 14.2 | 0.2 | 14.7 | 14.0 | | | | | 201 | | Rav | 35 | | | 32.7 | 289 | 0 1 | 11 | 11.2 | 7.7 | | | | | 202 | Freeland | Vonge | 35 | 10.9 | | 110 | 10.8 | 7:0 | 00 | 7.07 | 0.3 | | | | | 202 | Dodon+h (Nous Coppos | 1018c | 3 | | 7.0.0 | 0 1 | 10.0 | 5 6 | 00 0 | t c | 0.0 | | | | | 502 | Nedpatii/New Cooper | riceland | ţ . | | | 7.00 | 1.0.1 | 27.0 | 2.3 | 20.0 | 1 .0 | | | | | 204 | Jarvis | kedpatn/new Cooper | 35 | 19.1 | 0.9 | 20.1 | 17.2 | 9.7 | 6.0 | 10.7 | 1.1 | | | + | | 205 | Kichardson | Jarvis | 35 | | | 41.3 | 37.3 | 22.2 | 1.1 | 23.4 | 20.0 | | | | | 206 | Sherborne | Kichardson | 35 | 8.77 | 1.8 | 72.4 | 20.1 | 1.7 | T.9 | 10.4 | 4.8 | | | + | | 207 | Bonnycastle | Sherborne | 35 | ļ | | 35.4 | 30.9 | 15.7 | 1.4 | 18.7 | 14.3 | | | + | | 208 | Small | Bonnycastie | 35 | | 3.5 | 47.7 | 38.1 | 27.0 | 3.5 | 32.5 | 7777 | | | + | | 209 | Parliament
T : :: | Small | 35 | 40.6 | | 42.5 | 38.9 | 21.3 | 1.3 | 23.3 | 19.8 | | | | | 210 | ITIIIIty
CL | Fament | CC C | | 2.7 | 0.00 | 26.0 | 14.4 | 7.7 | 20.0 | 24.4 | | | + | | 717 | Cherry | Irinity | 35 | | | 80.3 | /T:5 | 37.4 | 3.0 | 47.7 | 34.I | | | + | | Outbound Westhound (Hoion to Spadina) | Inion to Spadina) | | | | | | | | | | | | | | | Travel Time Segment | From Exit of | To Evit of | | | | | | | | | | | | + | | 3004 | | Lower Spadina | 15 | | | 71.9 | 47.3 | 25.8 | 8.9 | 39.3 | 14.6 | | | H | | 3003 | r Simroe | Rees | 21 | 67.7 | 5.5 | 79.7 | 62.5 | 37.3 | 5.6 | 49.4 | 32.1 | | | | | 3002 | York | Lower Simroe | 21 | | | 57.7 | 48.0 | 29.2 | 2.9 | 35.2 | 25.8 | | | | | 3001 | Вау | York | 21 | | | 102.4 | 78.2 | 46.1 | 8.0 | 59.1 | 34.1 | Outbound Eastbound (Union to Cherry) | nion to Cherry) | | | | | | | | | | | | | | | Travel Time Segment | From Exit of | To Exit of | | | | | | | | | | | | 4 | | 112 | Union | - 1 | 99 | | | 31.3 | 29.7 | 2.7 | 9.0 | 4.0 | 2.1 | | | | | 101 | Harbour | Вау | 34.5 | | | 57.2 | 54.1 | 20.4 | 1.0 | 21.9 | 18.9 | | | | | 102 | Bay | Yonge | 34.5 | | | 15.6 | 15.4 | 0.1 | 0.0 | 0.1 | 0.1 | | | - | | 103 | Yonge | Freeland | 35 | 36.3 | | 47.2 | 26.5 | 25.8 | 5.3 | 36.8 | 16.0 | | | _ | | 104 | Freeland | Redpath/New Cooper | 34.5 | | | 76.1 | 70.6 | 41.0 | 1.9 | 44.2 | 38.5 | | | \dashv | | 105 | Redpath/New Cooper | Jarvis | 34 | 18.8 | | 22.0 | 15.5 | 9.6 | 1.8 | 12.9 | 6.3 | | | | | 106 | Jarvis | Richardson | 34.5 | | | 34.8 | 28.7 | 16.3 | 2.0 | 20.0 | 13.9 | | | + | | 107 | Richardson | Sherborne | 34.5 | | | 71.2 | 63.3 | 41.6 | 2.3 | 45.1 | 37.1 | | | + | | 108 | Sherborne | Bonnycastle | 34 | 13.5 | 2.5 | 18.1 | 8.6 | 6.9 | 2.5 | 11.5 | 3.2 | | | + | | 109 | Bonnycastle | Small | 33.5 | | | 45.5 | 37.9 | 20.4 | 2.4 | 23.3 | 15.6 | | | \dashv | | 110 | Small | Parliament | 34 | 22.8 | 12.7 | 49.6 | 10.4 | 14.0 | 12.8 | 40.9 | 1.6 | | | + | | 111 | Parliament | Trinity | 34.5 | | | 43.5 | 28.9 | 22.0 | 5.4 | 28.0 | 13.1 | | | + | | Dolay Botwoon Stone | | | | | | | | | | | | | | - | | ciay between Stops | | | | | | | | | | | | | | | | Inbound Eastbound (Spadina to Union) | idina to Union) | | | | | | | | | | | | | | | Travel Time Segment | From End of Stop | To Beginning of Stop | | | | | | | | | | | | | | 2002 | Spadin | Rees | 21 | | | 48.1 | 39.1 | 20.2 | 3.1 | 23.9 | 15.0 | | | | | 2003 | | Simcoe | 21 | 28.1 | 1.0 | 29.6 | 26.4 | 8.1 | 1.0 | 9.6 | 6.5 | | | | | 2004 | Simcoe | York | 21 | | | 22.1 | 18.7 | 7.3 | 1.0 | 9.8 | 6.5 | | | 4 | | 2005 | York | Spadina | 20 | 62.2 | | 67.7 | 57.5 | 26.2 | 3.5 | 32.0 | 21.4 | | | | | Inbound Westbound (Chrerry to Union) Travel Time Sement | rerry to Union) | To Beginning of Ston | | | | | | | | | | | | | | 401 | Bav | Union | 35 | 325 | | 32 6 | 32.4 | 4.6 | 0.1 | 4.7 | 4.5 | | | | | 402 | Freeland | Bav | 35 | | 1.7 | 57.2 | 51.3 | 16.7 | 1.7 | 19.7 | 13.6 | | | | | 403 | Jarvis | Freeland | 35 | | | 212 | 470 | 300 | 2 0 | 0 00 | 0 30 | | | H | | | | | | | | 5.55 | 10.74 | 30.0 | 7.3 | 32.0 | 70.07 | | | | Queens Quay Portals | Spadir
Cherry) | From End of Stop | Small
Trinity | | 35 | | , | | | * 0, | , | , ,, | 16.5 | | | | |--|------------------|----------------------------------|--------|------|--------|------|-------|-------|-------|------|-------|-------|------|------|------| | | ind of Stop | Trinity | | | 40.7 | 7.5 | 46.3 | 37.5 | 19.4 | 7.6 | 72.4 | | | | | | | 1 Find of Stop | | | 35 | 21.4 | 0.3 | 21.8 | 21.0 | 8.9 | 0.3 | 7.3 | 6.4 | | | | | | 1 End of Stop | - | | | | | | | | | | | | | | | | n End of Stop | | | | | | | | | | | | | | | | | of Stop | To Beginning of Stop | | | | | | | | | | | | | | | | n End of Stop | West of Spadina and Queens Quay | | 15 | 63.4 | 8.9 | 76.9 | 52.2 | 28.9 | 8.9 | 42.5 | 17.7 | | | | | | n End of Stop | North of Spadina and Queens Quay | | 9 | 95.0 | 5.2 | 100.5 | 82.1 | 51.2 | 5.2 | 26.8 | 38.7 | | | | | | n End of Stop | Rees | | 21 | 46.0 | 4.0 | 54.9 | 41.5 | 25.7 | 4.1 | 34.7 | 21.1 | | | | | | n End of Stop | | | 21 | 29.0 | 3.6 | 32.3 | 21.5 | 22.7 | 6.4 | 30.8 | 14.4 | | | | | | n End of Stop | York | | 21 | 53.0 | 6.4 | 61.0 | 44.4 | 22.7 | 6.4 | 30.8 | 14.4 | | | | | Union Bay Freeland Jarvis Sherbome Small | n End of Stop | | | | | | | | | | | | | | | | | | To Beginning of Stop | | | | | | | | | | | | | | | | | Bay | | 26 | 30.8 | 0.5 | 32.0 | 30.3 | 5.9 | 9.0 | 4.3 | 2.3 | | | | | | | Freeland | | 35 | 73.5 | 5.2 | 83.9 | 64.4 | 33.8 | 5.2 | 44.3 | 24.5 | | | | | | | Jarvis | | 34 | 61.5 | 1.9 | 64.6 | 57.9 | 39.9 | 2.0 | 43.1 | 36.2 | | | | | | | Sherborne | | 34.5 | 26.5 | 2.7 | 30.2 | 22.5 | 10.7 | 2.7 | 14.4 | 6.5 | | | | | , | | Small | | 34 | 57.2 | 3.3 | 63.8 | 51.7 | 37.2 | 3.3 | 43.9 | 31.7 | | | | | | | Trinity | | 34 | 43.7 | 12.4 | 66.7 | 28.5 | 22.8 | 12.5 | 45.9 | 7.6 | | | | | 307 Trinity | | Cherry | | 34.5 | 23.5 | 0.5 | 24.2 | 22.8 | 4.6 | 0.4 | 5.2 | 4.0 | Full Length | | | | | | | | | | | | | | | | | Trans Commons | | C F | | | | | | | | | | | | | | | 10000 Refore Cherry Ston | | OO Dortal (west of Erealand) | 1652.2 | 35 | 35.4 6 | 0 0 | 368.6 | 340.2 | 187 5 | 0 4 | 1973 | 167.8 | 16.8 | 16.1 | 175 | | 10001 QQ Portal (west of Freeland | f Freeland) | Before Cherry Stop | 1649.1 | 34 | 358.5 | 22.8 | 383.8 | 324.6
 197.6 | 23.1 | 223.9 | 162.7 | 16.6 | 15.5 | 18.3 | | | | North of Harbour | 2091.6 | 35 | 434.8 | 9.6 | 450.3 | 419.6 | 205.8 | 10.1 | 222.2 | 189.7 | 13.7 | 13.2 | 14.2 | | 10011 North of Harbour | | Cherry | 2093.3 | 34 | 444.6 | 23.7 | 473.6 | 409.1 | 222.6 | 24.1 | 252.6 | 186.0 | 13.4 | 12.6 | 14.5 | | 20000 West of Spadina ar | nd Queens Quay | North of Harbour | 1508.8 | 15 | 340.1 | 13.4 | 369.2 | 323.3 | 172.9 | 13.4 | 201.5 | 155.6 | 17.5 | 16.1 | 18.4 | | 20001 North of Harbour | | West of Spadina and Queens Quay | 1516.3 | 14 | 366.1 | 11.4 | 383.7 | 353.2 | 189.1 | 11.6 | 206.7 | 175.3 | 16.2 | 15.5 | 16.8 | | | and Queens Quay | North of Harbour | 1470.8 | 9 | 404.3 | 23.4 | 446.3 | 377.6 | 186.1 | 21.0 | 224.9 | 160.8 | 14.7 | 13.3 | 15.8 | | 20011 North of Harbour | | North of Spadina and Queens Quay | 1459.2 | 9 | 352.9 | 14.6 | 389.0 | 335.8 | 174.8 | 14.3 | 209.8 | 159.3 | 16.9 | 15.3 | 17.7 | Queens Quay Portals | Intersection | | | | | Ave | Average Delay in Seconds | in Seconds | | | | | | |--------------------|-----|-----------|-----|----|-----------|--------------------------|------------|------------|-----|----|------------|----| | | ш | Eastbound | | > | Westbound | | S | Southbound | | ~ | Northbound | | | | _ | _ | ~ | _ | _ | ~ | _ | _ | ~ | _ | _ | ~ | | | 121 | 66 | | | 11 | 33 | 73 | | 4 | | | | | | 70 | 2 | 0 | 09 | 6 | 11 | | | 107 | | | 40 | | | | 1 | 0 | | 11 | | | | 39 | 0 | 0 | 0 | | | 18 | 22 | 81 | | 2 | 4 | 48 | 45 | 51 | 43 | 36 | 44 | | 5 Robertson East | | 15 | | 54 | 6 | 4 | 29 | | 0 | 0 | | 48 | | 6 Harbourfront/Ped | | 5 | | | 8 | | | | 0 | | | | | | 13 | 14 | 83 | | 2 | 3 | 39 | 35 | 24 | 43 | 31 | 41 | | | | 4 | | 69 | 7 | 7 | 6 | | | 31 | 0 | 35 | | | 12 | 8 | 80 | 62 | 6 | 7 | 40 | 37 | 9 | 37 | 35 | 39 | | 10 Harbour Square | 11 | 8 | 70 | 72 | 18 | 16 | 45 | | 46 | 47 | | 43 | | | 23 | 7 | 8 | 18 | 20 | 18 | 193 | 186 | 128 | 18 | 48 | 18 | | | 20 | 8 | | | 13 | 11 | 81 | | 40 | | | | | | 17 | 13 | | 29 | 9 | 4 | 28 | 28 | 30 | 40 | 0 | 5 | | | | 5 | | | 4 | 3 | 0 | | 12 | | | | | 15 New Redpath | 15 | 5 | | 71 | 20 | 0 | 27 | 0 | 9 | 32 | 0 | 30 | | | 56 | 8 | | | 12 | 6 | 25 | | 7 | | | | | 17 Richardson St | 14 | 4 | 09 | | 2 | 2 | 29 | 48 | 49 | 48 | 0 | 40 | | | 11 | 4 | 4 | | 10 | 7 | 11 | 15 | 39 | | | | | 19 Sherbourne | 26 | 14 | | 57 | 12 | 9 | 47 | 33 | 16 | 34 | 31 | 35 | | 20 Bonnycastle | 19 | 10 | 62 | | 20 | 19 | 28 | 0 | 16 | 34 | 0 | 27 | | | | 3 | | | 20 | | | | | | | | | | 13 | 3 | | 49 | 17 | 0 | 29 | 0 | 10 | 46 | 0 | 32 | | 23 Parliament St. | 19 | 4 | | | 19 | 7 | 27 | | 25 | | | | | | 19 | 17 | 40 | 47 | 8 | 9 | 39 | 0 | 5 | 28 | 0 | 34 | | | 23 | 23 | 147 | | | | 30 | 149 | | | 15 | 5 | ### Appendix B **VISSIM Simulation Output Data for Bay Street Portal Scenario** May 15, 2008 PTV America, Inc. | 655 | | | 2 | | Avorage Tra | Owi Limo | | | A CAPACAGO | 710 | •• | | 2 | |---------------------------------------|--------------------|----------------------|--------------|-------|----------------|----------|--------|-------------|------------|----------|-------|---------|---------| | Inbound Eastbound (Sp | adina to Union) | | (m) Vehicles | Mean | Std. Dev. Max. | | Min. A | Average St. | Dev N | Jax Min | | Average | Min Min | | Travel Time Segment | From Exit of | To Exit of | ļ | | | | | | | | ļ | 000 | | | 4001 | Lower Spadina | Rees | 20 | 97.6 | 4.0 | 102.7 | 91.6 | 32.0 | 4.1 | 38.5 | 26.4 | | | | 4003 | Rees | Lower Simroe | 21 | 62.4 | 3.9 | 67.3 | 26.0 | 23.3 | 4.5 | 29.5 | 15.9 | | | | 4003 | Lower Simroe | York | 20 | 51.6 | 3.4 | 57.2 | 47.1 | 17.2 | 3.0 | 22.4 | 13.5 | | | | 4004 | York | Вау | 21 | 93.7 | 12.1 | 113.1 | 75.4 | 0.09 | 12.0 | 78.1 | 40.6 | | | | | | | | | | | | | | | | | | | Inbound Westbound (Cherry to Union) | erry to Union) | | | | | | | | | | | | | | Travel Time Segment | From Exit of | To Exit of | | | | | | | | | | | | | 212 | Вау | Harbour | 55 | 48.3 | 0.7 | 49.2 | 47.3 | 23.4 | 0.8 | 24.5 | 22.0 | | | | 201 | Yonge | Вау | 34 | 140.7 | 22.3 | 176.3 | 111.8 | 120.2 | 24.3 | 154.1 | 89.5 | | | | 202 | Freeland | Yonge | 35 | 20.2 | 3.0 | 24.1 | 13.5 | 7.0 | 3.1 | 10.8 | 0.0 | | | | 203 | Redpath/New Cooper | Freeland | 34 | 44.2 | 2.5 | 47.5 | 38.9 | 14.2 | 2.5 | 17.8 | 8.8 | | | | 204 | Jarvis | Redpath/New Cooper | 35 | 15.2 | 1.5 | 17.2 | 12.8 | 3.3 | 1.7 | 5.4 | 0.1 | | | | 205 | Richardson | Jarvis | 35 | 48.6 | 1.8 | 52.1 | 45.7 | 29.5 | 2.1 | 34.0 | 26.4 | | | | 206 | Sherborne | Richardson | 34 | 24.3 | 2.3 | 27.5 | 20.2 | 5.4 | 2.5 | 8.6 | 0.1 | | | | 207 | Bonnycastle | Sherborne | 35 | 27.0 | 0.4 | 27.5 | 26.2 | 9.8 | 0.1 | 9.8 | 8.3 | | | | 208 | Small | Bonnycastle | 35 | 52.8 | 1.7 | 56.2 | 50.1 | 33.6 | 1.7 | 37.1 | 31.0 | | | | 209 | Parliament | Small | 34 | 37.4 | 1.2 | 40.0 | 35.8 | 15.9 | 1.1 | 18.3 | 14.7 | | | | 210 | Trinity | Parliament | 35 | 30.0 | 3.4 | 35.7 | 25.0 | 12.0 | 3.6 | 17.8 | 6.1 | | | | 211 | Cherry | Trinity | 34 | 68.2 | 2.3 | 71.5 | 64.2 | 24.9 | 2.5 | 28.2 | 20.2 | | | | | | | | | | | | | | | | | | | Outbound Westbound (Union to Spadina) | Jnion to Spadina) | | | | | | | | | | | | | | Travel Time Segment | From Exit of | To Exit of | | | | | | | | | | | | | 3004 | Rees | Lower Spadina | 12 | 71.8 | 2.1 | 76.0 | 68.7 | 30.9 | 2.2 | 35.3 | 27.9 | | | | 3003 | Lower Simroe | Rees | 17 | 73.9 | 3.7 | 78.0 | 64.8 | 37.9 | 2.9 | 41.4 | 31.4 | | | | 3002 | York | Lower Simroe | 17 | 41.8 | 1.6 | 44.9 | 38.9 | 15.3 | 1.3 | 17.2 | 12.9 | | | | 3001 | Вау | York | 16 | 128.3 | 2.2 | 131.5 | 124.9 | 65.7 | 2.3 | 69.4 | 62.8 | | | | | | | | | | | | | | | | | | | Outbound Eastbound (Union to Cherry) | nion to Cherry) | | | | | | | | | | | | | | Travel Time Segment | From Exit of | To Exit of | | | | | | | | | | | | | 112 | Union | Harbour | 41.5 | 490.9 | 47.1 | 544.2 | 396.8 | 441.8 | 59.2 | 209.8 | 336.0 | | | | 101 | Harbour | Bay | 27 | 180.2 | 2.6 | 182.5 | 174.1 | 160.7 | 2.6 | 163.1 | 154.5 | | | | 102 | Вау | Yonge | 27 | 78.8 | 9.0 | 79.7 | 77.4 | 43.1 | 0.5 | 43.6 | 41.8 | | | | 103 | Yonge | Freeland | 28 | 41.2 | 0.7 | 42.6 | 40.3 | 12.7 | 1.0 | 14.5 | 11.5 | | | | 104 | Freeland | Redpath/New Cooper | 28 | 24.6 | 0.7 | 25.8 | 23.4 | 4.1 | 0.9 | 5.8 | 2.7 | | | | 105 | Redpath/New Cooper | Jarvis | 28 | 11.6 | 0.1 | 11.7 | 11.5 | 0.2 | 0.0 | 0.2 | 0.1 | | | | 106 | Jarvis | Richardson | 27 | 25.1 | 0.1 | 25.2 | 25.1 | 8.4 | 0.0 | 8.5 | 8.4 | | | | 107 | Richardson | Sherborne | 28 | 69.2 | 2.3 | 73.7 | 66.3 | 39.2 | 2.4 | 43.7 | 36.2 | | | | 108 | Sherborne | Bonnycastle | 28 | 11.0 | 1.4 | 13.2 | 8.3 | 2.9 | 1.4 | 2.0 | 0.1 | | | | 109 | Bonnycastle | Small | 28 | 46.3 | 3.5 | 53.0 | 42.3 | 20.3 | 3.6 | 26.9 | 16.0 | | | | 110 | Small | Parliament | 28 | 17.9 | 1.5 | 20.4 | 16.6 | 6.9 | 1.5 | 9.4 | 5.6 | | | | 111 | Parliament | Trinity | 29 | 27.1 | 2.5 | 33.2 | 24.7 | 7.9 | 2.2 | 13.0 | 5.3 | | | | | | | | | | | | | | - | | | | | Delay Between Stops | | | | | | | | | | | | | | | Inbound Eastbound (Spadina to Union) | adina to Union) | | | | | | | | | | | | | | Travel Time Segment | From End of Stop | To Beginning of Stop | | | | . | | | | ļ | | | | | 2002 | Spadina | | 21 | 32.6 | 6.0 | 34.0 | 31.8 | 3.0 | 6.0 | 4.3 | 2.2 | | | | 2003 | | Simcoe | 21 | 34.1 | 2.4 | 39.1 | 31.2 | 9.8 | 3.9 | 20.0 | 6.3 | | | | 2004 | Simcoe | York | 20 | 18.4 | 0.5 | 19.6 | 17.7 | 3.0 | 9.0 | 4.2 | 2.3 | | | | 2005 | York | Spadina | 21 | 100.3 | 12.1 | 119.7 | 82.0 | 61.8 | 12.0 | 80.0 | 42.5 | | | | Inbound Westbound (Cherry to Union) | erry to Union) | | | | ļ | ļ | | <u> </u> | | <u> </u> | | | | | Travel Time Segment | From End of Stop | To Beginning of Stop | | | | | | | | | | | | | 401 | Вау | | 52 | 50.8 | 0.8 | 51.9 | 49.6 | 16.2 | 0.8 | 17.2 | 14.9 | | | | 402 | Freeland | Вау | 33 | 169.2 | 23.4 | 208.3 | 137.1 | 131.2 | 24.8 | 168.6 | 97.4 | | | | 403 | larvis | 7000 | | | | | | | | | L | | | | Bound (Un | Small Trinity Trinity Stop West of Spadina and Queens Quay North of Spadina and Queens Quay Rees Sincoe Sincoe To Beginning of Stop North of Spadina and Oueens Quay Ress These Sincoe To Beginning of Stop | | 35 60.6
345 40.1
345 20.5
15 12.0
15 116.6 | .6 1.8
1 3.3
5 0.3 | 64.1 | 57.6
35.0 | 35.8
13.9 | 1.7 | 39.4
19.4 | 32.9 | | | |
--|---|--------|--|--------------------------|-------|--------------|--------------|------|--------------|--|------|------|------| | Cherry Cherry | | | | | | | | C | 19.4 | 8.2 | | | | | Cherry Cherry | | | | | | | | 0.0 | | | | | | | Pestbound (Union to Spading | | | | | | | | 0.3 | 2.8 | 2.0 | | | | | Restrict Restrict | | | | | | | | | | | | | | | New Page | | | | | | | | | | | | | | | Rees Rees | | | | | | | | | | | | | | | 004 Rees 003 Simcoe 002 York 001 Bay 001 Bay 003 Freeland 004 Jarvis 005 Small 007 Trinity 000 Before Chen 000 Before Chen 000 Cherry 003 Cherry 000 Cherry 000 Cherry | | | | | | | | 32.6 | 2.2 | 37.1 | | | | | 2002 500 2002 70rk 2001 8ay 2011 10 2011 10 2011 10 2011 20 2011 20 2011 20 2011 20 2011 20 2011 20 2011 20 2011 20 2011 20 2011 20 2011 20 2011 20 2011 20 2011 20 2011 20 2011 20 2011 | | | | | | | | 2.1 | 68.5 | 62.9 | | | | | 100 | Simcoe
York
To Beginning | | | | | | | 2.9 | 34.9 | 25.0 | | | | | 201 Bay astbound (Union to Cherry to Segment Union to Cherry 10.1 Bay 10.2 Bay 10.2 Bay 10.2 Sherborne 10.5 She | York To Beginning | | | .6 1.6 | 28.8 | 23.2 | 9.3 | 2.0 | 13.8 | 6.4 | | | | | astbound (Union to Cherry 10.1 Union 10.2 Bay 10.3 Freeland 10.4 Jarvis 10.5 Sherborne 10.6 Small 10.7 Trinity 10.0 Before Cherry 10.00 Before Cherry 10.00 Cherry 10.10 Copportation | To Beginning | | | | | | | 2.0 | 13.8 | 6.4 | | | | | ne Segment Union 101 101 101 101 101 101 101 101 101 10 | To Beginning
Bay | | | | | | | | | | | | | | 001
002
003
004
005
006
007
Segment
000
0001 | | | | | | | | ļ | L | <u> </u> | | | | | 002
003
004
005
005
007
000
0001
0010 | | | | | | _, | 9.665 | 59.2 | 677.6 | 499.3 | | | | | 03
004
005
006
007
Segment
Segment
0000 | Freeland | | 27 56.7 | 9.0 2. | 57.5 | 55.3 | 36.6 | 0.5 | 37.1 | 35.2 | | | | | 004 005 006 007 007 Segment 0000 0001 | Jarvis | | | | | | 6.3 | 6.0 | 8.0 | 4.7 | | | | | 005
006
007
Segment
0000
001 | Sherborne | | | | | | 1.8 | 0.0 | 1.8 | 1.8 | | | | | 0.06
10.7
10.7
10.00
10.00
10.00
10.00 | Small | | | | | | 35.6 | 2.2 | 39.7 | 33.3 | | | | | 07
Segment
000
001 | Trinity | | | | | | 20.9 | 4.1 | 29.0 | 16.4 | | | | | Segment
0000
0001
010 | Cherry | | 29 24. | | | | 0.8 | 0.2 | 1.2 | 9.0 | | | | | Segment
0000
001 | 0 | | | | | | | | | | | | ! | | | | | | | | | | 10.8 | 163.8 | 127.7 | 17.0 | 16.3 | 17.6 | | | _ | | | | | | | 7.4 | 114.6 | 93.8 | 20.3 | 19.4 | 20.9 | | | | | | | | | | 29.6 | 320.6 | 234.8 | 10.9 | 10.2 | 12.0 | | 10011 North of Harbour | Cherry | | | | | | | 8.3 | 411.7 | 388.4 | 9.0 | 8.9 | 9.2 | | 20000 West of Spadina and Queens Quay | | | | | | | | 9.1 | 357.4 | 329.4 | 10.9 | 10.8 | 11.0 | | 20001 North of Harbour | West of Spadina and Queens Quay | 1515.0 | 13 421.5 | .5 20.5 | 460.2 | 395.6 | 225.5 | 18.9 | 260.5 | 199.3 | 14.1 | 12.9 | 15.0 | | | North of Harbour | | | | | | | 41.5 | 331.2 | 196.0 | 12.6 | 11.5 | 13.9 | | | | | | | | | | 16.5 | 398.5 | 340.2 | 10.6 | 6.6 | 10.9 | Bay Street Portal ### 5 Transit Results ### 5.1 LRT Travel Time and Speed The VISSIM simulation analysis shows that the proposed LRT signal control strategy results in relatively low LRT travel times for both analysis scenarios. LRT speeds range between 13.4 and 17.5 km/h for the Queens Quay (QQ) Portals scenario and 9.0 and 20.3 km/h for the Bay Street Portal scenario. The comparison of segment speeds between the two scenarios shows the impacts of train bunching and the assumed one-block train separation rule on LRT travel time and speeds. As mentioned above, the Bay Street Portal scenario does not provide adequate LRT crossing capacity at the intersection of Bay Street at Queens Quay. Therefore, this intersection effectively meters LRT flow in southbound direction into the study area (the same is of course true for trains leaving the study area in the northbound direction). Six of the eight travel time sections listed below include this capacity constraint and thus show higher travel time (lower speeds) for the Bay Street Portal scenario (refer to Table 1 below). However, travel time segments #10000 (Cherry stop to QQ Portal) and #10001 (QQ Portal to Cherry stop) do not include the Bay Street bottleneck. Even though both scenarios maintain the exact same geometry and signal control for these two travel time segments, the travel time and speed results are better for the Bay Street Portal scenario than the Queens Quay Portals scenario. The only difference between both scenarios in this segment is the higher number of trains served for the Queens Quay Portals scenario (13% higher for segment #10000 and 27% higher for segment #10001). This is a clear indication of the impact of train bunching on LRT travel speeds along Queens Quay. Table 1: Average LRT Travel Time and Speed for Main Corridor Segments | Segment | QQ Pa | ortals | Bay Stre | et Portal | | |---|-----------|-------------------------|------------------------|------------------------|------| | Cherry stop to QQ Portal (west of Freeland) | 354.6 sec | 16.8 km/h | 349.9 sec | 17.0 km/h | | | QQ Portal (west of Freeland) to Cherry stop
| 358.5 sec | 16.6 km/h | 293.5 sec | 20.3-km/h | 20.2 | | Cherry to north of Harbour | 434.8 sec | 13.7-km/h17. | | _10.9 km/ h | 13-8 | | North of Harbour to Cherry | 444.6 sec | -13.4 km/h 16 | 9
660.5 sec | 9.0 km/h | 11-4 | | West of Spadina and QQ to north of Harbour | 340.1 sec | 17.5-km/h 16 | [©] 546.5 sec | 10.9 km/h | 9.9 | | North of Harbour to west of Spadina and QQ | 366.1 sec | 16.2 km/h 14 | 9 421.5 sec | 14.1 km/h | 12.9 | | North of Spadina and QQ to north of Harbour | 404.3 sec | 14.7.km/h | 470.2 sec | 12.6 km/h | 11.3 | | North of Harbour to north of Spadina and QQ | 352.9 sec | 16.9 km/h ¹⁴ | 9 563.0 sec | 10.6 km/h | 9.3 | May 15, 2008 Page 10 PTV America, Inc. ## Queens Quay Corridor TSP Analysis Presentation of Results ### Agenda - PTV Scope of Services - LRT Signal Control Strategy - Evaluation - Sensitivity Analysis - Conclusions ### PTV Scope of Services ## 1. Develop a signal control strategy to - Minimize LRT travel time (Std. Deviation as important as Mean) - Maximize pedestrian crossing opportunities - Preserve vehicular access to Queens Quay area ### Implement signal control in two VISSIM models **7** - Scenario 1. Queens Quay Portals - Scenario 2. Bay Street Portal ## 3. Perform VISSIM simulation analysis ## 4. Analyze system's sensitivity to - Transit headway - Signal and stop density - Offset optimization compromise in response to traffic queuing ## **LRT Signal Control Strategy** ### Partial signal priority with fixed background signal cycle optimized for LRT progression - Cycle length even factor of LRT headway (west 120", east 103") - Offsets optimized for LRT progression including anticipated station dwell times (ideal offsets compromised to avoid excessive traffic queuing) - Wide bandwidth preference to lower LRT travel time std. deviation - LRT green extension TSP of 10" to accommodate long dwells # LRT Time-Space Diagram (QQ Portals - East) # LRT Time-Space Diagram (QQ Portals – West) ### Bay Street Portal Option Insufficient crossing capacity at Bay Street at Queens Quay Design is infeasible for projected built-out train headways ### Evaluation ### Measures of Effectiveness - LRT travel time and speed - LRT delay - Traffic intersection movement delay ### Results - Segment LRT mean speed between 13.9 km/h and 18.2 km/h - Segment LRT travel time between 331 sec and 389 sec - Segment LRT travel time std. deviation between 39 sec and 55 sec - Most LRT signal delay incurred at nearby stations while waiting for progression band - No severe traffic hotspots along Queens Quay corridor ### Sensitivity Analysis ## Purpose to test system's sensitivity to - LRT headway and its correlation to base cycle length - Removal of pedestrian signals and LRT stops - Offset optimization compromise to avoid excessive traffic queuing ### **Evaluation MOEs** - Segment LRT travel time (mean, min, max and std. dev.) - Segment LRT speed (mean, min, max and std. dev.) ### Travel Time Segments | Segment Name | Section | Direction | Segment # | |---|---------|-----------|-----------| | Cherry stop to QQ Portal (west of Freeland) | East | WB | 10000 | | QQ Portal (west of Freeland) to Cherry stop | East | EB | 10001 | | West of Spadina to north of Harbour | West | EB | 20000 | | North of Harbour to west of Spadina | West | WB | 20001 | | North of Spadina to north of Harbour | West | EB | 20010 | | North of Harbour to north of Spadina | West | WB | 20011 | ## Sensitivity to LRT Headway How robust is LRT signal system in regards to different LRT headways? ·Timing plan based on 100" cycle length for east and west sections | Scenario | Train Length [m]
(E – W) | Headway [s]
(E - W) | # of Trains
(E - W) | |----------|-----------------------------|------------------------|------------------------| | 1A_1 | 30 - 30 | 103 – 240/600 | 35 – 15/6 | | 1A_2 | 90 - 30 | 206 – 240/600 | 17 – 15/6 | | 1A_3 | 90 - 30 | 265 – 260/450 | 14 – 14/8 | | 1A_4 | 30 - 30 | 158 – 369/450 | 23 – 10/8 | ## Sensitivity to LRT Headway (Travel Time) # Sensitivity to LRT Headway (Standard Deviation) ## Sensitivity to Signal Offset Optimization How much better is train operation if offsets can be optimized without regard to auto queuing? ·Timing plan based on 120" cycle length for east and west sections | Scenario | Train Length [m]
(E – W) | Headway [s]
(E - W) | # of Trains
(E - W) | |----------|-----------------------------|------------------------|------------------------| | 1C_0 | 30 - 30 | 103 – 240/600 | 35 – 15/6 | | 1C_1 | 90 - 30 | 265 – 260/450 | 14 – 14/8 | | 1C_2 | 30 - 30 | 158 – 369/450 | 23 – 10/8 | # Sensitivity to Signal Offset Optimization (Travel Time) # Sensitivity to Reduction of Ped Signals and LRT Stops How much better is train operation if some ped signals and one LRT stop is removed? | Section | Signals Removed | LRT Stops Removed | |---------|---------------------|---------------------| | East | Cooper Street | None | | | Street 'A' | | | | Street 'D' | | | West | Harbourfront Centre | Lower Simcoe Street | ## Mean Travel Time Comparison # Travel Time Standard Deviation Comparison ### Mean Speed Comparison ### Conclusions - Proposed Queens Quay Portals system can handle built-out train capacities - System performance improves with - Reduced number of trains - Reduced number of signals and stops - Traffic queuing not being a concern - Anticipated LRT speeds (incl. stops) are - between 17 and 21 km/h for east section - between 13 and 17 km/h for west section - Anticipated LRT standard deviation is - between 33 and 57 seconds for both sections ### Thank you. PTV America, Inc. ## D3 Comparison of Southside and Centre Transit Options Model Results Memo | То | Pina Mallozzi (WT) | Reference number | |---------|---|-------------------| | | | 96116_00/MPG | | сс | David Pratt (Arup)
Brent Raymond (DTAH) | File reference | | From | Marc-Paul Gauthier x 24581 (Toronto) | Date | | | Colin Wong (Arup) | June 5, 2008 | | Subject | Queens Quay Revitalization EA
Comparison of South Side and Centre Transit Opti | ons Model Results | #### Introduction Two alternatives for Queens Quay were simulated using VISSIM microsimulation software to test their viability from a transit operations perspective: - Option 2 Centre transit operation (14 signalized intersections). - Option 4 South side transit operation (22 signalized intersections) Transit operation is one of several variables for determining the preferred alternative design concept. The two options represent the extremes and will help the EA project team evaluate a wider range of alternatives. The modeling exercise provides a comparative understanding of the two arrangements, but does not represent the final corridor design or signal locations. Schematic plans of the alternatives are included. #### **Purpose** The purpose of this analysis is to understand the operating characteristics of the two alternatives with regard to two key transit service quality measures: - Speed of service (including travel time and variability) - Service reliability (adherence to scheduled headways) These measures were used to evaluate whether these systems can provide adequate transit access to the waterfront. A technical memorandum outlining all technical assumptions used in the simulation can be provided, however this document is intended to provide a summary of the results and what they mean. #### Scenarios – Option 2 Centre transit scenario tested the Queens Quay portal system with 100 second cycle lengths for the entire corridor with two train configurations: - 30 metres trains for the entire corridor; and, - 30 metre trains west of Bay Street and 60 metre trains east of Bay Street. #### Scenarios - Option 4 Base case scenario tested the Queens Quay portal system with 120 second cycle lengths west of Bay Street and 103 second cycle lengths east of Bay Street with no block separation rule for streetcars (i.e. only one streetcar allowed per block). Initially there were two models one of which tested a Bay Street portal which the modelling determined was not feasible from a transit operations perspective. Once preliminary results were received, the team decided to do further "sensitivity" tests in order to explore different control strategies, train headways/lengths and number of signalized intersections. June 5, 2008 Page 2 of 7 Sensitivity Scenario 1A tested system robustness against various LRT headway options. A new 100 second cycle length was used for the entire system with offsets determined with disregard to traffic queuing. - 1A1 assumes 30 metre trains at a 103 second headway for east section, no change to the west - 1A2 assumes 60 metre trains at a 206 second headway for east section, no change to the west Sensitivity Scenario 1B tested system sensitivity to the removal of three pedestrian signals (19 total signals from 22) and consolidation of the Lower Simcoe and York Street transit stops to a single stop at Queens Quay Terminal. Assume 120 second cycle length west of Bay Street and 100 second cycle length east of Bay Street. Sensitivity Scenario 1C tested system sensitivity with regard to offset optimization solely for transit. A new 120 second cycle length was used for the entire system with offsets determined with disregard to traffic queuing. #### **Travel Speed** To achieve a transit modal split that supports planned development along Queens Quay east of Bay Street and into the Port Lands, average tram speeds would need to be in the order of 17 km/h with combined average headways of 103 seconds. The transit speeds and headways are based on work undertaken by the TTC and documented in the TTC-TWRC Waterfront Transit EAs Demand Forecasting Report and Addendum. Table 1 outlines average travel speeds of each route segment by direction. The peak travel demand is in the westbound direction for all routes. #### Option 2
• Peak direction travel speeds for the centre of the road option 20.1 to 21.0 km/h. These travel speeds exceed those used within the demand forecasting report (17 km/h) and should provide adequate service to attract a good transit mode split for the waterfront. #### Option 4 - Peak direction travel speeds for the East Bayfront sections range from 15.9 to 17.3 km/h for the sensitivity test scenarios. The slowest travel speed, produced by Scenario 1A1, falls short of the demand forecasting report target of 17 km/h by 1.1 km/h. Over a distance of 1650 metres, the approximate distance from Cherry Street to the portal, this 1.1 km/h difference would translate to an approximate 23 second increase in travel time from Cherry Street to the portal. Peak direction travel speeds under Scenario 1B and 1C are 17.2 and 17.3 km/h, respectively. - Peak direction travel speeds for the west of Bay Street range from 14.5 to 17.5 seconds. The slowest travel speed, again produced in Scenario 1A1, falls short of the demand forecasting report target of 17km/h by 2.5 km/h. Over an approximate distance of 1500 metres, Lower Spadina Avenue to portal, this 2.5 km/h difference would mean an additional 54 seconds of travel time from Lower Spadina Avenue to the portal. Peak direction travel speeds under Scenario 1B is 17.5 km/h for the 509 Harbourfront streetcar route. For both alternatives, peak direction travel has a more consistent travel speed than the off-peak direction of travel. This could be attributed to signals being coordinated for peak direction travel. Under the configurations tested in the model, the centre transit option would generally operate at speeds 15 to 25 percent faster than the south side option. Based upon the summary of travel times in Table 2, the centre transit option would be faster by approximately 50 to 80 seconds in the east, and 15 to 55 seconds in the west. 96116_00/MPG Memorandum June 5, 2008 Page 3 of 7 #### **Travel Time Variability** Average travel time and standard deviation of travel times were also measured to understand the variability in trip time for the corridor. Results are outlined in Table 2. Standard deviation of travel times could be characterized as follows: - Travel time will be within one standard deviation faster or slower than average 68 percent of the time. - Travel time will be within two standard deviations faster or slower than average 95 percent of the time. #### Option 2 - Based on the model results, the variability of service for the centre transit alternative can be summarized as follows. - o Travel time will be within 45 seconds faster or slower than average 68 percent of the time. - Travel time will be within 90 seconds faster or slower than average 95 percent of the time. #### Option 4 - Based on the model results, the variability of service for the south side transit alternative can be summarized as follows. - o Travel time will be within 60 seconds faster or slower than average 68 percent of the time. - o Travel time will be within 120 seconds faster or slower than average 95 percent of the time. Based on the results in Table 2, centre transit generally offers a more consistent travel time than the south side option, by 30 to 60 seconds. # Memorandum Page 4 of 7 Table 1 Average Travel Speed | Route and | | | South Side Transit | | | Centre Transit | Transit | |------------------|------------|------------|--------------------|------------|------------|----------------|------------| | Direction of | Base | 1A1 | 1A2 | 1B | 1C | | | | Travel | 30m Trains | 30m Trains | 60m Trains | 30m Trains | 30m Trains | 30m Trains | 60m Trains | | Westbound (Peak) | | | | | | | | | 509 Harbourfront | 15.5 | 15.0 | 15.1 | 17.5 | 15.2 | 20.6 | 20.6 | | 510 Spadina | 14.5 | 16.5 | 17.0 | 16.0 | 15.5 | 21.0 | 20.7 | | East Bayfront | 16.6 | 15.9 | 16.9 | 17.2 | 17.3 | 20.1 | 20.6 | | Eastbound | | | | | | | | | 509 Harbourfront | 16.1 | 16.7 | 17.3 | 17.5 | 16.9 | 21.3 | 20.9 | | 510 Spadina | 13.9 | 12.9 | 13.2 | 14.3 | 13.4 | 17.2 | 17.2 | | East Bayfront | 18.2 | 19.1 | 19.3 | 18.3 | 20.8 | 21.7 | 23.1 | | | | | | | | | | Notes: All values are in kilometers per hour. Table 2 Average Travel Time and Standard Deviation | Donto and | | | | | South Side Transit | e Transit | | | | | | Centre Transit | Fransit | | |------------------|----------|----------------------|--------------|------------|--------------------|------------|----------|------------|-------------------|----------|----------|----------------------|----------------|------------| | Noute and | B | Base | 1 V 1 | 11 | 1A | 1A2 | 1 | 1B | 1C | 7) | | | | | | Travol | 30m | 30m Trains | 30m J | 30m Trains | 1 m09 | 60m Trains | 30m J | 30m Trains | 30m Trains | rains | 30m J | 30m Trains | 60m J | 60m Trains | | 114751 | $Avg.^2$ | St.Dev. ³ | $Avg.^2$ | St.Dev.3 | $Avg.^2$ | St.Dev.3 | $Avg.^2$ | St.Dev.3 | Avg. ² | St.Dev.3 | $Avg.^2$ | St.Dev. ³ | $Avg.^2$ | St.Dev.3 | | Westbound (Peak) | | | | | | | | | | | | | | | | 509 Harbourfront | 361 | 52 | 367 | 42 | 363 | 38 | 316 | 39 | 396 | 53 | 268 | 32 | 265 | 30 | | 510 Spadina | 366 | 39 | 323 | 36 | 312 | 33 | 332 | 40 | 344 | 37 | 254 | 32 | 258 | 28 | | East Bayfront | 365 | 52 | 381 | 48 | 356 | 40 | 354 | 58 | 351 | 51 | 300 | 32 | 316 | 30 | | Eastbound | | | | | | | | | | | | | | | | 509 Harbourfront | 343 | 41 | 331 | 46 | 320 | 43 | 317 | 39 | 327 | 41 | 259 | 31 | 566 | 36 | | 510 Spadina | 389 | 55 | 418 | 58 | 405 | 53 | 373 | 4 | 399 | 47 | 312 | 43 | 308 | 34 | | East Bayfront | 331 | 42 | 317 | 42 | 311 | 32 | 331 | 45 | 290 | 39 | 277 | 33 | 287 | 35 | | | | | | | | | | | | | | | | | Notes: .2 5. All values are in seconds. Average travel time over entire route segment. Standard deviation of travel times over entire route segment. #### **Headways** The Transportation Research Board (TRB) TCRP Report 100 considers transit headways of less than 10 minutes to be level of service A. The TTC does not post headways of less than 10 minutes on schedules located at stops. Where headways are less than 10 minutes, the TTC posts F.S. (frequent service). By this measure, all service along Queens Quay, south side or centre, could be considered LOS A. #### **Service Reliability (Headway Adherence)** Measuring the variation in headway adherence is a common method to evaluate the service reliability of transit systems operating at headways of 10 minutes or less. The measure is based on the coefficient of headway variation of transit vehicles serving a particular route, and is calculated as follows: $c_{vh} = \underline{standard\ deviation\ of\ headway\ deviations}}$ mean scheduled headway where: c_{vh} = coefficient of variation of headways The coefficient of headway variation can be defined as the proportion of the average headway by which the transit vehicle can be ahead of or behind schedule, 68 percent of the time. The higher the coefficient, the more irregular the service. It is evident within Table 3 that service reliability Level of Service is comparable for both alternatives. Sixty metre trains tend to adhere better to scheduled headways. This is due to more time between trains which results in fewer opportunities for "bunching". Both typologies have similar service characteristics in terms of headway adherence with different levels of service east and west of Bay Street: - West of Bay Street, headway adherence levels of service range from LOS A to D - East of Bay Street, headway adherence levels of service range from LOS A to F We should note that the models have a "dummy stop" built in which creates randomness for streetcars entering the system. We can see that many streetcars enter the system already off of their scheduled headway. In these circumstances, the vehicles remain off of their scheduled headway throughout the Queens Quay corridor and in some instances can degrade in level of service. This is illustrated in the differences in Arrival (Arr.) and Departure (Dep.) Levels of Service. #### **Summary Statement** Both transit configurations have similar characteristics in terms of service reliability and both can offer acceptable service. Both scenarios would operate "better" with 60 metre trains and headways greater than ±200 seconds east of Bay Street. While Option 2 provides a transit service that is 15 to 25 percent faster than Option 4, the corridor is relatively short and the total difference in travel time is quite small. Actual differences in travel time, taking into account the length of the corridor, are: - 50 to 80 seconds on an approximate trip time of 300 to 360 seconds (5 to 6 minutes) east of Bay Street; and - 15 to 55 seconds on an approximate trip time of 300 to 360 seconds (5 to 6 minutes) west of Bay Street. Option 4 is capable of providing peak direction service speeds of 16.0 to 17.5 km/h under Scenario 1B; comparable to those used in the TTC- TWRC demand forecasting report. Both transit configurations will be able to serve the future travel demand needs of the Toronto Waterfront. ## Memorandum Page 6 of 7 Table 3 Coefficient of Headway Variation and Level of Service (LOS) (Service Reliability) | South Side Transit | | A de la contra | and Ecver | 201 120 10 | South Side Transit | e Transit | (S. | | | | | Centre | Centre Transit | | |---------------------|-------------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------| | Route and | B | Base | 1A1 | 11 | 1.4 | 1A2 | 1 | 1B | 1 | 1C | | | | | | Direction of Travel | 30m [| 30m Trains | 30m J | 30m Trains | L m09 | 60m Trains | 30m Trains | rains | 30m Trains | rains | 30m T | 30m Trains | 60m Trains | rains | | | Arr. ³ | Dep. ⁴ | Westbound (Peak) | | | | | | | | | | | | | | | | 509 Harbourfront | | | | | | | | | | | | | | | | C_{vh}^{-1} | 0.18 | 0.46 | 0.18 |
0.36 | 0.18 | 0.32 | 0.18 | 0.33 | 0.18 | 0.45 | 0.18 | 0.28 | 0.18 | 0.29 | | LOS ² | A | D | A | C | A | C | Ą | Ŋ | A | D | A | В | A | В | | 510 Spadina | | | | | | | | | | | | | | | | C _{vh} 1. | 0.14 | 0.15 | 0.14 | 0.18 | 0.07 | 0.11 | 0.14 | 0.15 | 0.14 | 0.16 | 0.14 | 0.17 | 0.07 | 0.10 | | LOS ² | A | A | Ą | Ą | Ą | Ą | Ą | Ą | A | A | Ą | A | A | A | | East Bayfront | | | | | | | | | | | | | | | | | 0.42 | 0.63 | 0.42 | 0.65 | 0.21 | 0.38 | 0.43 | 0.73 | 0.42 | 0.82 | 0.3 | 0.49 | 0.19 | 0.27 | | LOS ² | Q | 田 | D | 田 | В | C | D | 田 | D | 卍 | C | D | A | В | | Eastbound | | | | | | | | | | | | | | | | 509 Harbourfront | | | | | | | | | | | | | | | | C_{vh}^{-1} | 0.38 | 0.43 | 0.38 | 0.43 | 0.30 | 0.39 | 0.38 | 0.44 | 0.38 | 0.45 | 0.30 | 0.36 | 0.23 | 0.35 | | LOS ² | ر
ر | D | C | D | В | C | C | D | C | D | C | C | В | C | | 510 Spadina | | | | | | | | | | | | | | | | $C_{ m vh}^{-1}$ | 0.10 | 0.21 | 0.10 | 0.20 | 0.10 | 0.17 | 0.10 | 0.16 | 0.10 | 0.19 | 0.10 | 0.15 | 0.10 | 0.13 | | LOS ² | Ą | A | A | A | A | A | A | A | A | A | A | A | Ą | A | | East Bayfront | | | | | | | | | | | | | | | | C_{vh}^{-1} | 0.58 | 09:0 | 0.57 | 0.56 | 0.28 | 0.34 | 0.58 | 09.0 | 0.56 | 0.57 | 0.54 | 0.65 | 0.26 | 0.32 | | LOS^2 | Ε | Е | Ε | E | В | C | Ε | Ε | E | E | Е | E | В | C | | Range | At | A to E | A t | A to E | At | A to C | A to E | o E | A t | A to F | A t | A to E | A to | C | | Notes: | | ì | Ì | | ì | | ì | | | Ī | | | Ī | Ī | -: 5; 6; 4; $C_{vh} = coefficient$ of variation of headway (standard deviation / average) LOS = Level of Service of coefficient of variation (TRB TCRP Report 100, attached) Headway coefficient of variation arriving into corridor Headway coefficient of variation departing from corridor Appendix E Travel Demand Forecasts ### **E1** BA Group Traffic Volume Forecasts #### 4. Traffic Volume Forecasts BA Group has developed, in conjunction with Arup Canada Inc., a comprehensive series of future traffic volume forecasts for the Queens Quay and Lakeshore Boulevard corridors for use in the evaluation of the Queens Quay East configuration options. Forecast volumes incorporate assignments of new traffic related to emerging and planned new development within the waterfront areas of Toronto (East Bayfront, West Don Lands and Lower Don Lands), the Railway Lands and other approved development proposals along the Queens Quay East and Lake Shore Boulevard corridors. Forecasts have been developed for the following concept options under evaluation reflecting the cross-sectional characteristics, intersection locations and turn restriction / prohibitions inherent to each option. - Transit in the middle of Queens Quay East ("Centre Transit" option) - Transit on the south side of Queens Quay East ("South Side Transit" option) #### 4.1 Approach #### 4.1.1 Road Network Assumptions The traffic volumes forecasts have been developed for the two configuration options for Queens Quay East incorporating the planned road modifications outlined in Section 2.3 of this study including, notably, the planned extension of Queens Quay East to Cherry Street and the specific lane configurations and turning movement restrictions / prohibitions inherent to each option. #### 4.1.2 Traffic Volume Forecasting Methodology Traffic volume forecasts have been developed for the weekday morning and afternoon peak hour periods based upon a 4 step approach as outlined below. - 1. Establish existing traffic volumes on the study area road network... - 2. Adjust existing traffic volumes and patterns to take into account routing opportunities / constraints inherent within the planned area future road network. These include the following: - New road network connections including, principally, the planned extension of Queens Quay East to Cherry Street. - A diversion of a proportion of the existing westbound volume from the Queens Quay East corridor (i.e. currently turning at Parliament Street) to the Lake Shore Boulevard East corridor recognizing its reduced attractiveness for commuter use. - Turn restrictions and specific intersection arrangements along the Queens Quay East corridor inherent to each design option under consideration. - 3. Establish a comprehensive series of net new traffic volume allowances for the Lake Shore Boulevard East and Queens Quay East corridors related to the build-out of emerging and committed area development across the Central Waterfront area. These net additional traffic allowances reflect: - the planned future area road network including the planned extension of Queens Quay East to Cherry Street; and - the intersection configurations and turn restrictions incorporated into the two alternatives under evaluation. - 4. Development of future total traffic forecasts for the two options under evaluation (*Centre Transit* and *South Side Transit* options) incorporating: - adjusted existing baseline volumes (item 2); and - new area development traffic volumes (item 3). #### 4.1.3 Coordination with Queens Quay Revitalization EA The East Bayfront Transit Environmental Assessment project team has worked closely with Waterfront Toronto and its consulting team working on the Queens Quay Revitalization Environmental Assessment. Key in this regard has been the development of a common set of comprehensive forecasts of traffic activity across the Toronto waterfront area for use in both studies. These forecasts have been developed jointly in conjunction with Arup Canada Inc. adopting the forecasting methodology outlined in Section 4.1.2 and the following sections to ensure that the traffic volume base considered in each study is consistent and reflects: - the same level of existing traffic activity on the area road network; - the same level of future development activity and related allowances; and - road network assumptions and related reassignments of existing traffic activity. #### 4.2 Existing Baseline Traffic Volumes #### 4.2.1 Intersection / Driveway Traffic Count Information Existing traffic volumes were established for the morning and afternoon peak hours at the area intersections on Queens Quay East and Lake Shore Boulevard East corridors within the study area based upon recent traffic count information collected by the City of Toronto and Arup Canada Inc. The morning and afternoon peak hour periods were adopted for evaluation / analysis purposes as they typically reflect the busiest periods of activity on the Study Area road network given prevailing and anticipated area land-uses in and around the East Bayfront Precinct and typical commuter traffic patterns. The following existing intersection turning movement count information was adopted for the public street intersections and private driveways within the Study Area: #### Queens Quay East Intersections - Freeland Street (Arup Canada Inc., October 11, 2007) - Cooper Street (Arup Canada Inc., October 11, 2007) - Lower Jarvis Street (City of Toronto, June 25, 2007) - Lower Sherbourne Street (City of Toronto, December 1, 2003) - Redpath Sugar Plant driveways (Arup Canada Inc. October 11, 2007) - Loblaws Food store driveway (Arup Canada Inc. October 11, 2007) #### Lake Shore Boulevard East - Lower Jarvis Street (City of Toronto, December 19, 2006) - Lower Sherbourne Street (City of Toronto, August 8, 2007) - Parliament Street / Queens Quay East (City of Toronto, June 21, 2007) Existing area traffic volumes for the morning and afternoon peak hours are provided on Figure 6. #### 4.2.2 Volume Balancing – Queens Quay East Corridor The existing traffic count information along the Queens Quay East corridor was also reviewed in detail to ensure a general consistency between intersections. Modest adjustments were made to the through volumes on Queens Quay East to provide a balanced and representative traffic volume base for the intersections along this corridor that forms the focus of traffic operations analyses undertaken in the evaluation of the two design options being considered (as outlined in Section 5). The Queens Quay West / York Street intersection (located within Queens Quay Revitalization EA Study Area) was identified, based upon a comparison of historical traffic counts information, as the 'master' area intersection to which volumes along the Queens Quay corridor are balanced. Existing balanced traffic volumes are provided for the morning and afternoon peak hours in Figures A1(i) and A1(ii) in Appendix A, respectively. #### 4.2.3 Existing Traffic Redistribution: Planned Area Road Network Existing traffic volumes are redistributed on the planned future area road network to reflect, notably, the extension of Queens Quay East eastwards to connect with Cherry Street. This notably includes a diversion of existing traffic volumes orientated to / from the east that currently connects between the Lake Shore Boulevard East and Queens Quay East corridors using the Parliament Street and Sherbourne Street intersections onto the Queens Quay East extension. This assumes that such traffic will take advantage of the additional capacity and utility of this connection in routing to / from the Queens Quay East corridor. ## 4.2.4 Existing Traffic Diversion: Queens Quay East to Lake Shore Boulevard East Substantial volumes turn from the Lake Shore Boulevard East corridor at the Parliament Street / Queens Quay East intersection during the morning peak hour period to use Queens Quay East as a routing alternative into the downtown areas of Toronto. Existing westbound left turn volumes exceed 400 vehicles during the morning peak hour. This level of turning activity reflects the availability of capacity on the existing and underutilized 4-lane wide section of Queens Quay East linking through the East Bayfront precinct area and that there is only one traffic signal between Parliament Street and Yonge Street (i.e. the Lower Jarvis Street signal). The attractiveness of the Queens Quay East corridor as a commuter routing will be reduced over time as the East Bayfront
Precinct develops and due to: - a) the logical reduction in through movement capacity on Queens Quay East compared to today given the planned reduction from the existing 4-lane cross-section (2 in each direction) to a basic 2 lane cross-section under both of the design options under evaluation; - b) the rationalization of the Lake Shore Boulevard East / Parliament Street / Queens Quay East intersection; - c) the introduction of a number of new traffic signals along the Queens Quay East corridor in both options; - d) the increase in turning traffic activity levels at intersections along the corridor and consequential reduction in available through capacity; and - e) the ability of Lakeshore Boulevard to handle additional existing traffic Given the above, a proportion of the heavy existing westbound left turn volume currently turning onto Queens Quay East at Parliament Street during the morning peak hour has been diverted to remain on Lake Shore Boulevard East and access downtown Toronto utilizing that corridor in preference to using Queens Quay East. Some 125 existing westbound left turn vehicles have been 'diverted' during the morning peak hour at the Lake Shore Boulevard East / Parliament Street / Queens Quay East intersection to remain on Lake Shore Boulevard East. These trips have been routed to travel into downtown Toronto via the Bay Street and Yonge Street corridors directly from the Lake Shore Boulevard East corridor rather than using Queens Quay East. No diversion has, however, been adopted for the afternoon peak hour given that westbound turning volumes at the Lake Shore Boulevard / Parliament Street / Queens Quay East intersection are lower during this period and that traffic operations at the Lakeshore Boulevard East / Lower Jarvis Street intersection are more constrained during that period. #### 4.2.5. Baseline (Adjusted) Existing Volumes Reassigned and balanced existing morning and afternoon peak hour traffic volumes on the planned future area road network within the Study Area are shown on Figure 7. #### 4.3 New Development Related Traffic Allowances A comprehensive series of traffic volume allowances have been made to account for the construction of a number of emerging and approved area development proposals across the City of Toronto waterfront. These include the following planned developments. - Build-Out of the East Bayfront Precinct. - Build-Out of the West Don Lands Precinct. - Development of the portion of Lower Don Lands between Parliament Street and Cherry Street that is reliant upon the extension of Queens Quay East for access. - Blocks with the Railway Lands east and west of York Street. - The Water Park Place development proposal located just west of Bay Street. - The Pier 27 condominium building on the MT27 lands located on the south side of Queens Quay East opposite Freeland Street. - The Pinnacle Centre (Phase 3) proposal at 33 Bay Street. Net new traffic volume allowances for the above mentioned waterfront and area development proposals were established, where possible, based upon prior traffic studies prepared as part of the municipal approvals processes for these development applications as noted in Section 4.3. Prior traffic volume allowances for the East Bayfront Precinct and the western portions of the Lower Don Lands Precinct have been modified and refined to reflect the current development plans being considered for these lands and, notably, intersection locations and turn restrictions inherent in the two options under evaluation for the Queens Quay East corridor. No allowances were made for new traffic activity related to new development within the Port Lands and eastern areas of the Lower Don Lands. Key in this regard is that Queens Quay East is not anticipated to play a notable role in the accommodating traffic activity related to these areas. The location of the planned area development proposals considered within the forecasting outlined herein are shown on Figures 8a and 8b. Figure 8a shows approved development considered across the Central Waterfront area. Figure 8b shows the parcel and block areas considered within the East Bayfront Precinct, the West Don Lands Precinct and the westerly portions of the Lower Don Lands Precinct. A discussion related to the key development programme and traffic generation parameters considered for area development within the future traffic volume forecasts established as part of this study is provided in the following sections. #### 4.3.1 Traffic Allowances - East Bayfront Precinct Travel demand forecasts developed as part of this study for the East Bayfront Precinct are based upon those outlined in the *East Bayfront Precinct Plan of Subdivision Transportation Analysis* report prepared by BA Group in May 2007 and the *East Bayfront Precinct, Traffic Operations Analysis Update* report prepared by BA Group in January 2006. The volume forecasts outlined in these reports have been refined to reflect: - current development plan for the emerging Dock Side development area (i.e. the Corus and George Brown College developments in the Jarvis Slip to Sherbourne Park area); and - the intersection locations and turn restrictions inherent in each of the two design options under evaluation. Forecasts have, as before, been developed on a block by block basis from first principles using person trip making characteristics adopted by the City for the anticipated uses within the Precinct. The derivation of the traffic volume forecasts for the East Bayfront Precinct is outlined below. #### 4.3.1.1 Development Plans Dock Side – Plan of Sub-Division Area The Plan of Subdivision application for the Dock Side development area relates to the lands south of Queens Quay East between the Jarvis Slip and planned Sherbourne Park. Traffic volume allowances have been developed for the development parcels identified in the Plan of Subdivision application (Blocks 1 to 5) and reflect the emerging development of the Corus Entertainment building (Block 4) and the George Brown College campus (Blocks 3 and 5). Development allowances on the remaining land parcels (Blocks 1 and 2) reflect density permissions outlined in the Zoning By-Law for the Dock Side area and, notably, an assumed commercial land-use scenario. #### Balance of the East Bayfront Precinct Development parameters for the balance of the blocks and development parcels within the East Bayfront Precinct reflect those established within the East Bayfront Precinct Plan and, notably, those adopted in prior transportation assessment studies prepared for the Precinct. It is assumed, consistent with prior general assumptions, that three-quarters of the total floor area proposed within each block / development parcel will be developed for residential purposes with the remaining one-quarter developed for non-residential or commercial purposes. The Precinct Plan development allowances adopted herein contemplate a build-out of approximately 671,825 sq. metres of total new floor area within the Precinct between Lower Jarvis Street and Small Street). Of this, approximately 167,955 sq. metres is assumed to be developed for commercial uses. #### **Development Statistics** A breakdown of the proposed floor areas and equivalent assumed number of residential units within the East Bayfront Precinct by each of the 9 development parcels is provided in Table 1. Table 1 East Bayfront Precinct Plan, Development Floor Areas | | Dock Sid | de (1 st Plan of S | Sub-Division Lands) | | |--|--------------------------|-------------------------------|---------------------------------|----------------| | Parcels between Jarvis
Street and Sherbourne
Street ¹ | Block Area
Sq. Metres | | Commercial Area
Sq. Metres | a | | Corus Building
Block 4 | 9,960 | | 42,500 | | | George Brown College-
Block 3 & 5 | 8,295 | | 46,450 | | | Block 1 | 1,284 | | 15,410 | | | Block 2 | 3,313 | | 39,755 | | | | Bala | nce of East Ba | ayfront Precinct | | | Parcels between | Total GFA | | Residential | Commercial GFA | | Sherbourne Street & Parliament Street ² | Sq. Metres | GFA
Sq. Metres | Equiv. No. Units ^{3 5} | Sq. Metres | | A1 | 102,168 | 76,626 | 807 | 25,542 | | A2 | 185,651 | 139,238 | 1466 | 46,413 | | B1 | 51,102 | 38,327 | 404 | 12,775 | | B2 | 111,505 | 83,629 | 881 | 27,876 | | B3 | 58,760 | 44,070 | 464 | 14,690 | | F | 26, 812 | 20,109 | 212 | 6,703 | | G | 47,683 | 35,762 | 377 | 11,921 | | н | 56,125 | 42,094 | 443 | 14,031 | #### Notes Total 4 1. Based upon latest statistics available for Dock Side lands. 32,017 671,825 2. Development statistics are based upon *East Bayfront Precinct, Traffic Operations Analysis Update* report prepared by BA Group, January 2006. 24,013 503,870 253 5310 8,004 167,955 - 3. Based upon 95 sq. metre average unit size consistent with trip generation assumptions. - Rounded to nearest 5 sq. metres or units. - 5. Equivalent number of units rounded up to the nearest unit. #### 4.3.1.2 Vehicular Trip Generation A brief description of the traffic generation assumptions and parameters adopted in establishing traffic volume forecasts for new development within the East Bayfront Precinct is outlined below. #### A. Dock Side Forecasts for the Corus and George Brown College proposals within the Dock Side area are based upon the use of parking discharge factors and the total proposed parking supply currently contemplated to support these facilities. A traffic generation allowance is made to account for new traffic related to prospective commercial development on Blocks 1 and 2. The following assumptions are made in establishing the traffic generation forecasts: #### Block 4 - Corus Building - 150 parking spaces. - Parking discharge factor of 0.40 and 0.55 two-way trips / stall during the morning and afternoon peak hours respectively based upon typical discharge rates for commercial / office building parking facilities. #### Blocks 3
and 5 - George Brown College - Up to 500 parking spaces are expected to be provided on Blocks 3 and 5 for George Brown College and public parking use, of which 150 spaces are assumed for school residence use. - Parking discharge factor of 0.40 and 0.55 two-way trips / stall during the morning and afternoon peak hours respectively for public parking and College parking based upon typical discharge rates for commercial / office building parking facilities. - Parking discharge factor of 0.10 trips/stall was assumed for school residence peak outbound trips during the morning peak hour. Since inbound traffic activity assumed to be negligible, an allowance of 5 trips were made for the inbound trips during morning peak hour, which translates in to discharge factor of 0.03 trips/stall. Parking discharge factor of 0.10 trips/stall were assumed during the afternoon peak hour for peak inbound/outbound trips, which translate in to 0.20 two-way trips / stall for residence parking. These discharge rates are reflective of a relatively low level of activity at residence facilities given that students are, for the most part, will attend classes at this site. #### Blocks 1 and 2 - commercial use to be determined • A total volume allowance of 60 two-way trips for both of these blocks is assumed. The trip generation characteristics for the Dock Side development blocks is summarized in Table 2 #### B. Balance of East Bayfront Precinct Forecasts of new traffic generated by development within the balance of the East Bayfront Precinct have been established consistent with the previously adopted trip generation parameters outlined in the *East Bayfront Precinct Traffic Operations Analysis Update* report prepared by BA Group in January 2006. #### C. Consolidated Forecasts New traffic volumes generated by emerging and planned development within the East Bayfront Precinct (Lower Jarvis Street to Small Street) during the morning and afternoon peak hours are outlined in Table 3. Table 2 **Trip Generation** Dock Side (South of Queens Quay East, Lower Jarvis Street to Sherbourne Park) | | Мо | orning Peak H | our | Afte | ernoon Peak H | lour | |--|-------------|---------------|-------------|------------|---------------|-------------| | Parcel | In | Out | 2-Way | In | Out | 2-Way | | Block 4 – Corus Underground Parking (150 stalls) Discharge Rate / Stall Total Trips | 0.35
50 | 0.05
10 | 0.40
60 | 0.20
30 | 0.35
50 | 0.55
80 | | Block 3 & 5 –George Brown College School / Public Parking (350 Stalls) Discharge Rate / Stall Total Trips | 0.35
120 | 0.05
20 | 0.40
140 | 0.20
70 | 0.35
120 | 0.55
190 | | School Residence Parking
(150 stalls) Discharge Rate / Stall Total Trips | 0.03
5 | 0.10
15 | 0.13
20 | 0.10
15 | 0.10
15 | 0.20
30 | | Blocks 1 & 2 Total Trips | 50 | 10 | 60 | 10 | 50 | 60 | | Total Trips | 225 | 55 | 280 | 125 | 235 | 360 | Table 3 **Traffic Volumes – East Bayfront Precinct** | | | | Trip Ger | neration | | | |----------------------|------|--------------------------------|------------------------|----------|----------------|-------| | Parcel | М | orning Peak Ho | ur | Aft | ernoon Peak Ho | our | | | In | Out | Total | In | Out | Total | | | Docl | k Side (1 st Plan o | of Sub-Division | Lands) | | | | Corus Building | 50 | 10 | 60 | 30 | 50 | 80 | | George Brown College | 125 | 35 | 160 | 85 | 135 | 220 | | Block 1 & 2 | 50 | 10 | 60 | 10 | 50 | 60 | | Subtotal | 225 | 55 | 280 | 125 | 235 | 360 | | | | Balance of East | Bayfront Precin | ıct | | | | A1 | 68 | 127 | 195 | 193 | 153 | 346 | | A2 | 124 | 231 | 355 | 352 | 279 | 631 | | B1 | 34 | 63 | 97 | 97 | 77 | 174 | | B2 | 74 | 139 | 213 | 211 | 167 | 378 | | B3 | 39 | 73 | 112 | 111 | 88 | 199 | | F | 18 | 33 | 51 | 51 | 40 | 91 | | G | 32 | 59 | 91 | 90 | 72 | 162 | | Н | 38 | 70 | 108 | 106 | 84 | 190 | | J | 21 | 40 | 61 | 61 | 48 | 109 | | Subtotal | 448 | 835 | 1283 | 1272 | 1008 | 2280 | | Total | 673 | 890 | 1563 | 1397 | 1243 | 2640 | Notes: Site statistics for George Brown College are based upon Staff Report dated October 24, 2008 #### 4.3.1.3 Traffic Assignment Forecast traffic volumes generated by emerging and new development within the East Bayfront Precinct are assigned to the area road system based on directional assignment parameters outlined in prior studies undertaken within the Precinct and, notably, as outlined in the *East Bayfront Precinct, Traffic Operations Analysis Update report* prepared by BA Group in January 2006. Link assignment parameters established as part of this previous report are outlined in Table 4. Table 4 Traffic Distribution Patterns – East Bayfront Precinct | | Morning | Peak Hour | Afternoon | Peak Hour | |--|--------------|-----------|-----------|-----------| | Street | Inbound | Outbound | Inbound | Outbound | | | To / from th | ne North | | | | Jarvis Street | 4% | 10% | 5% | 6% | | Sherbourne Street | 10% | 12% | 11% | 15% | | Parliament Street | 13% | 22% | 12% | 28% | | Cherry Street | 10% | 0% | 9% | 0% | | | To / from th | e South | | | | Cherry Street | 0% | 0% | 0% | 0% | | | To / from tl | ne West | | | | Gardiner Expressway Westbound On-Ramp @ Jarvis Street | 0% | 16% | 0% | 18% | | Gardiner Expressway Eastbound Off-Ramp @ Jarvis Street | 19% | 0% | 17% | 0% | | Lake Shore Boulevard East | 11% | 16% | 13% | 13% | | Queens Quay East | 16% | 23% | 20% | 15% | | | To / from t | he East | | | | Gardiner Expressway Eastbound On-Ramp @ Jarvis Street | 0% | 0% | 0% | 0% | | Gardiner Expressway
Westbound Off-Ramp @ Sherbourne
Street | 0% | 0% | 0% | 0% | | Lake Shore Boulevard East | 17% | 1% | 13% | 5% | | Total | 100% | 100% | 100% | 100% | Traffic assignments for East Bayfront Precinct total traffic have been prepared for both options under consideration as part of this evaluation reflecting intersection locations, lane provisions and turn restrictions inherent and specific to each option. Traffic volume assignments for the *South Side Transit* option are shown on Figures B1(i) and B1(ii) for the morning and afternoon peak hours respectively attached in Appendix B. Traffic volume assignments for *Centre Transit* option are summarized on Figures C1(i) and C1(ii) for the morning and afternoon peak hours respectively attached in Appendix C. #### 4.3.1.4 Existing Land-Use Traffic Volumes Eliminated Allowances have been made to account for the elimination of traffic activity related to current uses situated on lands to be redeveloped within the East Bayfront Precinct that is included in the base existing traffic count information outlined in Section 4.2. This includes traffic activity on development lands located on the north and south side of Queens Quay East within the East Bayfront Precinct between Lower Jarvis Street and Parliament Street. For analysis purposes, all existing traffic activity turning to / from private driveways serving these lands and the local streets within the Precinct (Richardson Street, Bonnycastle Street and Small Street) are assumed to be predominantly related to existing local development and have been assumed to be eliminated with redevelopment of the East Bayfront Precinct. Existing land-use related traffic volumes removed from the area road network for the morning and afternoon peak hours are illustrated in Figures A2(i) and A2(ii) respectively and are attached in Appendix A. #### 4.3.2 Travel Demand Forecasts - Western Portions of Lower Don Lands Travel demand forecasts have been developed for the westerly portions of the Lower Don Lands area between Parliament Street and Cherry Street. Forecasts have been incorporated into this analysis in that these development parcels are expected to be reliant, for the most part, upon the Queens Quay East extension for access. A proportion of the traffic related to this section of the Lower Don Lands, as distinct from the broader Lower Don Lands and Port Lands areas which are not anticipated to rely upon Queens Quay East to any significant degree for access, is likely to route along the Queens Quay East corridor through the East Bayfront Precinct under consideration as part of this study. For the purposes of this study, forecasts for the Lower Don Lands parcels west of Cherry Street (which were previously part of the East Bayfront Precinct) are based upon those outlined in the *East Bayfront Precinct, Transportation Assessment – Status Report* prepared by BA Group in March 2004 as part of the assessment of the then current East Bayfront Precinct Plan. A breakdown of the floor areas and number of residential units assumed for the purposes of this analysis within the western portions of the Lower Don Lands is provided in Table 5. The established trip generation parameters and forecasts of travel demands related to development within the Lower Don Lands Precinct west of Cherry Street for the morning and afternoon peak hours are outlined in Table 6. #### Traffic Distribution Directional traffic distribution parameters adopted in the assignment of traffic from the westerly portions of the Lower Don Lands are consistent with those adopted in *East Bayfront Precinct, Transportation Assessment – Status Report* prepared by BA Group in March 2004 which considered these lands. This distribution is similar to that adopted for the East Bayfront Precinct west of Parliament Street (see Section 4.3.1.3) but reflects the differing locational characteristics of this Precinct area compared to the lands located further west. Table 5 Lower Don Lands- West of Cherry Street- Development Floor Areas | | T-4-1 054 | Res | idential | 0 | |---------------------|--------------------------------------|-------------------|--------------------------------|------------------------------| | Parcel ¹ | Total
GFA
Sq. Metres ¹ | GFA
Sq. Metres | Equiv. No. Units ²⁴ | Commercial GFA
Sq. Metres | | D1 | 34,248 | 25,686 | 286 | 8,562 | | D2 | 19,170 | 14,378 | 312 | 4,793 | | Е | 89,362 | 67,022 | 264 | 22,341 | | J1 | 26,796 | 29,097 | 201 | 6,699 | | J2 ³ | 9,200 | - | - | 10,219 | | K | 29,082 | 21,812 | 218 | 7,271 | | Total | 207,858 | 157,995 | 1,281 | 59,885 | #### Notes - 1. Based upon statistics outlined in the East Bayfront Precinct, Transportation Assessment Status Report prepared by BA Group in March 2004. - 2. Based upon 95 sq. metre average unit size consistent with trip generation assumptions. - 3. Commercial floor areas include elementary school on Block J1 (10,219 sq. metres or 109,995 sq. ft). - 4. Equivalent number of units rounded up to the nearest unit. Table 6 Trip Generation – Lower Don Lands – West of Cherry Street | | | Commercial | | | Trip Ger | neration | | | | |--------|-------------------|------------|-------------------------------|-----|----------|----------|-----|----------|--| | Parcel | Residential Units | GFA | Morning Peak Hour Afternoon F | | | | | eak Hour | | | | Office | Sq. Metres | In | Out | Total | In | Out | Total | | | D1 | 286 | 8,562 | 22 | 41 | 63 | 15 | 25 | 40 | | | D2 | 312 | 4,793 | 13 | 23 | 36 | 22 | 17 | 39 | | | Е | 264 | 22,341 | 59 | 106 | 165 | 100 | 25 | 125 | | | J1 | 201 | 6,699 | 18 | 32 | 50 | 50 | 75 | 125 | | | J2 | - | 10,219 | 0 | 0 | 0 | 0 | 0 | 0 | | | K | 218 | 7,271 | 19 | 35 | 54 | 20 | 15 | 35 | | | Total | 1,281 | 59,885 | 131 | 237 | 368 | 207 | 157 | 364 | | Link assignment parameters established as part of the March 2004 report are outlined in Table 7. Assignments of traffic generated by the western portions of the Lower Don Lands Precinct for both options under evaluation (same assignment) and for the morning and afternoon peak hours are outlined in Figures A3(i) and A3(ii) attached in Appendix A. Table 7 Traffic Distribution Patterns – Western Portions of Lower Don Lands Precinct | 0 | Morning | Peak Hour | Afternoon | Peak Hour | |--|--------------|-----------|-----------|-----------| | Street | Inbound | Outbound | Inbound | Outbound | | | To / from tl | ne North | | | | Jarvis Street | 0% | 0% | 0% | 0% | | Sherbourne Street | 0% | 0% | 0% | 0% | | Parliament Street | 19% | 22% | 19% | 25% | | Cherry Street | 18% | 22% | 18% | 24% | | | To / from th | ne South | | | | Cherry Street | 0% | 0% | 0% | 0% | | | To / from t | he West | | | | Gardiner Expressway Westbound On-Ramp @ Jarvis Street | 0% | 16% | 0% | 18% | | Gardiner Expressway Eastbound Off-Ramp @ Jarvis Street | 19% | 0% | 17% | 0% | | Lake Shore Boulevard East | 11% | 16% | 13% | 13% | | Queens Quay East | 16% | 23% | 20% | 15% | | | To / from t | he East | | | | Gardiner Expressway Eastbound On-Ramp @ Jarvis Street | 0% | 0% | 0% | 0% | | Gardiner Expressway Westbound Off-Ramp @ Sherbourne Street | 0% | 0% | 0% | 0% | | Lake Shore Boulevard East | 17% | 1% | 13% | 5% | | Total | 100% | 100% | 100% | 100% | #### 4.3.3 Travel Demand Forecasts – West Don Lands Travel demand forecasts adopted within this assessment for new development within the West Don Lands Precinct are based upon those outlined in the *West Don Lands*, *Plan of Subdivision Phase 2, Transportation Analysis* report prepared by BA Group in December 2008. The report provides a detailed breakdown of the forecast future build-out traffic activity levels in the area considering full build-out of the West Don Lands area. A breakdown of planned floor area and development programme allowances is provided on a block-by-block basis in Table 8. Traffic generation forecasts for each block are provided in Table 9. Traffic assignments for the morning and afternoon peak hours for the West Don Lands Precinct extracted from the December 2008 report within the East Bayfront Transit Class EA Study Area are outlined in Figures A4(i) and A4(ii) attached in Appendix A. Table 8 West Don Lands - Block Statistics Development Floor Area / Units | DI . I D . | Reside | ential GLA | Retail | Office | |-------------------|-----------------|-------------------------|--------------------|---------| | Block Reference | Sq. ft. | Equivalent Units | Sq. ft. | Sq. ft. | | | Phase 1 Plan | of Subdivision Lands (p | rior application) | | | 19 | 139,446 | 152 | | | | 20 | 311,511 | 341 | 9,756 | 4,878 | | 21 | 71,483 | 78 | - | - | | 22 | 203,535 | 222 | - | - | | 23 | 87,435 | 96 | 10,258 | 5,129 | | 24 | 175,258 | 192 | 11,477 | 5,739 | | Sub-total Phase 1 | 988,708 | 1,081 | 31,491 | 15,745 | | | Phase 2 Plan of | Subdivision Lands (cu | rrent application) | | | 8 | 628,645 | 584 | 35,867 | 17,933 | | 9 | - | - | 66,353 | 33,177 | | 10 | 331,098 | 362 | 16,499 | 8,249 | | 11 | 330,452 | 361 | 17,073 | 8,536 | | 12 | 303,542 | 332 | 16,212 | 8,106 | | 13 | 434,216 | 475 | 14,921 | 7,460 | | 14 | 352,615 | 328 | 15,708 | 7,854 | | 15 | 152,105 | 141 | 10,111 | 5,055 | | 15n | 108,511 | 101 | - | - | | 16e | 475,617 | 425 | 32,113 | 16,056 | | 16w | 152,105 | 141 | 10,104 | 5,052 | | 17 | - | - | 55,723 | 27,861 | | 18 | - | - | 10,330 | 5,165 | | P2 | 184,278 | 162 | - | - | | P3 | 129,824 | 138 | - | - | | Sub-total Phase 2 | 3,583,008 | 3,549 | 301,011 | 150,506 | | | Phase 3 Plan o | f Subdivision Lands (fu | ture application) | | | 1 | 508,057 | 555 | 23,529 | 11,764 | | 2 | 255,105 | 279 | 10,545 | 5,272 | | 3 | 210,650 | 230 | 8,608 | 4,304 | | 4 | 107,639 | 118 | 103,439 | 51,720 | | 5 | 159,844 | 175 | 14,203 | 7,102 | | 6 | - | - | 19,368 | 9,684 | | 7 | 54,465 | 60 | 4,806 | 2,403 | | Sub-total Phase 3 | 1,295,760 | 1,416 | 184,498 | 92,249 | | Grand Total | 5,867,476 | 6,046 | 517,000 | 258,500 | Notes Based upon statistics in *West Don Lands Phase 2 Transportation Analysis* report prepared by BA Group in December 2008 1. Table 9 West Don Lands Precinct – Forecast Traffic Volumes | Block Reference | Mo | orning Peak Ho
(Vehicles) | our | Afternoon Peak Hour
(Vehicles) | | | |---------------------------|------------|------------------------------|-----------------|-----------------------------------|------------|--------------| | | In | Out | 2-Way | In | Out | 2-Way | | | Phase 1 F | Plan of Subdivi | sion Lands (pi | rior application |) | | | 19 | 5 | 16 | 21 | 16 | 8 | 24 | | 20 | 13 | 42 | 55 | 40 | 17 | 54 | | 21 | 2 | 9 | 12 | 8 | 2 | 10 | | 22 | 7 | 29 | 36 | 24 | 7 | 31 | | 23 | 5 | 12 | 18 | 16 | 10 | 26 | | 24 | 8 | 25 | 33 | 24 | 11 | 35 | | Sub-total Phase 1 | 40 | 131 | 176 | 128 | 55 | 183 | | | Phase 2 Pl | an of Subdivis | ion Lands (cur | rent applicatio | n) | | | 8 | 30 | 87 | 117 | 92 | 47 | 139 | | 9 | - | - | - | - | - | - | | 10 | 15 | 45 | 59 | 46 | 23 | 69 | | 11 | 15 | 45 | 59 | 46 | 23 | 70 | | 12 | 14 | 41 | 55 | 43 | 22 | 65 | | 13 | 18 | 58 | 76 | 57 | 25 | 81 | | 14 | 16 | 51 | 67 | 51 | 24 | 74 | | 15 | 7 | 21 | 28 | 23 | 12 | 35 | | 15n | 4 | 14 | 18 | 12 | 4 | 15 | | 16e | 21 | 62 | 83 | 66 | 34 | 100 | | 16w | 7 | 21 | 28 | 23 | 12 | 35 | | 17 | 13 | 4 | 17 | 34 | 40 | 74 | | 18 | - | - | - | - | - | - | | P2 | 6 | 24 | 30 | 20 | 6 | 26 | | P3 | 4 | 17 | 21 | 14 | 4 | 18 | | Sub-total Phase 2 | 170 | 489 | 659 | 527 | 275 | 802 | | | Phase 3 P | lan of Subdivi | sion Lands (fut | ture application | 1) | | | 1 | 22 | 68 | 91 | 70 | 33 | 103 | | 2 | 11 | 34 | 45 | 34 | 16 | 50 | | 3 | 9 | 28 | 37 | 28 | 13 | 41 | | 4 | 28 | 22 | 50 | 75 | 78 | 152 | | 5 | 9 | 22 | 31 | 26 | 15 | 42 | | 6 | 5 | 1 | 6 | 12 | 14 | 26 | | 7 | 3 | 7 | 10 | 9 | 5 | 14 | | Sub-total Phase 3 | 87 | 183 | 270 | 254 | 175 | 429 | | Grand Total Rounded Notes | 297
300 | 803
805 | 1105
1105 | 909
910 | 505
505 | 1414
1415 | Notes Based upon statistics in West Don Lands Phase 2 Transportation Analysis report prepared by BA Group in December 2008 ## 4.3.4 Travel Demand Forecasts – Other Central Waterfront Area Developments A series of allowances have been made for the purposes of this analysis to account for net new traffic activity related to a number of planned development proposals within the Central Waterfront area These are outlined in the following. #### 4.3.4.1 Waterpark Place Phase 3 The Waterpark Place Phase 3 proposal is located on the north side of Queens Quay East to the east of the York Street Gardiner Expressway access ramp. The site is currently occupied by a parking lot. Traffic volumes allowances are incorporated into the traffic volume forecasts adopted for the purposes of this assessment based upon forecasts and assignments of net new traffic for the proposal outlined in the *Waterpark Place Phase 3 Traffic Impact Analysis* report prepared by BA Group in April 2002 for the now approved development proposal. The following provides a summary of the basis upon which site related traffic volumes have established for the purposes of this evaluation: - It is assumed that the existing commercial parking lot (approximately 325 spaces) is retained and relocated underground on the site. - Site volumes reflect development of approximately 52,045 sq. metres (560, 200 sq. ft.) of office use on the site and supporting 450 space parking garage facility. - The Phase 3 development site is assumed to be served by one (existing) signalized access onto Queens Quay West. There may be an opportunity to inter-connect the existing Waterpark Place Phase 1 / 2 (10 and 20 Bay Street buildings) and the Phase 3 garages which will better distribute site related traffic. No inter-connection has been assumed in these analyses. Traffic generation characteristics for the Waterpark Place Phase 3 development proposal considered as part of this evaluation are outlined in Table 10. It is noteworthy that volumes considered reflect a 'worst case' 'office' development scenario for the Waterpark Place Phase 3 lands retaining public parking uses on the property. Table 10 Trip Generation – Waterpark Place Phase 3 | | rning Peak Ho | our | Afternoon Peak Hour | | |
------|---------------|-----------|---------------------|---------------------|--------------------------| | In | Out | 2 Way | In | Out | 2 Way | | 0.00 | | 0.10 | | 0.50 | 0.50 | | | | | | | 0.58
260 | | | 0.60
270 | 0.60 0.05 | 0.60 0.05 0.18 | 0.60 0.05 0.18 0.08 | 0.60 0.05 0.18 0.08 0.50 | Notes. 1. Source: Waterpark Place Phase 3 Traffic Impact Study prepared by BA Group in April 2002 Traffic assignments for the morning and afternoon peak hours related to development of the Waterpark Place Phase 3 proposal are outlined in Figures A5(i) and A5(ii) attached in Appendix A. #### 4.3.4.2 Railway Lands East Blocks Traffic generated by approved new and proposed development within the Railway Lands area located generally between Yonge Street and Simcoe Street were considered within the traffic forecasts adopted for evaluation of the Queens Quay East design alternatives. Net new traffic volume forecasts for each of the blocks within the Railway Lands were based upon transportation study reports prepared by BA Group and others as part of approvals processes for development applications within the area. Net new traffic volume assignments were most recently developed for the build-out of the Railway Lands as part of the *Proposed development York Centre, 16 York Street City of Toronto, Urban Transportation Considerations* report prepared by BA Group in January 2008 for the redevelopment of the 16 York Street property (Block 9A & 9B). These assignments are incorporated into the forecasts considered for the purposes of this analyses and incorporate net new traffic activity related to following development proposals that were either under construction of not yet built at the time of the traffic surveys used as a basis for all analyses: - Development of Blocks 4 and 5 on the east side of York Street (now under construction). - Development of the final phase of the Pinnacle Centre east of Bay Street (now under construction). - Development of Block 7A (now under construction). - Development of Block 7B (proposal). - Full occupancy of Block 8 (existing condominium development). - Development of Blocks 7B and Block 10 (proposals). - Development of Blocks 9A and 9B on the west side of York Street (proposal). Trip generation characteristics and net new traffic volumes generated by proposed development within the Railway Lands area (as noted above) are summarized in Table 11. Morning and afternoon street peak hour traffic assignments of net new traffic related to new development within the Railway Lands East are outlined on Figures A6(i) and A6(ii) attached in Appendix A respectively. These net traffic volume changes take into account the elimination of existing traffic activity related to current land-uses that will be replaced by the new development proposals. #### 4.3.4.3 MT27 Condominium Proposal New traffic generated by a proposed redevelopment of the MT27 land parcel located on the south side of Queens Quay East opposite the Freeland Street intersection has been incorporated into the traffic volumes forecasts used for the purposes of this evaluation. Development of a 1250 unit condominium development proposal has been considered on the site with access being provided from Queens Quay East via a driveway connection located opposite Freeland Street. The site is currently occupied by a surface parking lot. Table 11 Trip Generation – Railway Lands Blocks, Yonge Street to Simcoe Street | | | Morr | ning Peak | Hour | Afternoon Peak Hour | | | |--------------------------------------|--|----------------------------------|----------------------------------|-----------------------------------|----------------------------------|----------------------------------|-----------------------------------| | Block | Development Programme | In | Out | 2-Way | In | Out | 2-Way | | | Residential (890 Units) Trip Rates Total Trips Hotel (172 Rooms) | 0.04
35 | 0.12
105 | 0.16
140 | 0.12
105 | 0.07
60 | 0.19
165 | | Block 5 – Maple
Leaf Square | Trip RatesTotal TripsCommercial Parking (369 Stalls) | 0.09
15 | 0.09
15 | 0.18
30 | 0.12
20 | 0.12
20 | 0.24
40 | | | Trip Rates Total Trips Total Site Traffic Existing Parking Lot Traffic Net Site Traffic | 0.35
130
180
60
120 | 0.05
20
140
0
140 | 0.40
150
320
60
260 | 0.20
75
200
40
160 | 0.35
130
210
60
150 | 0.55
205
410
100
310 | | Block 4 – 25
York Street | Retail (GFA 2,464 sq. m) Office (GFA 58,925 sq. m) Commercial Parking (259 Stalls) Trip Rates Total Site Traffic | 90
0.35
90 | 15
0.05
15 | 105
0.40
105 | 50
0.2
50 | 90
0.35
90 | 140
0.55
140 | | Pinnacle Centre – 33 Bay Street | Residential (1770 Units – 799 Units constructed/occupied net 971 Units) Trip Rates Total Trips Commercial Parking (548 Stalls) Trip Rates Total Trips Total Site Traffic | 0.04
40
0.35
190
220 | 0.12
115
0.05
25
120 | 0.16
155
0.40
215
340 | 0.12
95
0.20
110
205 | 0.07
55
0.35
190
245 | 0.19
150
0.55
300
450 | | Block 7A – 18
York Street | Office (GFA 56, 839 sq. m) Retail (GFA 1,006 sq. m) Commercial Parking (191 Stalls) Total Site Traffic | 115 | 5 | 120 | 20 | 95 | 115 | | Block 7B | Office (GFA 46,450 sq. m) Hotel (560 Rooms) Commercial Parking (155 Stalls) Total Site Traffic | 105 | 55 | 160 | 95 | 125 | 220 | | Block 8 – 185
Bremner Blvd | Residential (639 Units) Trip Rates Total Site Traffic | 0.04
25 | 0.12
75 | 0.16
100 | 0.12
75 | 0.07
45 | 0.19
120 | | Block 9A & 9B –
16 York Street | Residential (1,096 Units) Trip Rates Total Trips Commercial Parking (377 Stalls) Trip Rates Total Trips | 0.04
45
0.35 | 0.12
130
0.05 | 0.16
175
0.40 | 0.12
130
0.15 | 0.07
80
0.25 | 0.19
210
0.40 | | | Total Trips Total Site Traffic Existing Parking Lot Traffic Net Site Traffic | 130
175
60
115 | 20
150
5
145 | 150
325
65
260 | 55
185
5
180 | 95
175
70
105 | 150
360
75
285 | | Block 10 – 25
Lower Simcoe
St. | Residential (715 Units) Trip Rates Total Site Traffic | 0.04
30 | 0.12
85 | 0.16
115 | 0.12
85 | 0.07
50 | 0.19
135 | Notes Source: Traffic Impact Study report prepared by BA Group in January 2008 for the redevelopment of Blocks 9A and 9B (16 York Street) Traffic generation characteristics and related volumes for the proposed condominium development considered as part of this evaluation are outlined in Table 12. Existing traffic activity levels related to the existing parking lot operation on the site that will be eliminated with redevelopment of the site are also shown. Table 12 Trip Generation – MT27 Condominium Development | D | Mo | orning Peak Ho | our Afternoon Peak H | | | lour | | |---|-------------|----------------|----------------------|--------------|-------------|-------------|--| | Development Site | In | Out | 2 Way | In | Out | 2 Way | | | MT27 | | | | | | | | | Residential (1250 Units) Trip rates Total Trips | 0.036
45 | 0.144
180 | 0.18
225 | 0.138
175 | 0.041
50 | 0.18
225 | | | Existing Traffic Removed ¹ | 242 | 50 | 292 | 105 | 260 | 365 | | #### Notes Directional traffic distribution patterns for new condominium building related traffic are based upon those established for the East Bayfront Precinct as outlined in Section 4.3.1.3. Traffic assignments of new traffic volumes generated by the MT27 condominium proposal for the morning and afternoon peak hours are summarized for the *South Side Transit* option on Figures B2(i) and B2(ii) respectively attached in Appendix B. Traffic volume assignments for *Centre Transit* option are summarized on Figures C2(i) and C2(ii) for the morning and afternoon peak hours respectively attached in Appendix C. Volumes reflect review of the existing driveway volumes recorded by Arup Canada Inc. (October 11, 2007) and available traffic counts on both the sides of the existing parking lot for traffic volume balancing. ### Appendix F Signal Timing Plans ## F1 Existing (City of Toronto) ## TRAFFIC MANAGEMENT CENTRE - URBAN TRAFFIC CONTROL SYSTEMS **CITY OF TORONTO - TRANSPORTATION SERVICES** 703 Don Mills Rd, Fifth Floor, Toronto ON M3C 3N3 Telephone: 416-397-5770 Fascimile: 416-397-5777 Lakeshore Blvd W & Spadina Ave Location: 215 / 30511 PX/SCN: 09022 Our Ref: AKB/MQ 09/02/18 Date (YY/MM/DD): Staff: SP40 Controller Type: 1.0 m/s FXT Design Walk Speed: Mode of Control: 18 secs 9 secs E/W FDW Duration: N/S FDW Duration: ARUP (Marc-Paul Gauthier) Issued To: | Control Level | | TYP | TYPICAL | | | | SCOOT | | | |---|------------------|-----------------|------------------|------------------|------------------|------------------|-----------------|------------------|--------------| | Plan | A.M. Peak | OFF Peak | P.M. Peak | Friday Nigh | A.M. Peak 1 | A.M. Peak 2 | OFF Peak | P.M. Peak | Friday Night | | Time of Operation | 06:30-10:00, M-F | All Other Times | 15:00-19:00, M-F | 19:00-23:00, Fri | 06:30-09:30, M-F | 09:30-10:00, M-F | All Other Times | 15:00-19:00, M-F | 19:00-23:00 | | Signal Aspect | | | | | | | | | | | East-West Phase | | | | | | | | | | | EBG/EBLA(Ramp Only)/EWWK(South side) | 71 | 16 | 26 | 25 | 12 - 83 | 12 - 51 | 12 - 83 | 12 - 51 | 12 - 83 | | EBG/EBLA(Ramp Only)/EWFD(South side) | 18 | 18 | 18 | 18 | 18 |
18 | 18 | 18 | 18 | | EBY/EBLY(Ramp Only)/EWDW(South side) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | ALLR | ဇ | က | က | က | က | က | ဇ | က | 3 | | | | | | | | | | | | | North-South Phase | | | | | | | | | | | SBLA/SBG(Through)/NSDW(East side)/NSR(Transit) | 18 | o | 31 | 32 | 22 - 9 | 6 - 45 | 22 - 9 | 6 - 45 | 22 - 9 | | SBYA/SBG(Through)/NSDW(East side)/NSR(Transit) | ဇ | က | က | က | ဇ | ဇ | ဇ | က | 3 | | ALLR/SBG(Through)/NSDW(East side)/NSR(Transit) | က | က | က | က | ဗ | ဗ | က | က | 3 | | NBG/SBG(Straight Thru Only)/NSWK(East side)/NSGA(Transit) | 80 | ∞ | ∞ | ∞ | 8 - 79 | 8 - 47 | 8 - 79 | 8 - 47 | 8 - 79 | | NBG/SBG(Straight Thru Only)/NSFD(East side)/NSGA(Transit) | 6 | တ | o | တ | 6 | 6 | 6 | တ | 6 | | NSY or NSDW/NSY(Transit) | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | ALLR | က | က | က | က | က | က | က | က | က | | Cycle Length/Range | 144 | 80 | 112 | 112 | 104 - 144 | 104 - 112 | 80 - 144 | 88 - 112 | 104-144 | ## NOTES SCOOT cycle lengths between 32-64 may change by 4 second increments, between 64-128 by 8 second increments and above 128 by 16 second increments. SCOOT may change the cycle length by one increment at a time every 150 seconds. ## TRAFFIC MANAGEMENT CENTRE - URBAN TRAFFIC CONTROL SYSTEMS **CITY OF TORONTO - TRANSPORTATION SERVICES** 703 Don Mills Rd, Fifth Floor, Toronto ON M3C 3N3 Telephone: 416-397-5770 Facsimile: 416-397-5777 Lake Shore Blvd W (EB) & Rees St Location: 1408 / 30611 PX/SCN: 09019 Our Ref: NS/MQ Staff: 09/02/16 Date (YY/MM/DD): Novax FXT Mode of Control: Controller Type: 1.2 m/s 16 sec Design Walk Speed: N/S FDW Duration: E/W FDW Duration: Transportation Infrastructure Planning (Penelope Palmer, P.Eng.) Issued to: | issued to: | iei, r.Eiig.) | | | | | | |--|-----------------------|-----------------|------------------|------------------|-----------------|------------------| | Control Level | evel | TYPICAL | | | SCOOT | | | | Plan AM | OFF | PM | AM | OFF | PM | | Time of Operation | tion 06:15-10:00, M-F | All Other Times | 15:00-19:00, M-F | 06:15-10:00, M-F | All Other Times | 15:00-19:00, M-F | | Signal Aspect | | | | | | | | North-South Phase | | | | | | | | *SBG/SBLA/NSWK (West Side) | • | ı | 14 | ı | ı | 14-26 | | *SBG/NSWK (West Side) | 1 | ı | 2 | ı | 1 | 2 | | NSG/NSWK | 11 | 16 | 11 | 11-42 | 11-34 | 11-23 | | NSG/NSFD | 16 | 16 | 16 | 16 | 16 | 16 | | NSY/NSDW | 4 | 4 | 4 | 4 | 4 | 4 | | ALLR | 4 | 4 | 4 | 4 | 4 | 4 | | | | | | | | | | East-West Phase | | | | | | | | EBG/WBG/EWWK OR EWG/EWWK | 28 | 28 | 25 | 13-44 | 13-36 | 13-25 | | EBG/WBG/EWFD OR EWG/EWFD | 15 | 15 | 15 | 15 | 15 | 15 | | EBG/WBY/EWDW OR EBY/WBG/EWDW OR EWY/EWDW | 4 | 4 | 4 | 4 | 4 | 4 | | EBG/WBR/EWDW OR EBR/WBG/EWDW OR ALLR | 2 | 2 | 2 | 2 | 2 | 7 | | **EBG/EBLA/EWDW OR WBLA/WBG/EWDW OR EWLA/EWDW | 22 | o | 9 | 6-37 | 6-59 | 6-18 | | **EBY/EBYA/EWDW; OR WBYA/WBY/EWDW OR EWYA/EWDW | ဇ | က | 3 | ဗ | က | က | | **ALLR | က | က | 3 | က | 3 | က | | | 7 | 7 | 7 | 7 | 00 | 2 | | Cycle Lengtn/Kange | 112 | 104 | 112 | 96 - 112 | 88 - 104 | 88 - 112 | | | | | | | | | ## SCOOT cycle lengths between 32-64 may change by 4 second increments, between 64-128 by 8 second increments and above 128 by 16 second increments. SCOOT may change the cycle length by one increment at a time every 150 seconds. 'SBLA callable 15:30-18:30 Mon-Fri. Unused time allocated to NSG. *EB and WB lagging left-turn arrows can be called independently. **EBLA served if no EW left-turn demand **JLON** ## TRAFFIC MANAGEMENT CENTRE - URBAN TRAFFIC CONTROL SYSTEMS CITY OF TORONTO - TRANSPORTATION SERVICES 703 Don Mills Rd, Fifth Floor, Toronto ON M3C 3N3 Telephone: 416-397-5770 Facsimile: 416-397-5777 Lake Shore Boulevard W & Simcoe Street Location: 1747 / 30621 PX/SCN: 2009/02/20 ML/PV 09022 Date (Y/M/D): Our Ref: Staff: NOVAX 18 cct Controller Type: SA2-VMG 1.0 m/s Design Walk Speed: Mode of Control: 12 sec 18 sec E/W FDW Duration: N/S FDW Duration: ARUP (Marc-Paul Gauthier) Issued to: | Control Level | | TYPICAL | | | SCOOT | |---|-----------------|-----------------|------------------|-----------------|-----------------| | Plan | A.M. Peak | ОFF Реак | P.M. Peak | A.M. Peak | OFF Peak | | Time of Operation | 6:30-10:00, M-F | All Other Times | 15:00-19:00, M-F | 06:15-10:00,M-F | All Other Times | | Signal Aspect | | | | | | | East-West Phase | | | | | | | *EBLA/EBG/EWWK (South Leg Only) | 7 | 7 | 7 | 7 - 41 | 7 - 33 | | *EBYA/EBG/EWWK or EBYA/EBG/EWWK(South Leg Only) | က | က | က | က | ო | | *EBLR/EBG/EWWK (South Leg Only) | က | က | က | က | က | | EWG/EWWK or WBG/EBG/EWWK (Both Sides) | 42 | 34 | 42 | 8 - 42 | 8 - 34 | | EWG/EWWK or WBG/EBG/EWFD (Both Sides) or EWG/EWFD | 12 | 12 | 12 | 12 | 12 | | EWG/EWWK or WBY/EBG/EWDW or EWY/EWDW | 4 | 4 | 4 | 4 | 4 | | ALLR | 2 | 2 | 2 | 2 | 7 | | North-South Phase | | | | | | | *NSG/NSDW or NSG/NSWK | 41 | 14 | 14 | 14 - 48 | 14 - 40 | | NSG/NSDW or NSG or NSFD | 18 | 18 | 18 | 0 - 18 | 0 - 18 | | NSY/NSDW | 4 | 4 | 4 | 4 | 4 | | ALLR | က | က | က | က | ო | | Cycle Length/Range | 112 | 104 | 112 | 96 - 112 | 88 - 104 | ## NOTE EBLA callable 24 hours. Unused time allocated to EWG *EBLA phase and NS (Simcoe St.) phase can be called independently of each other NS phase is callable by vehicle or pedestrian actuation. If a vehicle call is received, the minimum NSG is 14 seconds. If ongoing vehicle demand exists on the stopbar loop,the NSG is capable of providing vehicle extensions up to a maximum of 32 seconds. If a pedestrian call is received, the minimum NSG is 32 seconds. SCOOT is capable of optimizing the NSG and providing up to 48 seconds during AM, PM peaks and 40 seconds during all other times (excluding the vehicle extension of 18 seconds). The NSWK & NSFD are only displayed on the pedestrian signal heads if a pedestrian call is received. SCOOT cycle lengths between 32-64 may change by 4 second increments, between 64-128 by 8 second increments and above 128, by 16 second increments. SCOOT may change the cycle length by one increment at a time every 150 seconds. # TRAFFIC MANAGEMENT CENTRE - URBAN TRAFFIC CONTROL SYSTEMS **CITY OF TORONTO - TRANSPORTATION SERVICES** 703 Don Mills Rd, Fifth Floor, Toronto ON M3C 3N3 Telephone: 416-397-5770 Fascimile: 416-397-5777 > Lake Shore Blvd Westbound & York St Location: 205 / 30721 PX/SCN: NS/MQ 09022 Our Ref: Staff: 09/02/26 LS180 Date (Y/M/D): FXT Controller/Cabinet Type: 1.2 m/s Design Walk Speed: Mode of Control: 15 seconds E/W FDW Duration: 30 seconds N/S FDW Duration: ARUP (Marc-Paul Gauthier) Issued To: | Control Level | | TYPI | TYPICAL | | | SCOOT | ЮТ | | |------------------------------------|---------------------|----------------------------------|-----------------|------------------|--|------------------|-----------------|------------------| | Plan | Plan Post A.M. Peak | A.M. Peak | OFF Peak | P.M. Peak | Post A.M. Peak | A.M. Peak | OFF Peak | P.M. Peak | | Time of Operation 01:00-06:15, M-F | | 06:15-10:00, M-F All Other Times | All Other Times | 15:00-19:00, M-F | 15:00-19:00, M-F 01:00-06:15, M-F 06:15-10:00, M-F | 06:15-10:00, M-F | All Other Times | 15:00-19:00, M-F | | Signal Aspect | | | | | | | | | | East-West Phase | | | | | | | | | | WBG/WBSA/EWWK | 17 | 21 | 17 | 26 | 4-35 | 4-29 | 4-21 | 9-43 | | WBG/WBSA/EWFD | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | | WBY/EWDW | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | ALLR | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | North-South Phase
* NBFG/NSDW | | 12 | 12 | - | | 11-36 | 11-28 | | ## NOTE Cycle Length/Range NBFG is callable all times except 1:00 - 6:15 and 15:00 -19:00 daily. Unused time allocated to NSG/NSWK. 88-112 88-104 96-112 88-104 112 104 104 -10-44 30 4 4 3 10-27 30 4 4 3 10-35 30 4 10-41 30 4 27 30 4 8 t 2 8 4 4 4 30 4 28 30 4 4 NBSG/NSDW **NSG/NSWK** NSY/NSDW **NSG/NSFD** ALLR Double-intersection SCOOT node: York St at Lakeshore Blvd EB & WB. SCOOT cycle lengths between 32-64 may change by 4 second increments, between 64-128 by 8 second increments and above 128 by 16 second increments. SCOOT may change the cycle length by one increment at a time every 150 seconds. ## TRAFFIC MANAGEMENT CENTRE - URBAN TRAFFIC CONTROL SYSTEMS CITY OF TORONTO - TRANSPORTATION SERVICES 703 Don Mills Rd, Fifth Floor, Toronto ON M3C 3N3 Telephone: (416) 397-5770 Fascimile: (416) 397-5777 Lake Shore Boulevard (Westbound) & Bay Street Location: 0212/30741 Our Ref.: PX/SCN: 9022 ML/MQ Staff: 09/05/09 LS180 Controller Type: Date (Y/M/D): FXT Mode of Control: 1.2 m/s Design Walk Speed: 10 secs (West side), 11 secs (East side) N/S FDW Duration: 11 secs (North side) E/W FDW Duration: ARUP (Marc-Paul Gauthier) Issued To: | | Control Level | | TYPICAL | | | SCOOT | | |---|-------------------|-----------------|-----------------|------------------|-----------------|-----------------|------------------| | | Plan | | | | | | | | | Time of Operation | 6:30-10:00, M-F | All Other Times | 15:00-19:00, M-F | 6:15-10:00, M-F | All Other Times | 15:00-19:00, M-F | | Signal Aspect | | | | | | | | | East-West Phase | | | | | | | | | WBG/EWWK | | 25 | 25 | 26 | 7-38 | 10-30 | 10-38 | | WBG/EWFD | | 11 | 11 | 11 | 1 | 11 | 1 | | WBY/EWDW | | 4 | 4 | 4 | 4 | 4 | 4 | | ALLR | | 3 | 3 | 3 | 3 | 3 | 3 | | North-South Phase | | | | | | | | | *NBG/SBSA/NSWK (East side only.) | | 14 | 14 | 14 | 14 | 14 | 14 | | *NBG/SBSA/NSWK (East Side)/NSFD (West side only.) | | 10 | 10 | 10 | 10 | 10 | 10 | | *NBG/SBSA/NSWK (East Side)/NSDW (West side only.) | | 7 | 7 | 7 | 7 | 7 | 7 | | NBG/SBSA/SBRA/NSWK (East side only.) | | 20 | 12 | 19 | 7-38 | 7-27 | 7-35 | | NBG/SBSA/SBRA/NSFD (East side only.) | | 11 | 11 | 11 | 1 | 11 | 1 | | NBY/SBY/NSDW (East side only.) | | 4 | 4 | 4 | 4 | 4 | 4 | | ALLR | | ဗ | က | ဇ | က | က | က | | Cycle Length/Range | | 112 | 104 | 112 | 96-112 | 88-104 | 88-112 | ## NOTE: Double-intersection SCOOT node: Bay at Lakeshore EB &
WB SCOOT cycle lengths between 32-64 may change by 4 second increments, between 64-128 by 8 second increments and above 128 by 16 second increments. SCOOT may change the cycle length by one increment at a time every 150 seconds. 'NSWK on West side is Fixed 18:30-23:00 M-F and 18:00-23:00 Weekends and callable all other times. If NSWK on West side is not called, unused time is allocated to NBG/SBSA/SBRA/NSWK (East Side Only) ## TRAFFIC MANAGEMENT CENTRE - URBAN TRAFFIC CONTROL SYSTEMS CITY OF TORONTO - TRANSPORTATION SERVICES 703 Don Mills Rd, Fifth Floor, Toronto ON M3C 3N3 Telephone: 416-397-5770 Facsimile: 416-397-5777 Lake Shore Blvd WB & Yonge St Location: 211/30761 9022 Our Ref: PX/SCN: 09/02/20 ML/MQ Date (Y/M/D): Staff: Econolite ASC-2100 Controller Type: FXT Mode of Control: 1.2 m/s 7 secs Design Walk Speed: N/S FDW Duration: 14 secs E/W FDW Duration: ARUP (Marc-Paul Gauthier) Issued To: | Control Level | | TYPICAL | | | SCOOT | | |---------------------------------|------------------|-----------------|------------------|------------------|-----------------|------------------| | Plan | AM | OFF | PM | AM | OFF | PM | | Time of Operation | 06:30-10:00, M-F | All Other Times | 15:00-19:00, M-F | 06:15-10:00, M-F | All Other times | 15:00-19:00, M-F | | Signal Aspect | | | | | | | | East-West Phase | | | | | | | | WBG/EWWK (South Side) | 33 | 34 | 33 | 8-50 | 8-42 | 8-50 | | WBG/EWFD (South Side) | 14 | 14 | 14 | 14 | 14 | 14 | | WBY | 4 | 4 | 4 | 4 | 4 | 4 | | ALLR | 8 | က | က | က | က | က | | | | | | | | | | North-South Phase | | | | | | | | NBLA/NBG/NSWK (East Side Only) | 9 | 9 | 9 | 9 | 9 | 9 | | NBYA//NBG/NSWK (East Side Only) | ဇ | က | ဇ | က | က | က | | NBG/NSWK (East Side Only) | _ | _ | _ | _ | _ | _ | | NSG/NSWK (Both Sides) | 34 | 25 | 34 | 17-59 | 17-51 | 17-59 | | NSG/NSFD (Both Sides) | 7 | 7 | 7 | 7 | 7 | 7 | | NSY | 4 | 4 | 4 | 4 | 4 | 4 | | ALLR | 8 | က | က | က | ဇ | က | | | | | | | | | | Cycle Length/Range | 112 | 104 | 112 | 96-112 | 88-104 | 88-112 | ## NOTE Double intersection SCOOT node: Yonge & Lakeshore EB & WB SCOOT cycle lengths between 32-64 may change by 4 second increments, between 64-128 by 8 second increments and above 128 by 16 second increments. SCOOT may change the cycle length by one increment at a time every 150 seconds. ## TRAFFIC MANAGEMENT CENTRE - URBAN TRAFFIC CONTROL SYSTEMS **CITY OF TORONTO - TRANSPORTATION SERVICES** SIGNAL TIMING INFORMATION 703 Don Mills Rd., Fifth Floor, Toronto ON M3C 3N3 Telephone: (416) 397-5770 Facsimile: (416) 397-5777 Lake Shore Boulevard (Eastbound) & Bay Street 0213 / 30731 PX / SCN: Location: 09022 Our Ref.: AKB/MQ Staff: 09/02/18 Date (Y/M/D): SP40 Controller Type: FXT Mode of Control: 1.2 m/s Design Walk Speed: 2 seconds N/S FDW Duration: ARUP (Marc-Paul Gauthier) Issued to: 9 seconds E/W FDW Duration: | Control Level | | TYPICAL | | | SCOOT | | |----------------------------------|--------------------------|-----------------|------------------|------------------|-----------------|------------------| | Plan | AM | OFF | PM | AM | OFF | PM | | Time of Operation | eration 06:30-10:00, M-F | All Other Times | 15:00-19:00, M-F | 06:15-10:00, M-F | All Other Times | 15:00-19:00, M-F | | Signal Aspect | | | | | | | | East-West Phase | | | | | | | | EBSA/EBLA/EBRA/EWWK (South Side) | 50 | 25 | 27 | 37-65 | 9-29 | 9-37 | | EBSA/EBLA/EBRA/EWFD (South Side) | 6 | 6 | 6 | о | 6 | 6 | | EBY/EWDW | 4 | 4 | 4 | 4 | 4 | 4 | | ALLR | ဇ | 8 | က | ဇ | က | 3 | | North-South Phase | | | | | | | | NSG/NSWK (West Side) | 27 | 44 | 50 | 12-40 | 40-60 | 40-68 | | NSG/NSFD (West Side) | 12 | 12 | 12 | 12 | 12 | 12 | | NSY/NSDW | 4 | 4 | 4 | 4 | 4 | 4 | | ALLR | ဇ | 3 | က | ဇ | က | 3 | | Cycle Length/Range | 112 | 104 | 112 | 96-112 | 88-104 | 88-112 | ## NOTE: Double-intersection SCOOT node: Bay at Lakeshore EB & WB. SCOOT cycle lengths between 32-64 may change by 4 second increments, between 64-128 by 8 second increments and above 128 by 16 second increments. SCOOT may change the cycle length by one increment at a time every 150 seconds. ## **CITY OF TORONTO - TRANSPORTATION SERVICES** SIGNAL TIMING INFORMATION # TRAFFIC MANAGEMENT CENTRE - URBAN TRAFFIC CONTROL SYSTEMS 703 Don Mills Rd, Fifth Floor, Toronto ON M3C 3N3 Telephone: 416-397-5770 Facsimile: 416-397-5777 -ake Shore Boulevard (Eastbound) & Yonge Street / Harbour Street Location: 541/30751 PX/SCN: 09022 Our Ref: 09/02/26 NS/MQ Staff: Date (Y/M/D): SP40 FXT Mode of Control: Controller Type: 1.2 m/s 1 sec Design Walk Speed: N/S FDW Duration: 16 sec E/W FDW Duration: **ARUP** (Marc-Paul Gauthier) Issued To: | | - 1 | | | | | FOCO | | |----------------------------|-------------------|------------------|-----------------|------------------|--------------------|-----------------|--------------------| | | Control Level | | ITPICAL | | | 30001 | | | | Plan | MA | OFF | Md | AM | OFF | Wd | | | Time of Operation | 06:30-10:00, M-F | All Other Times | 15:00-19:00, M-F | 06:15 - 10:00, M-F | All Other Times | 15:00 - 19:00, M-F | | Signal Aspect | | | | | | | | | Easbound Phase | | | | | | | | | EBG/EWWK (South Side Only) | | 39 | 39 | 39 | 21-56 | 21-48 | 21-56 | | EBG/EWFD (South Side Only) | | 16 | 16 | 16 | 16 | 16 | 16 | | EBY/EWDW | | 4 | 4 | 4 | 4 | 4 | 4 | | ALLR | | က | က | က | က | 3 | က | | North-South Phase | | | | | | | | | SBSA/NBG/NSWK | | 32 | 24 | 32 | 15-50 | 15-42 | 15-50 | | SBSA/NBG/NSFD | | 11 | 11 | 1 | 1 | 11 | 17 | | SBY/NBY/NSDW | | 4 | 4 | 4 | 4 | 4 | 4 | | ALLR | | က | က | က | က | က | က | | Cycle Length/Range | | 112 | 104 | 112 | 96 - 112 | 88 - 104 | 88 - 112 | ## NOTE SCOOT cycle lengths between 32-64 may change by 4 second increments, between 64-128 by 8 second increments and above 128 by 16 second increments. SCOOT may change the cycle length by one increment at a time every 150 seconds. ## TRAFFIC MANAGEMENT CENTRE - URBAN TRAFFIC CONTROL SYSTEMS CITY OF TORONTO - TRANSPORTATION SERVICES 703 Don Mills Rd, Fifth Floor, Toronto ON M3C 3N3 Telephone: 416-397-5770 Fascimile: 416-397-5777 Lake Shore Blvd.Eastbound & York Street Location: 204 / 30711 9022 PX/SCN: Our Ref: ML/MQ Date (Y/M/D): Staff: 2009/02/20 SP40 FXT Mode of Control: Controller Type: 1.2 m/s (FDW based on full crossing) 14 sec Design Walk Speed: E/W FDW Duration: N/S FDW Duration: ARUP (Marc-Paul Gauthier) Issued to: | Control Level | | TYPICAL | | | SCOOT | | |----------------------------|------------------|-----------------|------------------|-------------------|-----------------|------------------| | Plan | AM Peak | OFF Peak | PM Peak | AM Peak | OFF Peak | PM Peak | | Time of Operation | 06:15-10:00, M-F | All Other Times | 15:00-19:00, M-F | 06:15-10:00, M -F | All Other Times | 15:00-19:00, M-F | | Signal Aspect | | | | | | | | East-West Phase | | | | | | | | EBG/EWWK | 25 | 18 | 24 | 22 - 52 | 18 - 44 | 23 - 47 | | EBG/EWFD | 41 | 41 | 41 | 41 | 41 | 4 | | EBY/EWDW | 4 | 4 | 4 | 4 | 4 | 4 | | ALLR | 2 | 7 | 2 | 7 | 2 | 2 | | | | | | | | | | North-South Phase | | | | | | | | | 7 | (| Ċ | 1 | 1 | 0 | | "SBLA/SBG/NSWK (West Side) | 71 | 71 | 77 | 75-7 | 55-7 | 12 - 30 | | *SBYA/SBG/NSWK (West Side) | 2 | 2 | 2 | 2 | 2 | 2 | | *SBG/NSWK (West Side) | 2 | 2 | 2 | 2 | 2 | 2 | | NSG/NSWK(Both Sides) | 31 | 30 | 22 | 9 - 39 | 9 - 35 | 9 - 33 | | NSG/NSFD | 12 | 12 | 12 | 12 | 12 | 12 | | NSY/NSDW | 4 | 4 | 4 | 4 | 4 | 4 | | ALLR | 4 | 4 | 4 | 4 | 4 | 4 | | | | | | | | | | Cycle Length/Range | 112 | 104 | 112 | 96-112 | 88-104 | 88-112 | NOTE SCOOT cycle lengths between 32-64 may change by 4 second increments, between 64-128 by 8 second increments and above 128 by 16 second increments. SCOOT may change the cycle length by one increment at a time every 150 seconds. # CITY OF TORONTO - TRANSPORTATION SERVICES TRAFFIC MANAGEMENT CENTRE - URBAN TRAFFIC CONTROL SYSTEMS 703 Don Mills Rd, Toronto ON M3C 3N3 Phone: (416) 397 5770, Fax (416) 397 5777 # **CURRENT SIGNAL TIMING INFORMATION** | 4001 | ML/MQ | 1.0 m/s | Econolite ASC2 | |--|---------------|--------------------|---------------------------| | PX: | Staff: | Design Walk Speed: | Controller Type: | | | 09019 | FXT | | | | Our Ref: | Mode of Control: | | | ntersection: Queen's Quay & Spadina Avenue | 2009/02/10 | AMSS | ARUP (Marc-Paul Gauthier) | | Intersection: | Date (Y/M/D): | System: | Issued to: | | | Phase 1 | Phase 2 | Phase 3 | Phase 4 | Phase 5 | Phase 6 | |---------------------|------------|---------------------------|------------|----------------|--------------|----------------------| | | SBRT (TTC) | SBRT (Vehicle) | SBRT (TTC) | EB (Vehicle) | EB (Vehicle) | EW (TTC & Vehicle) | | | SBLT (TTC) | SBLR (Vehicle) | SBLT (TTC) | EBLT (Vehicle) | EBLT (TTC) | EW (Pedestrian North | | | WBRT (TTC) | NS (Pedestrian Both Side) | EBRT (TTC) | | | Side) | | Minimum Green | 7 | 35 | 7 | 8 | 7 | 98 | | Maximum Green | 8 | 35 | 8 | 14 | 20 | 98 | | Amber | ı | 4 | ı | 4 | | 4 | | All Red | 2 | 3 | 7 | 3 | 7 (EBTR) | 3 | | Walk | ı | 20 | ı | ı | | 41 | | Flashing Don't Walk | - | 15 | - | 1 | - | 19 | | Comments: Phase 1 & 3 are callable by SB & WB transit loops. | Phase 2 & 6 are the fixed phases. | Phase 3 is callable by SB & WB transit loop. | Phase 4 is callable by EBLT vehicle. | Phase 5 is callable by EB transit loop. | |---|-----------------------------------|--|--------------------------------------|---| | Comments: | | | | | ## CITY OF TORONTO - TRANSPORTATION SERVICES SIGNAL TIMING INFORMATION # TRAFFIC MANAGEMENT CENTRE - URBAN TRAFFIC CONTROL SYSTEMS 703 Don Mills Rd, Toronto ON M3C 3N3 Phone: (416) 397-5770 Fascimile: (416) 397-5777 | Intersection: | Queens Quay & Rees Street | Our Ref.: | 9022 | PX: | 4003 | |---------------------|---------------------------|-----------|--------------|--------------------|----------------| | Date (Y/M/D): |
2009/02/20 | M.O.C.: | SAP | Staff: | ML/MQ | | System: | A.M.S.S. | | | Design Walk Speed: | 1.0 m/s | | Issued To: | ARUP (Marc-Paul Gauthier) | | | Controller Type: | Econolite ASC2 | | | | | | | | | | | Phase 1 | Phase 2 | Phase 3 | Phase 4 | | | | E/W | EW - Transit | S/N | EW - Transit | | Minimum Green | | 17 | 7 | 27 | 7 | | Maximum Green | | 27 | 8 | 27 | 8 | | Amber | | 7 | 4 | 7 | 4 | | All Red | | 3 | 3 | 3 | 3 | | Walk | | 2 | • | 10 | • | | Flashing Don't Walk | ㅗ | 10 | • | | | Comments: Phase 1 is fixed. Phase 2 & 4 are callable by EW transit loops. Phase 3 is callable by NS stop-bar loops. Signal maintains Phase 1 until EW transit or NS mixed traffic demanded. ## TRAFFIC MANAGEMENT CENTRE - URBAN TRAFFIC CONTROL SYSTEMS **CITY OF TORONTO - TRANSPORTATION SERVICES** 703 Don Mills Rd, Toronto ON M3C 3N3 SIGNAL TIMING INFORMATION Phone: (416) 397-5770 Fascimile: (416) 397-5777 | Intersection: | Queens Quay & Simcoe Street | Our Ref.: | 9022 | PX: | 4004 | | |---------------------|-----------------------------|-----------|--------------|--------------------|----------------|---| | Date (yy/mm/dd): | 09/02/20 | M.O.C.: | SAP | Staff: | ML | | | System: | A.M.S.S. | I | | Design Walk Speed: | 1.0 m/s | | | Issued To: | ARUP (Marc-Paul Gauthier) | | | Controller Type: | Econolite ASC2 | | | | | | | 1 | | 1 | | | | Phase 1 | Phase 2 | Phase 3 | Phase 4 | | | | | E/W | Transit Only | S/N | Transit Only | | | Minimum Green | | 31 | 7 | 29 | 7 | _ | | Maximum Green | | 31 | 8 | 29 | 8 | _ | | Amber | | 4 | 4 | 4 | 4 | _ | | All Red | | 3 | 3 | 3 | 3 | _ | | Walk | | 20 | - | 11 | • | _ | | Flashing Don't Walk | <u> </u> | 11 | • | 18 | 1 | _ | Comments: Phase 2, 3 & 4 are callable. ## TRAFFIC MANAGEMENT CENTRE - URBAN TRAFFIC CONTROL SYSTEMS CITY OF TORONTO - TRANSPORTATION SERVICES 703 Don Mills Rd, Toronto ON M3C 3N3 SIGNAL TIMING INFORMATION Fascimile: (416) 397-5777 Phone: (416) 397-5770 **Econolite ASC2** 1.0 m/s 4005 Controller Type: Design Walk Speed: Staff: 09022 FXT Our Ref.: M.O.C.: Queens Quay & York Street 09/02/20 A.M.S.S. ARUP (Marc-Paul Gauthier) Date (yy/mm/dd): Intersection: Issued To: System: | | Phase 1 | Phase 2 | Phase 3 | Phase 4 | Phase 7 | |---------------------|---------|---------------|---------|---------------|-----------| | | E/W | E/W - Transit | S/N | E/W - Transit | EB - EBLT | | Minimum Green | 25 | 7 | 28 | 2 | 9 | | Maximum Green | 25 | 8 | 28 | 8 | 10 | | Amber | 4 | 4 | 4 | 4 | 3 | | All Red | 3 | 3 | 3 | 3 | 2 | | Walk | 6 | - | 10 | - | - | | Flashing Don't Walk | 16 | • | 18 | | | Comments: Phase 2 & 4 are callable by E/W transit loop Phase 7 - callable by stopbar loop (7:00-9:00,M-F) If no EW transit demand, signal cycles between phases 1 & 3. ## TRAFFIC MANAGEMENT CENTRE - URBAN TRAFFIC CONTROL SYSTEMS CITY OF TORONTO - TRANSPORTATION SERVICES 703 Don Mills Rd, Toronto ON M3C 3N3 SIGNAL TIMING INFORMATION Phone: (416) 397-5770 Fascimile: (416) 397-5777 | Intersection: | Queens Quay & Waterpark Place | Our Ref.: | 09022 | PX: | 4006 | | |---------------------|-------------------------------|-----------|--------------|--------------------|--------------|---| | Date (YY/MM/DD): | 09/02/26 | M.O.C.: | SAP | Staff: | SC/SN | _ | | System: | A.M.S.S. | | | Design Walk Speed: | 1.0 m/s | _ | | Issued To: | ARUP (Marc-Paul Gauthier) | | | Controller Type: | Ecc | | | | | | | | | | | | | Phase 1 | Phase 2 | Phase 3 | Phase 4 | | | | | E/W | EW - Transit | S/N | EW - Transit | | | Minimum Green | | 36 | 7 | 27 | 7 | | | Maximum Green | | 20 | 8 | 27 | 8 | | | Amber | | 4 | 4 | 4 | 4 | | | All Red | | 3 | 3 | 3 | 3 | | | Walk | | 27 | - | 10 | - | | | Flashing Don't Walk | ≚ | 6 | | 17 | • | | Comments: Phase 2 & 4 are callable by E/W transit loops. Phase 3 is callable by N/S stop-bar loops. Signal maintains Phase 1 until EW transit or NS mixed traffic is demanded. # **CITY OF TORONTO - TRANSPORTATION SERVICES** TRAFFIC MANAGEMENT CENTRE - URBAN TRAFFIC CONTROL SYSTEMS 703 Don Mills Rd, Toronto ON M3C 3N3 Phone: (416) 397-5770 Fascimile: (416) 397-5777 | Intersection: | Queen's Quay & Bay Street | | | PX: | 4007 | |---------------------------|---------------------------|-----------|-----------|--------------------|----------------| | Date (YY/MM/DD): 09/02/26 | | Our Ref.: | 09022 | Staff: | NS/MQ | | System: | A.M.S.S. | M.O.C.: | FXT | Design Walk Speed: | 1.0 m/s | | Issue To: | ARUP (Marc-Paul Gauthier) | | | Controller Type: | Econolite ASC2 | | | | | | | | | | | | Phase 1 | Phase 2 | Phase 3 | | | | | EB / EBLA | EW | NS | | Minimum Green | | | 9 | 27 | 29 | | Maximum Green | ر | | 12 | 27 | 29 | | Amber | | | 3 | 4 | 4 | | All Red | | | 2 | 3 | 3 | | Walk | | | • | 15 | 14 | Comments: Flashing Don't Walk 15 12 Phase 1 is callable. Phase 2 & 3 are fixed. ## SIGNAL TIMING INFORMATION CITY OF TORONTO - TRANSPORTATION SERVICES TRAFFIC MANAGEMENT CENTRE - URBAN TRAFFIC CONTROL SYSTEMS 703 Don Mills Rd, Toronto ON M3C 3N3 Phone: 416-397-5770 Fascimile:416-397-5777 Intersection: QUEEN'S QUAY & YONGE ST. PX: 1588 Date (YY/MM/DD): 09/02/26 Our Ref: 09022 Staff: NS / MQ FXT System: MTSS MOC: ARUP (Marc-Paul Gauthier) | PLAN | AM PEAK | OFF PEAK | PM PEAK | |--------------|-------------|-------------|-------------| | TIME PERIOD | 0645 - 0930 | All | 1545 - 1830 | | | Mon - Fri | Other Times | Mon - Fri | | E-W PHASE | | | | | EWG/EWWK | 31 | 25 | 31 | | EWG/EWFD | 10 | 10 | 10 | | EWY/EWDW | 4 | 4 | 4 | | ALLR | 2 | 2 | 2 | | N-S PHASE | | | | | SBG/NSWK | 16 | 12 | 16 | | SBG/NSFD | 11 | 11 | 11 | | SBY/NSDW | 3 | 3 | 3 | | ALLR | 3 | 3 | 3 | | CYCLE LENGTH | 80 | 70 | 80 | | OFFSETS(E-W) | 44 | 41 | 60 | ## **F2** Do Nothing | | • | → | ← | • | - | 1 | | | | | |----------------------|-------|----------|---------|-------|-------|-------|------|------|------|--| | Lane Group | EBL | EBT | WBT | WBR | SBL | SBR | ø2 | ø21 | ø22 | | | Lane Configurations | ች | * | | # | * | 1 | | 221 | | | | Volume (vph) | 70 | 580 | 355 | 90 | 120 | 60 | | | | | | Turn Type | Prot | | | Perm | | Perm | | | | | | Protected Phases | 5 | 25 | 6 | | 4 | | 2 | 21 | 22 | | | Permitted Phases | | | | 6 | | 4 | | | | | | Detector Phase | 5 | 25 | 6 | 6 | 4 | 4 | | | | | | Switch Phase | | | | | | | | | | | | Minimum Initial (s) | 8.0 | | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 7.0 | 7.0 | | | Minimum Split (s) | 15.0 | | 43.0 | 43.0 | 42.0 | 42.0 | 43.0 | 14.0 | 14.0 | | | Total Split (s) | 21.0 | 64.0 | 43.0 | 43.0 | 42.0 | 42.0 | 43.0 | 15.0 | 15.0 | | | Total Split (%) | 15.4% | 47.1% | 31.6% | 31.6% | 30.9% | 30.9% | 32% | 11% | 11% | | | Yellow Time (s) | 4.0 | | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | All-Red Time (s) | 3.0 | | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | | | | | Lead/Lag | Lag | | | | | | | | Lead | | | Lead-Lag Optimize? | | | | | | | | | | | | Recall Mode | None | | Max | Max | Max | Max | Max | None | None | | Cycle Length: 136 Actuated Cycle Length: 117.2 Natural Cycle: 130 | → ø2 | | ø21 | → _{Ø4} | 9 ø22 | ♣ ø5 | | |----------------|------|-----|------------------------|--------------|------|--| | 43 s | 15 s | | 42 s | 15 s | 21 s | | | ◆
ø6 | | | | | | | | 43 s | | | | | | | | | • | - | • | 1 | | | | |----------------------|-------|----------|------------|--------|------|------|------| | Lane Group | EBL | EBT | WBT | SBR | ø2 | ø7 | ø10 | | Lane Configurations | ሻ | † | ↑ ↑ | 7 | | | | | Volume (vph) | 25 | 675 | 375 | 70 | | | | | Turn Type | Prot | | | custom | | | | | Protected Phases | 9 | 27910 | 6 | 7 9 10 | 2 | 7 | 10 | | Permitted Phases | | | | | | | | | Detector Phase | 9 | 27910 | 6 | 7 9 10 | | | | | Switch Phase | | | | | | | | | Minimum Initial (s) | 7.0 | | 10.0 | | 10.0 | 7.0 | 7.0 | | Minimum Split (s) | 14.0 | | 37.0 | | 37.0 | 13.0 | 13.0 | | Total Split (s) | 17.0 | 109.0 | 48.0 | 61.0 | 48.0 | 22.0 | 22.0 | | Total Split (%) | 15.6% | 100.0% | 44.0% | 56.0% | 44% | 20% | 20% | | Yellow Time (s) | 4.0 | | 4.0 | | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | | 3.0 | | 3.0 | 2.0 | 2.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 6.0 | | | | | Lead/Lag | | | | | | | | | Lead-Lag Optimize? | | | | | | | | | Recall Mode | None | | Max | | Max | None | None | | | | | | | | | | Cycle Length: 109 Actuated Cycle Length: 107.6 Natural Cycle: 80 | | ۶ | - | • | ← | 4 | † | > | ↓ | | | | |----------------------|-------|------------|-------|-------------|-------|----------|-------------|----------|------|------|--| | Lane Group | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT | ø21 | ø22 | | | Lane Configurations | , j | ↑ ↑ | | €1 } | | 4 | Ĭ | f) | | | | | Volume (vph) | 85 | 580 | 20 | 330 | 10 | 15 | 45 | 10 | | | | | Turn Type | Perm | | Perm | | Perm | | Perm | | | | | | Protected Phases | | 2 | | 6 | | 8 | | 4 | 21 | 22 | | | Permitted Phases | 2 | | 6 | | 8 | | 4 | | | | | | Detector Phase | 2 | 2 | 6 | 6 | 8 | 8 | 4 | 4 | | | | | Switch Phase | | | | | | | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 7.0 | 7.0 | | | Minimum Split (s) | 24.0 | 24.0 | 24.0 | 24.0 | 34.0 | 34.0 | 34.0 | 34.0 | 14.0 | 14.0 | | | Total Split (s) | 34.0 | 34.0 | 34.0 | 34.0 | 34.0 | 34.0 | 34.0 | 34.0 | 15.0 | 15.0 | | | Total Split (%) | 34.7% | 34.7% | 34.7% | 34.7% | 34.7% | 34.7% | 34.7% | 34.7% | 15% | 15% | | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | All-Red Time (s) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | | | | Lead/Lag | | | | | | | | | | | | | Lead-Lag Optimize? | | | | | | | | | | | | | Recall Mode | Max | Max
| Max | Max | None | None | None | None | None | None | | Cycle Length: 98 Actuated Cycle Length: 68.9 Natural Cycle: 90 Control Type: Semi Act-Uncoord Description: Queen's Quay / Rees / Radisson West | | ᄼ | - | ⋤ | • | ← | • | † | - | ţ | | | | |----------------------|-------|----------|-------|-------|------------|-------|----------|-------|-------|------|------|--| | Lane Group | EBL | EBT | WBU | WBL | WBT | NBL | NBT | SBL | SBT | ø21 | ø22 | | | Lane Configurations | 7 | ^ | | ă | ∱ } | 7 | ↑ | 7 | ĵ. | | | | | Volume (vph) | 40 | 590 | 30 | 55 | 390 | 5 | 0 | 55 | 35 | | | | | Turn Type | Perm | | Perm | Perm | | Perm | | Perm | | | | | | Protected Phases | | 2 | | | 6 | | 8 | | 4 | 21 | 22 | | | Permitted Phases | 2 | | 6 | 6 | | 8 | | 4 | | | | | | Detector Phase | 2 | 2 | 6 | 6 | 6 | 8 | 8 | 4 | 4 | | | | | Switch Phase | | | | | | | | | | | | | | Minimum Initial (s) | 31.0 | 31.0 | 31.0 | 31.0 | 31.0 | 4.0 | 4.0 | 29.0 | 29.0 | 7.0 | 7.0 | | | Minimum Split (s) | 38.0 | 38.0 | 38.0 | 38.0 | 38.0 | 36.0 | 36.0 | 36.0 | 36.0 | 14.0 | 14.0 | | | Total Split (s) | 38.0 | 38.0 | 38.0 | 38.0 | 38.0 | 37.0 | 37.0 | 37.0 | 37.0 | 15.0 | 15.0 | | | Total Split (%) | 36.2% | 36.2% | 36.2% | 36.2% | 36.2% | 35.2% | 35.2% | 35.2% | 35.2% | 14% | 14% | | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | All-Red Time (s) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | | | | Lead/Lag | | | | | | | | | | | | | | Lead-Lag Optimize? | | | | | | | | | | | | | | Recall Mode | Max | Max | Max | Max | Max | None | None | None | None | None | None | | Cycle Length: 105 Actuated Cycle Length: 81.4 Natural Cycle: 105 Control Type: Semi Act-Uncoord Description: Queen's Quay / Lower Simcoe / Harbourfront East | | ۶ | → | • | ← | 4 | † | > | ļ | 4 | | | | |----------------------|-------|------------|-------|-------|-------|----------|-------------|----------|-------|------|------|--| | Lane Group | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT | SBR | ø21 | ø22 | | | Lane Configurations | 7 | ∱ } | | €Î∌ | | 4 | Ť | † | 7 | | | | | Volume (vph) | 110 | 545 | 15 | 450 | 20 | 40 | 100 | 10 | 110 | | | | | Turn Type | pm+pt | | Perm | | Perm | | Perm | | Perm | | | | | Protected Phases | 5 | 2 | | 6 | | 8 | | 4 | | 21 | 22 | | | Permitted Phases | 2 | | 6 | | 8 | | 4 | | 4 | | | | | Detector Phase | 5 | 2 | 6 | 6 | 8 | 8 | 4 | 4 | 4 | | | | | Switch Phase | | | | | | | | | | | | | | Minimum Initial (s) | 6.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 7.0 | 7.0 | | | Minimum Split (s) | 11.0 | 32.0 | 32.0 | 32.0 | 35.0 | 35.0 | 35.0 | 35.0 | 35.0 | 14.0 | 14.0 | | | Total Split (s) | 15.0 | 47.0 | 32.0 | 32.0 | 35.0 | 35.0 | 35.0 | 35.0 | 35.0 | 15.0 | 15.0 | | | Total Split (%) | 13.4% | 42.0% | 28.6% | 28.6% | 31.3% | 31.3% | 31.3% | 31.3% | 31.3% | 13% | 13% | | | Yellow Time (s) | 3.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | All-Red Time (s) | 2.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Total Lost Time (s) | 5.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | | | | Lead/Lag | Lead | | Lag | Lag | | | | | | | | | | Lead-Lag Optimize? | Yes | | Yes | Yes | | | | | | | | | | Recall Mode | None | Max None | None | | Cycle Length: 112 Actuated Cycle Length: 93.2 Natural Cycle: 110 | | • | → | • | ← | 4 | † | - | ↓ | | | | |----------------------|-------|-------------|-------|-------|-------|----------|-------|----------|------|------|--| | Lane Group | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT | ø21 | ø22 | | | Lane Configurations | | €Î } | | 414 | | 4 | | 4 | | | | | Volume (vph) | 45 | 605 | 15 | 560 | 45 | 0 | 20 | 0 | | | | | Turn Type | Perm | | Perm | | Perm | | Perm | | | | | | Protected Phases | | 2 | | 6 | | 8 | | 4 | 21 | 22 | | | Permitted Phases | 2 | | 6 | | 8 | | 4 | | | | | | Detector Phase | 2 | 2 | 6 | 6 | 8 | 8 | 4 | 4 | | | | | Switch Phase | | | | | | | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 7.0 | 7.0 | | | Minimum Split (s) | 43.0 | 43.0 | 43.0 | 43.0 | 34.0 | 34.0 | 34.0 | 34.0 | 14.0 | 14.0 | | | Total Split (s) | 57.0 | 57.0 | 57.0 | 57.0 | 34.0 | 34.0 | 34.0 | 34.0 | 15.0 | 15.0 | | | Total Split (%) | 47.1% | 47.1% | 47.1% | 47.1% | 28.1% | 28.1% | 28.1% | 28.1% | 12% | 12% | | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | All-Red Time (s) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | | | | Lead/Lag | | | | | | | | | | | | | Lead-Lag Optimize? | | | | | | | | | | | | | Recall Mode | Max | Max | Max | Max | None | None | None | None | Ped | Ped | | Cycle Length: 121 Actuated Cycle Length: 100.3 Natural Cycle: 105 | | • | - | • | ← | 4 | † | - | ļ | 1 | | |----------------------|-------|------------|-------|------------|-------|----------|-------|-------|-------|--| | Lane Group | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT | SBR | | | Lane Configurations | 7 | ↑ ↑ | * | ↑ ↑ | | 4 | | 4 | 7 | | | Volume (vph) | 115 | 520 | 50 | 675 | 5 | 65 | 80 | 10 | 340 | | | Turn Type | pm+pt | | Perm | | Perm | | Perm | | Perm | | | Protected Phases | 5 | 2 | | 6 | | 8 | | 4 | | | | Permitted Phases | 2 | | 6 | | 8 | | 4 | | 4 | | | Detector Phase | 5 | 2 | 6 | 6 | 8 | 8 | 4 | 4 | 4 | | | Switch Phase | | | | | | | | | | | | Minimum Initial (s) | 6.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | | Minimum Split (s) | 12.0 | 34.0 | 34.0 | 34.0 | 36.0 | 36.0 | 36.0 | 36.0 | 36.0 | | | Total Split (s) | 17.0 | 51.0 | 34.0 | 34.0 | 36.0 | 36.0 | 36.0 | 36.0 | 36.0 | | | Total Split (%) | 19.5% | 58.6% | 39.1% | 39.1% | 41.4% | 41.4% | 41.4% | 41.4% | 41.4% | | | Yellow Time (s) | 3.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | All-Red Time (s) | 2.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Lost Time (s) | 5.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | | Lead/Lag | Lead | | Lag | Lag | | | | | | | | Lead-Lag Optimize? | Yes | | Yes | Yes | | | | | | | | Recall Mode | None | Max | Max | Max | None | None | None | None | None | | Cycle Length: 87 Actuated Cycle Length: 79.4 Natural Cycle: 85 | | • | - | ← | - | 1 | |----------------------|-------|----------|------------|-------|-------| | Lane Group | EBL | EBT | WBT | SBL | SBR | | Lane Configurations | ሻ | ^ | ↑ ↑ | ሻ | 7 | | Volume (vph) | 200 | 400 | 735 | 95 | 240 | | Turn Type | Perm | | | | Perm | | Protected Phases | | 2 | 6 | 4 | | | Permitted Phases | 2 | | | | 4 | | Detector Phase | 2 | 2 | 6 | 4 | 4 | | Switch Phase | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 47.0 | 47.0 | 47.0 | 33.0 | 33.0 | | Total Split (s) | 47.0 | 47.0 | 47.0 | 33.0 | 33.0 | | Total Split (%) | 58.8% | 58.8% | 58.8% | 41.3% | 41.3% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 3.0 | 3.0 | | All-Red Time (s) | 2.0 | 2.0 | 2.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | | Lead/Lag | | | | | | | Lead-Lag Optimize? | | | | | | | Recall Mode | Max | Max | Max | Max | Max | | Intersection Summary | | | | | | Cycle Length: 80 Actuated Cycle Length: 80 Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 90 Control Type: Pretimed Splits and Phases: 123: Queens Quay & Yonge Street | | • | → | ← | • | \ | 1 | | | | | |----------------------|-------|----------|----------|-------|----------|-------|------|------|------|--| | Lane Group | EBL | EBT | WBT | WBR | SBL | SBR | ø2 | ø21 | ø22 | | | Lane Configurations | ሻ | * | * | 7 | ሻ | 7 | | | | | | Volume (vph) | 70 | 645 | 580 | 155 | 95 | 95 | | | | | | Turn Type | Prot | | | Perm | | Perm | | | | | | Protected Phases | 5 | 25 | 6 | | 4 | | 2 | 21 | 22 | | | Permitted Phases | | | | 6 | | 4 | | | | | | Detector Phase | 5 | 2 5 | 6 | 6 | 4 | 4 | | | | | | Switch Phase | | | | | | | | | | | | Minimum Initial (s) | 7.0 | | 36.0 | 36.0 | 35.0 | 35.0 | 36.0 | 7.0 | 7.0 | | | Minimum Split (s) | 14.0 | | 43.0 | 43.0 | 42.0 | 42.0 | 43.0 | 14.0 | 14.0 | | | Total Split (s) | 21.0 | 64.0 | 43.0 | 43.0 | 42.0 | 42.0 | 43.0 | 15.0 | 15.0 | | | Total Split (%) | 15.4% | 47.1% | 31.6% | 31.6% | 30.9% | 30.9% | 32% | 11% | 11% | | | Yellow Time (s) | 4.0 | | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | All-Red Time (s) | 3.0 | | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | | | | | Lead/Lag | Lag | | | | | | | | Lead | | | Lead-Lag Optimize? | | | | | | | | | | | | Recall Mode | None | | Max | Max | Max | Max | Max | None | None | | Cycle Length: 136 Actuated Cycle Length: 117.2 Natural Cycle: 130 | | • | - | • | 1 | | | | |----------------------|-------|----------|------------|--------|------|------|------| | Lane Group | EBL | EBT | WBT | SBR | ø2 | ø7 | ø10 | | Lane Configurations | ሻ | † | ↑ ↑ | 7 | | | | | Volume (vph) | 45 | 695 | 685 | 50 | | | | | Turn Type | Prot | | | custom | | | | | Protected Phases | 9 | 27910 | 6 | 7 9 10 | 2 | 7 | 10 | | Permitted Phases | | | | | | | | | Detector Phase | 9 | 27910 | 6 | 7 9 10 | | | | | Switch Phase | | | | | | | | | Minimum Initial (s) | 7.0 | | 10.0 | | 10.0 | 7.0 | 7.0 | | Minimum Split (s)
 14.0 | | 37.0 | | 37.0 | 13.0 | 13.0 | | Total Split (s) | 17.0 | 109.0 | 48.0 | 61.0 | 48.0 | 22.0 | 22.0 | | Total Split (%) | 15.6% | 100.0% | 44.0% | 56.0% | 44% | 20% | 20% | | Yellow Time (s) | 4.0 | | 4.0 | | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | | 3.0 | | 3.0 | 2.0 | 2.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 6.0 | | | | | Lead/Lag | | | | | | | | | Lead-Lag Optimize? | | | | | | | | | Recall Mode | None | | Max | | Max | None | None | | | | | | | | | | Cycle Length: 109 Actuated Cycle Length: 106.8 Natural Cycle: 80 | | ۶ | - | • | ← | 4 | † | - | ↓ | | | | |----------------------|-------|------------|-------|----------|-------|----------|-------|----------|------|------|--| | Lane Group | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT | ø21 | ø22 | | | Lane Configurations | * | ∱ } | | र्सी के | | 4 | Ť | f) | | | | | Volume (vph) | 110 | 570 | 30 | 610 | 15 | 25 | 50 | 15 | | | | | Turn Type | Perm | | Perm | | Perm | | Perm | | | | | | Protected Phases | | 2 | | 6 | | 8 | | 4 | 21 | 22 | | | Permitted Phases | 2 | | 6 | | 8 | | 4 | | | | | | Detector Phase | 2 | 2 | 6 | 6 | 8 | 8 | 4 | 4 | | | | | Switch Phase | | | | | | | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 7.0 | 7.0 | | | Minimum Split (s) | 24.0 | 24.0 | 24.0 | 24.0 | 34.0 | 34.0 | 34.0 | 34.0 | 14.0 | 14.0 | | | Total Split (s) | 34.0 | 34.0 | 34.0 | 34.0 | 34.0 | 34.0 | 34.0 | 34.0 | 15.0 | 15.0 | | | Total Split (%) | 34.7% | 34.7% | 34.7% | 34.7% | 34.7% | 34.7% | 34.7% | 34.7% | 15% | 15% | | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | All-Red Time (s) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | | | | Lead/Lag | | | | | | | | | | | | | Lead-Lag Optimize? | | | | | | | | | | | | | Recall Mode | Max | Max | Max | Max | None | None | None | None | None | None | | Cycle Length: 98 Actuated Cycle Length: 66.4 Natural Cycle: 90 Control Type: Semi Act-Uncoord Description: Queen's Quay / Rees / Radisson West | | ᄼ | - | ⋤ | • | ← | 4 | † | - | ↓ | | | | |----------------------|-------|------------|-------|-------|------------|-------|----------|-------|----------|------|------|--| | Lane Group | EBL | EBT | WBU | WBL | WBT | NBL | NBT | SBL | SBT | ø21 | ø22 | | | Lane Configurations | 7 | ∱ } | Ð | | ∱ } | * | f) | Ĭ | f) | | | | | Volume (vph) | 65 | 585 | 50 | 20 | 650 | 15 | 45 | 65 | 5 | | | | | Turn Type | Perm | | Perm | Perm | | Perm | | Perm | | | | | | Protected Phases | | 2 | | | 6 | | 8 | | 4 | 21 | 22 | | | Permitted Phases | 2 | | 6 | 6 | | 8 | | 4 | | | | | | Detector Phase | 2 | 2 | 6 | 6 | 6 | 8 | 8 | 4 | 4 | | | | | Switch Phase | | | | | | | | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 7.0 | 7.0 | | | Minimum Split (s) | 38.0 | 38.0 | 38.0 | 38.0 | 38.0 | 36.0 | 36.0 | 36.0 | 36.0 | 14.0 | 14.0 | | | Total Split (s) | 38.0 | 38.0 | 38.0 | 38.0 | 38.0 | 36.0 | 36.0 | 36.0 | 36.0 | 15.0 | 15.0 | | | Total Split (%) | 36.5% | 36.5% | 36.5% | 36.5% | 36.5% | 34.6% | 34.6% | 34.6% | 34.6% | 14% | 14% | | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | All-Red Time (s) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | | | | Lead/Lag | | | | | | | | | | | | | | Lead-Lag Optimize? | | | | | | | | | | | | | | Recall Mode | Max | Max | Max | Max | Max | None | None | None | None | None | None | | Cycle Length: 104 Actuated Cycle Length: 62.1 Natural Cycle: 105 Control Type: Semi Act-Uncoord Description: Queen's Quay / Lower Simcoe / Harbourfront East | | ٠ | → | • | ← | • | † | \ | Ţ | 1 | | | | |----------------------|-------|------------|-------|----------|-------|----------|----------|---------|-------|------|------|--| | Lane Group | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT | SBR | ø21 | ø22 | | | Lane Configurations | ች | ∱ } | | 414 | | 4 | * | | 7 | | | | | Volume (vph) | 90 | 625 | 5 | 705 | 10 | 15 | 55 | 20 | 115 | | | | | Turn Type | pm+pt | | Perm | | Perm | | Perm | | Perm | | | | | Protected Phases | 5 | 2 | | 6 | | 8 | | 4 | | 21 | 22 | | | Permitted Phases | 2 | | 6 | | 8 | | 4 | | 4 | | | | | Detector Phase | 5 | 2 | 6 | 6 | 8 | 8 | 4 | 4 | 4 | | | | | Switch Phase | | | | | | | | | | | | | | Minimum Initial (s) | 6.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 7.0 | 7.0 | | | Minimum Split (s) | 11.0 | 32.0 | 32.0 | 32.0 | 35.0 | 35.0 | 35.0 | 35.0 | 35.0 | 14.0 | 14.0 | | | Total Split (s) | 15.0 | 47.0 | 32.0 | 32.0 | 35.0 | 35.0 | 35.0 | 35.0 | 35.0 | 15.0 | 15.0 | | | Total Split (%) | 13.4% | 42.0% | 28.6% | 28.6% | 31.3% | 31.3% | 31.3% | 31.3% | 31.3% | 13% | 13% | | | Yellow Time (s) | 3.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | All-Red Time (s) | 2.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Total Lost Time (s) | 5.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | | | | Lead/Lag | Lead | | Lag | Lag | | | | | | | | | | Lead-Lag Optimize? | Yes | | Yes | Yes | | | | | | | | | | Recall Mode | None | Max None | None | | Cycle Length: 112 Actuated Cycle Length: 93.2 Natural Cycle: 110 ## 116: Queens Quay & Waterpark Place Surface | | • | - | • | ← | 4 | † | - | ↓ | | | | |----------------------|-------|-------------|-------|---------|-------|----------|-------|----------|------|------|--| | Lane Group | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT | ø21 | ø22 | | | Lane Configurations | | €Î } | | र्सी के | | 4 | | 4 | | | | | Volume (vph) | 15 | 660 | 20 | 810 | 10 | 0 | 175 | 0 | | | | | Turn Type | Perm | | Perm | | Perm | | Perm | | | | | | Protected Phases | | 2 | | 6 | | 8 | | 4 | 21 | 22 | | | Permitted Phases | 2 | | 6 | | 8 | | 4 | | | | | | Detector Phase | 2 | 2 | 6 | 6 | 8 | 8 | 4 | 4 | | | | | Switch Phase | | | | | | | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 7.0 | 7.0 | | | Minimum Split (s) | 43.0 | 43.0 | 43.0 | 43.0 | 34.0 | 34.0 | 34.0 | 34.0 | 14.0 | 14.0 | | | Total Split (s) | 57.0 | 57.0 | 57.0 | 57.0 | 34.0 | 34.0 | 34.0 | 34.0 | 15.0 | 15.0 | | | Total Split (%) | 47.1% | 47.1% | 47.1% | 47.1% | 28.1% | 28.1% | 28.1% | 28.1% | 12% | 12% | | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | All-Red Time (s) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | | | | Lead/Lag | | | | | | | | | | | | | Lead-Lag Optimize? | | | | | | | | | | | | | Recall Mode | Max | Max | Max | Max | None | None | None | None | None | None | | ## Intersection Summary Cycle Length: 121 Actuated Cycle Length: 102.2 Natural Cycle: 105 | | • | → | - | • | • | † | \ | 1 | 1 | |-----------------------------------|-------------|-------------|------------|-------------|-------|----------|----------|-------|-------| | Long Croup | FDI | FDT | WDI | WDT | NDI | NDT | CDI | CDT | CDD | | Lane Group | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT | SBR | | Lane Configurations | ካ | ∱ î≽ | | ∱ î≽ | | 4 | | ની | 7 | | Volume (vph) | 185 | 720 | 50 | 675 | 5 | 20 | 95 | 30 | 120 | | Turn Type | pm+pt | | Perm | | Perm | | Perm | | Perm | | Protected Phases | 5 | 2 | | 6 | | 8 | | 4 | | | Permitted Phases | 2 | | 6 | | 8 | | 4 | | 4 | | Detector Phase | 5 | 2 | 6 | 6 | 8 | 8 | 4 | 4 | 4 | | Switch Phase | | | | | | | | | | | Minimum Initial (s) | 6.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 11.0 | 34.0 | 34.0 | 34.0 | 36.0 | 36.0 | 36.0 | 36.0 | 36.0 | | Total Split (s) | 17.0 | 51.0 | 34.0 | 34.0 | 36.0 | 36.0 | 36.0 | 36.0 | 36.0 | | Total Split (%) | 19.5% | 58.6% | 39.1% | 39.1% | 41.4% | 41.4% | 41.4% | 41.4% | 41.4% | | Yellow Time (s) | 3.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 2.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 5.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | Lead/Lag | Lead | | Lag | Lag | | | | | | | · · | | | • | • | | | | | | | Recall Mode | None | Max | Lead-Lag Optimize?
Recall Mode | Yes
None | Max | Yes
Max | Yes
Max | Max | Max | Max | Max | Max | Cycle Length: 87 Actuated Cycle Length: 87 Natural Cycle: 85 | | ۶ | → | ← | > | 1 | |----------------------|-------|------------|------------|-------------|-------| | Lane Group | EBL | EBT | WBT | SBL | SBR | | Lane Configurations | 7 | † † | ↑ ↑ | , j | 7 | | Volume (vph) | 185 | 625 | 645 | 155 | 355 | | Turn Type | Perm | | | | Perm | | Protected Phases | | 2 | 6 | 4 | | | Permitted Phases | 2 | | | | 4 | | Detector Phase | 2 | 2 | 6 | 4 | 4 | | Switch Phase | | | | | | | Minimum Initial (s) | 41.0 | 41.0 | 41.0 | 27.0 | 27.0 | | Minimum Split (s) | 47.0 | 47.0 | 47.0 | 33.0 | 33.0 | | Total Split (s) | 47.0 | 47.0 | 47.0 | 33.0 | 33.0 | | Total Split (%) | 58.8% | 58.8% | 58.8% | 41.3% | 41.3% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 3.0 | 3.0 | | All-Red Time (s) | 2.0 | 2.0 | 2.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | | Lead/Lag | | | | | | | Lead-Lag Optimize? | | | | | | |
Recall Mode | Max | Max | Max | Max | Max | | Intersection Summary | | | | | | Cycle Length: 80 Actuated Cycle Length: 80 Offset: 0 (0%), Referenced to phase 4:SBL and 8:, Start of Green Natural Cycle: 80 Control Type: Pretimed Splits and Phases: 123: Queens Quay & Yonge Street ## 201: Lake Shore Boulevard & Spadina Avenue | | • | - | † | - | ļ | |----------------------|-------|-----------------|-------------|-------|-------| | Lane Group | EBL | EBT | NBT | SBL | SBT | | Lane Configurations | 14.54 | ተተ _ጉ | ∱ î≽ | 7 | 44 | | Volume (vph) | 1520 | 2530 | 70 | 165 | 115 | | Turn Type | Split | | | pm+pt | | | Protected Phases | 2 | 2 | 8 | 7 | 4 | | Permitted Phases | | | | 4 | | | Detector Phase | 2 | 2 | 8 | 7 | 4 | | Switch Phase | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 7.0 | 10.0 | | Minimum Split (s) | 96.0 | 96.0 | 24.0 | 16.0 | 24.0 | | Total Split (s) | 99.0 | 99.0 | 24.0 | 21.0 | 45.0 | | Total Split (%) | 68.8% | 68.8% | 16.7% | 14.6% | 31.3% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 3.0 | 4.0 | | All-Red Time (s) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 6.0 | 7.0 | | Lead/Lag | | | Lag | Lead | | | Lead-Lag Optimize? | | | Yes | Yes | | | Recall Mode | C-Max | C-Max | Ped | None | Ped | | | | | | | | ## Intersection Summary Cycle Length: 144 Actuated Cycle Length: 144 Offset: 0 (0%), Referenced to phase 2:EBTL, Start of Green Natural Cycle: 140 Control Type: Actuated-Coordinated Splits and Phases: 201: Lake Shore Boulevard & Spadina Avenue | | • | - | • | *_ | ሻ | † | - | ţ | ₩ J | | |----------------------|-------|----------|-------|--------|-------|----------|-------|-------|------------|--| | Lane Group | EBL | EBT | WBL | WBR | NBL | NBT | SBL | SBT | SBR2 | | | Lane Configurations | 44 | ^ | , j | 777 | 7 | f) | | 41₽ | 7 | | | Volume (vph) | 470 | 2275 | 10 | 940 | 10 | 65 | 190 | 55 | 10 | | | Turn Type | Prot | | Prot | custom | Perm | | Perm | | Perm | | | Protected Phases | 5 | 2 | 1 | | | 8 | | 4 | | | | Permitted Phases | | | | 6 | 8 | | 4 | | 4 | | | Detector Phase | 5 | 2 | 1 | 6 | 8 | 8 | 4 | 4 | 4 | | | Switch Phase | | | | | | | | | | | | Minimum Initial (s) | 22.0 | 10.0 | 22.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | | Minimum Split (s) | 28.0 | 49.0 | 28.0 | 49.0 | 35.0 | 35.0 | 35.0 | 35.0 | 35.0 | | | Total Split (s) | 28.0 | 49.0 | 28.0 | 49.0 | 35.0 | 35.0 | 35.0 | 35.0 | 35.0 | | | Total Split (%) | 25.0% | 43.8% | 25.0% | 43.8% | 31.3% | 31.3% | 31.3% | 31.3% | 31.3% | | | Yellow Time (s) | 3.0 | 4.0 | 3.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | All-Red Time (s) | 3.0 | 2.0 | 3.0 | 2.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Lost Time (s) | 6.0 | 6.0 | 6.0 | 6.0 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | | | Lead/Lag | Lag | Lead | Lag | Lead | | | | | | | | Lead-Lag Optimize? | Yes | Yes | Yes | Yes | | | | | | | | Recall Mode | None | C-Max | None | C-Max | Ped | Ped | Ped | Ped | Ped | | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 44 (39%), Referenced to phase 2:EBT and 6:WBR, Start of Green Natural Cycle: 115 Control Type: Actuated-Coordinated Splits and Phases: 205: Lake Shore Boulevard & Rees Street | | • | \rightarrow | 1 | † | - | ↓ | </th | |----------------------|-------|---------------|-------|----------|-------|----------|--------| | Lane Group | EBL2 | EBT | NBL | NBT | SBL | SBT | SWR | | Lane Configurations | ሻ | ∱ ∱ | 7 | | ሻ | ₽ | 778 | | Volume (vph) | 85 | 1130 | 25 | 30 | 95 | 25 | 1010 | | Turn Type | Prot | | Perm | | Perm | | custom | | Protected Phases | 5 | 2 | | 8 | | 4 | | | Permitted Phases | | | 8 | | 4 | | 6 | | Detector Phase | 5 | 2 | 8 | 8 | 4 | 4 | 6 | | Switch Phase | | | | | | | | | Minimum Initial (s) | 7.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 13.0 | 60.0 | 39.0 | 39.0 | 39.0 | 39.0 | 60.0 | | Total Split (s) | 13.0 | 73.0 | 39.0 | 39.0 | 39.0 | 39.0 | 60.0 | | Total Split (%) | 11.6% | 65.2% | 34.8% | 34.8% | 34.8% | 34.8% | 53.6% | | Yellow Time (s) | 3.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 2.0 | 3.0 | 3.0 | 3.0 | 3.0 | 2.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 6.0 | 7.0 | 7.0 | 7.0 | 7.0 | 6.0 | | Lead/Lag | Lead | | | | | | Lag | | Lead-Lag Optimize? | Yes | | | | | | Yes | | Recall Mode | None | C-Max | Ped | Ped | Ped | Ped | Max | | | | | | | | | | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 99 (88%), Referenced to phase 2:EBT, Start of Green Natural Cycle: 115 Control Type: Actuated-Coordinated Splits and Phases: 208: Lake Shore Boulevard & Lower Simcoe | | * | ← | * | † | ļ | |----------------------|-------------|------------|-------|----------|------------| | Lane Group | WBL | WBT | NBL2 | NBT | SBT | | Lane Configurations | <i>ሽ</i> ሻሻ | ↑ ↑ | | ^ | ↑ ↑ | | Volume (vph) | 1090 | 595 | 100 | 895 | 250 | | Turn Type | Split | | pm+pt | | | | Protected Phases | 6 | 6 | 3 | 8 | 4 | | Permitted Phases | | | 8 | | | | Detector Phase | 6 | 6 | 3 | 8 | 4 | | Switch Phase | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 12.0 | 10.0 | 10.0 | | Minimum Split (s) | 42.0 | 42.0 | 15.0 | 55.0 | 55.0 | | Total Split (s) | 42.0 | 42.0 | 15.0 | 70.0 | 55.0 | | Total Split (%) | 37.5% | 37.5% | 13.4% | 62.5% | 49.1% | | Yellow Time (s) | 4.0 | 4.0 | 3.0 | 4.0 | 4.0 | | All-Red Time (s) | 2.0 | 2.0 | 0.0 | 4.0 | 4.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 6.0 | 3.0 | 8.0 | 8.0 | | Lead/Lag | | | Lead | | Lag | | Lead-Lag Optimize? | | | Yes | | Yes | | Recall Mode | C-Max | C-Max | None | None | Ped | | | | | | | | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 2 (2%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 115 | | • | 1 | † | Ţ | 4 | |----------------------|-------|-------|----------|---------|--------| | Lane Group | WBT | NBL | NBT | SBT | SBR | | Lane Configurations | नाक | 7 | ^ | <u></u> | 77 | | Volume (vph) | 2005 | 145 | 675 | 245 | 265 | | Turn Type | | Perm | | | custom | | Protected Phases | 6 | | 8 | 4 | 3 | | Permitted Phases | | 8 | | | | | Detector Phase | 6 | 8 | 8 | 4 | 3 | | Switch Phase | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 43.0 | 38.0 | 38.0 | 31.0 | 38.0 | | Total Split (s) | 43.0 | 69.0 | 69.0 | 31.0 | 38.0 | | Total Split (%) | 38.4% | 61.6% | 61.6% | 27.7% | 33.9% | | Yellow Time (s) | 4.0 | 5.0 | 5.0 | 7.0 | 4.0 | | All-Red Time (s) | 3.0 | 2.0 | 2.0 | 0.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | Lead/Lag | | | | Lead | Lag | | Lead-Lag Optimize? | | | | Yes | Yes | | Recall Mode | C-Max | Ped | Ped | Ped | Max | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 92 (82%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 115 | | ← | 1 | † | ļ | |----------------------|-------|-------|----------|------------| | Lane Group | WBT | NBL | NBT | SBT | | Lane Configurations | 4143 | ሻ | ^ | ∱ ∱ | | Volume (vph) | 2060 | 110 | 1170 | 135 | | Turn Type | | pm+pt | | | | Protected Phases | 6 | 3 | 8 | 4 | | Permitted Phases | | 8 | | | | Detector Phase | 6 | 3 | 8 | 4 | | Switch Phase | | | | | | Minimum Initial (s) | 10.0 | 6.0 | 10.0 | 10.0 | | Minimum Split (s) | 54.0 | 10.0 | 48.0 | 48.0 | | Total Split (s) | 54.0 | 10.0 | 58.0 | 48.0 | | Total Split (%) | 48.2% | 8.9% | 51.8% | 42.9% | | Yellow Time (s) | 4.0 | 3.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 1.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 7.0 | 4.0 | 7.0 | 7.0 | | Lead/Lag | | Lead | | Lag | | Lead-Lag Optimize? | | Yes | | Yes | | Recall Mode | C-Max | None | Ped | Ped | | Intersection Summary | | | | | | Cycle Length, 112 | | | | | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 66 (59%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 115 | | - | † | - | ļ | |----------------------|-----------------|----------|-------|-------| | Lane Group | EBT | NBT | SBL | SBT | | Lane Configurations | ተተ _ጉ | ^ | | 414 | | Volume (vph) | 1215 | 1015 | 155 | 190 | | Turn Type | | | pm+pt | | | Protected Phases | 2 | 8 | 7 | 4 | | Permitted Phases | | | 4 | | | Detector Phase | 2 | 8 | 7 | 4 | | Switch Phase | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 12.0 | 10.0 | | Minimum Split (s) | 45.0 | 51.0 | 16.0 | 51.0 | | Total Split (s) | 45.0 | 51.0 | 16.0 | 67.0 | | Total Split (%) | 40.2% | 45.5% | 14.3% | 59.8% | | Yellow Time (s) | 4.0 | 4.0 | 2.0 | 4.0 | | All-Red Time (s) | 2.0 | 4.0 | 2.0 | 4.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 8.0 | 4.0 | 8.0 | | Lead/Lag | | Lag | Lead | | | Lead-Lag Optimize? | | Yes | Yes | | | Recall Mode | C-Max | Ped | None | Ped | | | | | | | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 8 (7%), Referenced to phase 2:EBT, Start of Green Natural Cycle: 115 | | ۶ | - | † | - | ļ | / | 4 | |----------------------|-------|-------|------------|-------|----------|--------|--------| | Lane Group | EBL | EBT | NBT | SBL | SBT | NER | NER2 | | Lane Configurations | 7 | 41₽ | ↑ ↑ | * | ^ | 7 | 7 | | Volume (vph) | 820 | 1075 | 340 | 175 | 275 | 605 | 180 | | Turn Type | Perm | | | Perm | | custom | custom | | Protected Phases | | 2 | 8! | | 4! | | | | Permitted Phases | 2 | | | 4 | | 8! | 8 | | Detector Phase | 2 | 2 | 8 | 4 | 4 | 8 | 8 | | Switch Phase | | | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 66.0 | 66.0 | 46.0 | 46.0 | 46.0 | 46.0 | 46.0 | | Total Split (s) | 66.0 | 66.0 | 46.0 | 46.0 | 46.0 | 46.0 | 46.0 | | Total Split (%) | 58.9% | 58.9% | 41.1% | 41.1% | 41.1% | 41.1% | 41.1% |
 Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | Lead/Lag | | | | | | | | | Lead-Lag Optimize? | | | | | | | | | Recall Mode | C-Max | C-Max | Ped | Ped | Ped | Ped | Ped | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 3 (3%), Referenced to phase 2:EBTL, Start of Green Natural Cycle: 115 Control Type: Actuated-Coordinated! Phase conflict between lane groups. Splits and Phases: 213: Lake Shore Boulevard & Bay Street | | † | ↓ | * | × | |----------------------------|------------|----------|----------|-------| | Lane Group | NBT | SBT | NEL | NET | | Lane Configurations | ∱ } | ^ | ሻ | 414 | | Volume (vph) | 170 | 240 | 1100 | 705 | | Turn Type | | | Perm | | | Protected Phases | 8 | 4 | | 2 | | Permitted Phases | | | 2 | | | Detector Phase | 8 | 4 | 2 | 2 | | Switch Phase | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 50.0 | 50.0 | 62.0 | 62.0 | | Total Split (s) | 50.0 | 50.0 | 62.0 | 62.0 | | Total Split (%) | 44.6% | 44.6% | 55.4% | 55.4% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 3.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 7.0 | | Lead/Lag | | | | | | Lead-Lag Optimize? | | | | | | Recall Mode | Ped | Ped | C-Max | C-Max | | Intersection Summary | | | | | | Cycle Length: 112 | | | | | | Actuated Cycle Length: 112 | | | | | Actuated Cycle Length: 112 Offset: 109 (97%), Referenced to phase 2:NETL, Start of Green Natural Cycle: 115 Control Type: Actuated-Coordinated Splits and Phases: 217: Yonge Street & Lake Shore Boulevard | | • | - | † | - | ļ | |----------------------|-------|-----------------|------------|-------|----------| | Lane Group | EBL | EBT | NBT | SBL | SBT | | Lane Configurations | 44 | ተተ _ጉ | ↑ ↑ | 7 | ^ | | Volume (vph) | 825 | 2095 | 200 | 280 | 40 | | Turn Type | Split | | | pm+pt | | | Protected Phases | 2 | 2 | 8 | 7 | 4 | | Permitted Phases | | | | 4 | | | Detector Phase | 2 | 2 | 8 | 7 | 4 | | Switch Phase | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 6.0 | 10.0 | | Minimum Split (s) | 51.0 | 51.0 | 24.0 | 12.0 | 24.0 | | Total Split (s) | 64.0 | 64.0 | 24.0 | 24.0 | 48.0 | | Total Split (%) | 57.1% | 57.1% | 21.4% | 21.4% | 42.9% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 3.0 | 4.0 | | All-Red Time (s) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 6.0 | 7.0 | | Lead/Lag | | | Lag | Lead | | | Lead-Lag Optimize? | | | Yes | Yes | | | Recall Mode | C-Max | C-Max | Ped | None | Ped | | | | | | | | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 105 (94%), Referenced to phase 2:EBTL, Start of Green Natural Cycle: 90 | | • | - | • | *_ | ሻ | † | - | ţ | ₩ J | |----------------------|-------|----------|-------|--------|-------|----------|-------|---------|------------| | Lane Group | EBL | EBT | WBL | WBR | NBL | NBT | SBL | SBT | SBR2 | | Lane Configurations | 44 | ^ | , j | 776 | 7 | ĵ» | * | | 7 | | Volume (vph) | 260 | 2110 | 25 | 1815 | 25 | 65 | 460 | 115 | 30 | | Turn Type | Prot | | Prot | custom | Perm | | pm+pt | | Perm | | Protected Phases | 5 | 2 | 1 | | | 8 | 7 | 4 | | | Permitted Phases | | | | 6 | 8 | | 4 | | 4 | | Detector Phase | 5 | 2 | 1 | 6 | 8 | 8 | 7 | 4 | 4 | | Switch Phase | | | | | | | | | | | Minimum Initial (s) | 6.0 | 10.0 | 6.0 | 10.0 | 10.0 | 10.0 | 14.0 | 10.0 | 10.0 | | Minimum Split (s) | 12.0 | 34.0 | 12.0 | 34.0 | 35.0 | 35.0 | 19.0 | 35.0 | 35.0 | | Total Split (s) | 15.0 | 46.0 | 12.0 | 43.0 | 35.0 | 35.0 | 19.0 | 54.0 | 54.0 | | Total Split (%) | 13.4% | 41.1% | 10.7% | 38.4% | 31.3% | 31.3% | 17.0% | 48.2% | 48.2% | | Yellow Time (s) | 3.0 | 4.0 | 3.0 | 4.0 | 4.0 | 4.0 | 5.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 2.0 | 3.0 | 2.0 | 4.0 | 4.0 | 0.0 | 4.0 | 4.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 6.0 | 6.0 | 6.0 | 8.0 | 8.0 | 5.0 | 8.0 | 8.0 | | Lead/Lag | Lag | Lead | Lag | Lead | Lag | Lag | Lead | | | | Lead-Lag Optimize? | Yes | | | Recall Mode | None | C-Max | None | C-Max | Ped | Ped | None | Ped | Ped | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 42 (38%), Referenced to phase 2:EBT and 6:WBR, Start of Green Natural Cycle: 100 | | • | → | 1 | † | - | ↓ | ~ | |----------------------|-------|------------|-------|----------|-------|----------|-------------| | Lane Group | EBL2 | EBT | NBL | NBT | SBL | SBT | SWR | | Lane Configurations | ሻ | ∱ ∱ | ሻ | † | ሻ | f) | オブ だ | | Volume (vph) | 85 | 1065 | 80 | 80 | 140 | 60 | 1820 | | Turn Type | Prot | | Perm | | Perm | | custom | | Protected Phases | 5 | 2 | | 8 | | 4 | | | Permitted Phases | | | 8 | | 4 | | 6 | | Detector Phase | 5 | 2 | 8 | 8 | 4 | 4 | 6 | | Switch Phase | | | | | | | | | Minimum Initial (s) | 7.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 13.0 | 60.0 | 39.0 | 39.0 | 39.0 | 39.0 | 60.0 | | Total Split (s) | 13.0 | 73.0 | 39.0 | 39.0 | 39.0 | 39.0 | 60.0 | | Total Split (%) | 11.6% | 65.2% | 34.8% | 34.8% | 34.8% | 34.8% | 53.6% | | Yellow Time (s) | 3.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 2.0 | 3.0 | 3.0 | 3.0 | 3.0 | 2.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 6.0 | 7.0 | 7.0 | 7.0 | 7.0 | 6.0 | | Lead/Lag | Lead | | | | | | Lag | | Lead-Lag Optimize? | Yes | | | | | | Yes | | Recall Mode | None | C-Max | Ped | Ped | Ped | Ped | Max | | | | | | | | | | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 100 (89%), Referenced to phase 2:EBT, Start of Green Natural Cycle: 115 Control Type: Actuated-Coordinated Splits and Phases: 208: Lake Shore Boulevard & Lower Simcoe | | / | ← | M | † | ļ | |----------------------------|-------------|-------------|-------|----------|------------| | Lane Group | WBL | WBT | NBL2 | NBT | SBT | | Lane Configurations | <u>ሕ</u> ኘኘ | ↑ 1> | ሻ | † | ↑ ↑ | | Volume (vph) | 1870 | 655 | 160 | 620 | 585 | | Turn Type | Split | | Perm | | | | Protected Phases | 6 | 6 | | 8 | 4 | | Permitted Phases | | | 8 | | | | Detector Phase | 6 | 6 | 8 | 8 | 4 | | Switch Phase | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 30.0 | 30.0 | 55.0 | 55.0 | 55.0 | | Total Split (s) | 55.0 | 55.0 | 57.0 | 57.0 | 57.0 | | Total Split (%) | 49.1% | 49.1% | 50.9% | 50.9% | 50.9% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 2.0 | 2.0 | 4.0 | 4.0 | 4.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 6.0 | 8.0 | 8.0 | 8.0 | | Lead/Lag | | | | | | | Lead-Lag Optimize? | | | | | | | Recall Mode | C-Max | C-Max | None | None | Ped | | Intersection Summary | | | | | | | Cycle Length: 112 | | | | | | | Actuated Cycle Length: 112 | | | | | | Actuated Cycle Length: 112 Offset: 106 (95%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 85 Control Type: Actuated-Coordinated Splits and Phases: 209: Gardiner WB On-Ramp & York Street | | ← | 4 | † | ļ | 4 | |----------------------|----------|-------|------------|---------|--------| | Lane Group | WBT | NBL | NBT | SBT | SBR | | Lane Configurations | नीकि | 7 | † † | <u></u> | 77 | | Volume (vph) | 2220 | 115 | 525 | 335 | 455 | | Turn Type | | Perm | | | custom | | Protected Phases | 6 | | 8 | 4 | 3 | | Permitted Phases | | 8 | | | | | Detector Phase | 6 | 8 | 8 | 4 | 3 | | Switch Phase | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 10.0 | 7.0 | | Minimum Split (s) | 28.0 | 31.0 | 31.0 | 31.0 | 25.0 | | Total Split (s) | 52.0 | 60.0 | 60.0 | 35.0 | 25.0 | | Total Split (%) | 46.4% | 53.6% | 53.6% | 31.3% | 22.3% | | Yellow Time (s) | 4.0 | 7.0 | 7.0 | 7.0 | 4.0 | | All-Red Time (s) | 3.0 | 0.0 | 0.0 | 0.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | Lead/Lag | | | | Lead | Lag | | Lead-Lag Optimize? | | | | Yes | Yes | | Recall Mode | C-Max | Ped | Ped | Ped | Max | | Intersection Cummens | | | | | | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 88 (79%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 85 | ← | • | † | ļ | |-------|---|--|--| | WBT | NBL | NBT | SBT | | 4143 | ሻ | ^ | ↑ ↑ | | 1925 | 170 | 705 | 200 | | | pm+pt | | | | 6 | 3 | 8 | 4 | | | 8 | | | | 6 | 3 | 8 | 4 | | | | | | | 10.0 | 6.0 | 10.0 | 10.0 | | 29.0 | 10.0 | 31.0 | 31.0 | | 49.0 | 10.0 | 63.0 | 53.0 | | 43.8% | 8.9% | 56.3% | 47.3% | | 4.0 | 3.0 | 4.0 | 4.0 | | 3.0 | 1.0 | 3.0 | 3.0 | | 0.0 | 0.0 | 0.0 | 0.0 | | 7.0 | 4.0 | 7.0 | 7.0 | | | Lead | | Lag | | | Yes | | Yes | | C-Max | None | Ped | Ped | | | | | | | | | | | | | 10.0
29.0
49.0
43.8%
4.0
3.0
0.0
7.0 | 1925 170
pm+pt
6 3
8 6 3
10.0 6.0
29.0 10.0
49.0 10.0
43.8% 8.9%
4.0 3.0
3.0 1.0
0.0 0.0
7.0 4.0
Lead
Yes | 1925 170 705 pm+pt 6 3 8 8 6 3 8 10.0 6.0 10.0 29.0 10.0 31.0 49.0 10.0 63.0 43.8% 8.9% 56.3% 4.0 3.0 4.0 3.0 1.0 3.0 0.0 0.0 0.0 7.0 4.0 7.0 Lead Yes | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 76 (68%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 90 | | - | † | - | ļ | |----------------------|-------|----------|-------
----------| | Lane Group | EBT | NBT | SBL | SBT | | Lane Configurations | ተተጉ | ^ | ሻ | † | | Volume (vph) | 1265 | 795 | 470 | 165 | | Turn Type | | | pm+pt | | | Protected Phases | 2 | 8 | 7 | 4 | | Permitted Phases | | | 4 | | | Detector Phase | 2 | 8 | 7 | 4 | | Switch Phase | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 12.0 | 10.0 | | Minimum Split (s) | 44.0 | 42.0 | 16.0 | 42.0 | | Total Split (s) | 44.0 | 42.0 | 26.0 | 68.0 | | Total Split (%) | 39.3% | 37.5% | 23.2% | 60.7% | | Yellow Time (s) | 4.0 | 4.0 | 2.0 | 4.0 | | All-Red Time (s) | 2.0 | 4.0 | 2.0 | 4.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 8.0 | 4.0 | 8.0 | | Lead/Lag | | Lag | Lead | | | Lead-Lag Optimize? | | Yes | Yes | | | Recall Mode | C-Max | Ped | None | Ped | | | | | | | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 0 (0%), Referenced to phase 2:EBT, Start of Green Natural Cycle: 105 | | ۶ | → | † | > | ↓ | / | 4 | |----------------------|-------|----------|-----------------|-------------|----------|--------|--------| | Lane Group | EBL | EBT | NBT | SBL | SBT | NER | NER2 | | Lane Configurations | * | 4₽ | ተተ _ጉ | J. | ^ | 7 | 7 | | Volume (vph) | 870 | 1215 | 400 | 275 | 140 | 695 | 75 | | Turn Type | Perm | | | Perm | | custom | custom | | Protected Phases | | 2 | 8 | | 4 | | | | Permitted Phases | 2 | | | 4 | | 2 | 2 | | Detector Phase | 2 | 2 | 8 | 4 | 4 | 2 | 2 | | Switch Phase | | | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 25.0 | 25.0 | 59.0 | 59.0 | 59.0 | 25.0 | 25.0 | | Total Split (s) | 53.0 | 53.0 | 59.0 | 59.0 | 59.0 | 53.0 | 53.0 | | Total Split (%) | 47.3% | 47.3% | 52.7% | 52.7% | 52.7% | 47.3% | 47.3% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | Lead/Lag | | | | | | | | | Lead-Lag Optimize? | | | | | | | | | Recall Mode | C-Max | C-Max | Ped | Ped | Ped | C-Max | C-Max | | Interpostion Cummen | | | | | | | | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 10 (9%), Referenced to phase 2:EBTL, Start of Green Natural Cycle: 85 | | † | ļ | * | × | |---|------------|------------|------------|-------| | Lane Group | NBT | SBT | NEL | NET | | Lane Configurations | ↑ ↑ | † † | ሻ | 4₽ | | Volume (vph) | 110 | 300 | 750 | 1390 | | Turn Type | | | Perm | | | Protected Phases | 8 | 4 | | 2 | | Permitted Phases | | | 2 | | | Detector Phase | 8 | 4 | 2 | 2 | | Switch Phase | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 33.0 | 33.0 | 44.0 | 44.0 | | Total Split (s) | 37.0 | 37.0 | 75.0 | 75.0 | | Total Split (%) | 33.0% | 33.0% | 67.0% | 67.0% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 3.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 7.0 | | Lead/Lag | | | | | | Lead-Lag Optimize? | | | | | | Recall Mode | Ped | Ped | C-Max | C-Max | | Intersection Summary | | | | | | | | | | | | Cycle Length: 112 | | | | | | Actuated Cycle Length: 112 Offset: 21 (19%) Reference | | 2·NETI | Start of C | 2roon | Offset: 21 (19%), Referenced to phase 2:NETL, Start of Green Natural Cycle: 80 Control Type: Actuated-Coordinated Splits and Phases: 217: Yonge Street & Lake Shore Boulevard # **F3** Centre Transit | | • | → | ← | • | - | 1 | | | | | |----------------------|-------|----------|----------|-------|-------|--------|-------|------|------|--| | Lane Group | EBL | EBT | WBT | WBR | SBL | SBR | ø2 | ø21 | ø22 | | | Lane Configurations | * | • | * | # | ች | # | | | | | | Volume (vph) | 70 | 580 | 355 | 90 | 120 | 60 | | | | | | Turn Type | Prot | | | Perm | | custom | | | | | | Protected Phases | 5 | 25 | 6 | | | | 2 | 21 | 22 | | | Permitted Phases | | | | 6 | 4 | 4 | | | | | | Detector Phase | 5 | | | | 4 | 4 | | | | | | Switch Phase | | | | | | | | | | | | Minimum Initial (s) | 1.0 | | 36.0 | 36.0 | 33.0 | 33.0 | 30.0 | 7.0 | 7.0 | | | Minimum Split (s) | 8.0 | | 44.0 | 44.0 | 40.0 | 40.0 | 44.0 | 14.0 | 14.0 | | | Total Split (s) | 17.0 | 68.0 | 51.0 | 51.0 | 40.0 | 40.0 | 51.0 | 14.0 | 14.0 | | | Total Split (%) | 12.5% | 50.0% | 37.5% | 37.5% | 29.4% | 29.4% | 38% | 10% | 10% | | | Yellow Time (s) | 4.0 | | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | All-Red Time (s) | 3.0 | | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | | | | | Lead/Lag | Lag | | | | | | | | Lead | | | Lead-Lag Optimize? | | | | | | | | | | | | Recall Mode | None | | C-Max | C-Max | Ped | Ped | C-Max | None | None | | Cycle Length: 136 Actuated Cycle Length: 136 Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green Natural Cycle: 120 Control Type: Actuated-Coordinated Splits and Phases: 100: Queens Quay & Spadina Avenue | | • | _ | • | 4 | | | | | | |----------------------|-------|----------|------------|--------|------|-------|------|------|--| | | | | | | | | | | | | Lane Group | EBL | EBT | WBT | SBR | ø2 | ø4 | ø9 | ø10 | | | Lane Configurations | ነ ነ | | ∱ ∱ | 7 | | | | | | | Volume (vph) | 25 | 675 | 375 | 70 | | | | | | | Turn Type | Prot | | | custom | | | | | | | Protected Phases | 5 | 2 4 9 10 | 8 | 5 9 10 | 2 | 4 | 9 | 10 | | | Permitted Phases | | | | | | | | | | | Detector Phase | 5 | | 8 | 5 9 10 | | | | | | | Switch Phase | | | | | | | | | | | Minimum Initial (s) | 5.0 | | 26.0 | | 5.0 | 26.0 | 5.0 | 5.0 | | | Minimum Split (s) | 17.0 | | 33.0 | | 17.0 | 33.0 | 11.0 | 11.0 | | | Total Split (s) | 38.0 | 100.0 | 40.0 | 60.0 | 38.0 | 40.0 | 11.0 | 11.0 | | | Total Split (%) | 38.0% | 100.0% | 40.0% | 60.0% | 38% | 40% | 11% | 11% | | | Yellow Time (s) | 4.0 | | 4.0 | | 4.0 | 4.0 | 4.0 | 4.0 | | | All-Red Time (s) | 2.0 | | 3.0 | | 2.0 | 3.0 | 2.0 | 2.0 | | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | Total Lost Time (s) | 6.0 | 6.0 | 7.0 | 6.0 | | | | | | | Lead/Lag | | | | | | | | | | | Lead-Lag Optimize? | | | | | | | | | | | Recall Mode | None | | C-Max | | None | C-Max | None | None | | Cycle Length: 100 Actuated Cycle Length: 100 Offset: 26 (26%), Referenced to phase 4:EBT and 8:WBT, Start of Green Natural Cycle: 75 | | - | ← | - | ↓ | | | | |----------------------|-------|-------|-------|----------|------|------|------| | Lane Group | EBT | WBT | SBL | SBT | ø1 | ø5 | ø8 | | Lane Configurations | ĵ. | ĵ» | | 4 | | | | | Volume (vph) | 670 | 370 | 10 | 0 | | | | | Turn Type | | | Perm | | | | | | Protected Phases | 2 | 6 | | 4 | 1 | 5 | 8 | | Permitted Phases | | | 4 | | | | | | Detector Phase | 2 | 6 | 4 | 4 | | | | | Switch Phase | | | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 10.0 | 7.0 | 7.0 | 10.0 | | Minimum Split (s) | 51.0 | 51.0 | 35.0 | 35.0 | 14.0 | 14.0 | 35.0 | | Total Split (s) | 51.0 | 51.0 | 35.0 | 35.0 | 14.0 | 14.0 | 35.0 | | Total Split (%) | 51.0% | 51.0% | 35.0% | 35.0% | 14% | 14% | 35% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 2.0 | 2.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Total Lost Time (s) | 6.0 | 6.0 | 7.0 | 7.0 | | | | | Lead/Lag | Lag | Lag | | | Lead | Lead | | | Lead-Lag Optimize? | | | | | | | | | Recall Mode | C-Max | C-Max | None | None | None | None | None | Cycle Length: 100 Actuated Cycle Length: 100 Offset: 14 (14%), Referenced to phase 2:EBT and 6:WBT, Start of Green Natural Cycle: 100 Control Type: Actuated-Coordinated Splits and Phases: 105: Queens Quay & Beer Store | | • | - | • | ← | 4 | † | - | ļ | |----------------------|-------|-------|-------|-------|-------|----------|-------|----------| | Lane Group | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT | | Lane Configurations | * | f) | 7 | f) | | 4 | 7 | † | | Volume (vph) | 85 | 580 | 20 | 330 | 10 | 15 | 45 | 10 | | Turn Type | Prot | | Prot | | Perm | | Perm | | | Protected Phases | 5 | 2 | 1 | 6 | | 8 | | 4 | | Permitted Phases | | | | | 8 | | 4 | | | Detector Phase | 5 | 2 | 1 | 6 | 8 | 8 | 4 | 4 | | Switch Phase | | | | | | | | | | Minimum Initial (s) | 7.0 | 17.0 | 7.0 | 17.0 | 27.0 | 27.0 | 27.0 | 27.0 | | Minimum Split (s) | 14.0 | 49.0 | 14.0 | 49.0 | 37.0 | 37.0 | 37.0 | 37.0 | | Total Split (s) | 14.0 | 49.0 | 14.0 | 49.0 | 37.0 | 37.0 | 37.0 | 37.0 | | Total Split (%) | 14.0% | 49.0% | 14.0% | 49.0% | 37.0% | 37.0% | 37.0% | 37.0% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 2.0 | 3.0 | 2.0 | 3.0 | 3.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 7.0 | 6.0 | 7.0 | 6.0 | 7.0 | 7.0 | 7.0 | 7.0 | | Lead/Lag | Lead | Lag | Lead | Lag | | | | | | Lead-Lag Optimize? | | | | | | | | | | Recall Mode | None | Max | None | Max | Max | Max | Max | Max | Cycle Length: 100 Actuated Cycle Length: 100 Offset: 72 (72%), Referenced to phase 3:, Start of Green Natural Cycle: 100 Control Type: Actuated-Coordinated Description: Queen's Quay / Rees / Radisson West Splits and Phases: 107: Queens Quay & Rees Street | | • | → | • | ← | 4 | † | - | ļ | |----------------------|-------|----------|-------|-------|-------|----------|-------|-------| | Lane Group | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT | | Lane Configurations | 7 | ĵ» | ă | f) | 7 | f) | 7 | ĵ» | | Volume (vph) | 40 | 590 | 55 | 390 | 5 | 0 | 55 | 35 | | Turn Type | Prot | | Prot | | Perm | | Perm | | | Protected Phases | 5 | 2 | 1 | 6 | | 8 | | 4 | | Permitted Phases | | | | | 8 | | 4 | | | Detector Phase | 5 | 2 | 1 | 6 | 8 | 8 | 4 | 4 | | Switch Phase | | | | | | | | | | Minimum
Initial (s) | 7.0 | 31.0 | 7.0 | 31.0 | 4.0 | 4.0 | 29.0 | 29.0 | | Minimum Split (s) | 14.0 | 49.0 | 14.0 | 49.0 | 37.0 | 37.0 | 37.0 | 37.0 | | Total Split (s) | 14.0 | 49.0 | 14.0 | 49.0 | 37.0 | 37.0 | 37.0 | 37.0 | | Total Split (%) | 14.0% | 49.0% | 14.0% | 49.0% | 37.0% | 37.0% | 37.0% | 37.0% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 2.0 | 3.0 | 2.0 | 3.0 | 3.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 7.0 | 6.0 | 7.0 | 6.0 | 7.0 | 7.0 | 7.0 | 7.0 | | Lead/Lag | Lead | Lag | Lead | Lag | | | | | | Lead-Lag Optimize? | | | | | | | | | | Recall Mode | None | C-Max | None | C-Max | None | None | Max | Max | | | | | | | | | | | Cycle Length: 100 Actuated Cycle Length: 100 Offset: 78 (78%), Referenced to phase 2:EBT and 6:WBT, Start of Green Natural Cycle: 100 Control Type: Actuated-Coordinated Description: Queen's Quay / Lower Simcoe / Harbourfront East Splits and Phases: 111: Queens Quay & Lower Simcoe | | ۶ | - | • | • | • | 4 | † | > | ļ | 4 | | |----------------------|-------|-------|-------|----------|-------|-------|----------|-------------|----------|-------|--| | Lane Group | EBL | EBT | WBL | WBT | WBR | NBL | NBT | SBL | SBT | SBR | | | Lane Configurations | 7 | ĵ» | * | † | 7 | | 4 | * | † | 7 | | | Volume (vph) | 110 | 545 | 15 | 450 | 150 | 20 | 40 | 100 | 10 | 110 | | | Turn Type | Prot | | Prot | | Perm | Perm | | Perm | | Perm | | | Protected Phases | 5 | 2 | 1 | 6 | | | 8 | | 4 | | | | Permitted Phases | | | | | 6 | 8 | | 4 | | 4 | | | Detector Phase | 5 | 2 | 1 | 6 | 6 | 8 | 8 | 4 | 4 | 4 | | | Switch Phase | | | | | | | | | | | | | Minimum Initial (s) | 7.0 | 10.0 | 7.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | | Minimum Split (s) | 14.0 | 30.0 | 14.0 | 30.0 | 30.0 | 39.0 | 39.0 | 39.0 | 39.0 | 39.0 | | | Total Split (s) | 18.0 | 47.0 | 14.0 | 43.0 | 43.0 | 39.0 | 39.0 | 39.0 | 39.0 | 39.0 | | | Total Split (%) | 18.0% | 47.0% | 14.0% | 43.0% | 43.0% | 39.0% | 39.0% | 39.0% | 39.0% | 39.0% | | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | All-Red Time (s) | 3.0 | 2.0 | 3.0 | 2.0 | 2.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Lost Time (s) | 7.0 | 6.0 | 7.0 | 6.0 | 6.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | | Lead/Lag | Lead | Lag | Lead | Lag | Lag | | | | | | | | Lead-Lag Optimize? | | | | | | | | | | | | | Recall Mode | None | C-Max | None | C-Max | C-Max | Max | Max | Max | Max | Max | | Cycle Length: 100 Actuated Cycle Length: 100 Offset: 18 (18%), Referenced to phase 2:EBT and 6:WBT, Start of Green Natural Cycle: 85 | | • | → | • | • | • | 4 | † | > | ļ | |----------------------|-------|----------|-------|----------|-------|-------|----------|-------------|-------| | Lane Group | EBL | EBT | WBL | WBT | WBR | NBL | NBT | SBL | SBT | | Lane Configurations | ሻ | ^ | ሻ | 1 | 7 | | 4 | | 4 | | Volume (vph) | 45 | 605 | 15 | 560 | 320 | 45 | 0 | 20 | 0 | | Turn Type | Prot | | Prot | | Perm | Perm | | Perm | | | Protected Phases | 5 | 2 | 1 | 6 | | | 8 | | 4 | | Permitted Phases | | | | | 6 | 8 | | 4 | | | Detector Phase | 5 | 2 | 1 | 6 | 6 | 8 | 8 | 4 | 4 | | Switch Phase | | | | | | | | | | | Minimum Initial (s) | 7.0 | 10.0 | 7.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 14.0 | 23.0 | 14.0 | 23.0 | 23.0 | 39.0 | 39.0 | 39.0 | 39.0 | | Total Split (s) | 14.0 | 47.0 | 14.0 | 47.0 | 47.0 | 39.0 | 39.0 | 39.0 | 39.0 | | Total Split (%) | 14.0% | 47.0% | 14.0% | 47.0% | 47.0% | 39.0% | 39.0% | 39.0% | 39.0% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 2.0 | 3.0 | 2.0 | 2.0 | 3.0 | 3.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 7.0 | 6.0 | 7.0 | 6.0 | 6.0 | 7.0 | 7.0 | 7.0 | 7.0 | | Lead/Lag | Lead | Lag | Lead | Lag | Lag | | | | | | Lead-Lag Optimize? | | | | | | | | | | | Recall Mode | None | C-Max | None | C-Max | C-Max | None | None | None | None | Cycle Length: 100 Actuated Cycle Length: 100 Offset: 16 (16%), Referenced to phase 2:EBT and 6:WBT, Start of Green Natural Cycle: 90 | | • | → | • | ← | • | 4 | † | - | ↓ | | |----------------------|-------|----------|-------|---------|-------|-------|----------|-------|----------|--| | Lane Group | EBL | EBT | WBL | WBT | WBR | NBL | NBT | SBL | SBT | | | Lane Configurations | Ť | ĵ, | ř | <u></u> | 7 | 7 | f) | * | f) | | | Volume (vph) | 115 | 520 | 50 | 675 | 210 | 5 | 65 | 80 | 10 | | | Turn Type | pm+pt | | Perm | | Perm | Perm | | Perm | | | | Protected Phases | 5 | 2 | | 6 | | | 8 | | 4 | | | Permitted Phases | 2 | | 6 | | 6 | 8 | | 4 | | | | Detector Phase | 5 | 2 | 6 | 6 | 6 | 8 | 8 | 4 | 4 | | | Switch Phase | | | | | | | | | | | | Minimum Initial (s) | 4.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | | Minimum Split (s) | 10.0 | 34.0 | 34.0 | 34.0 | 34.0 | 36.0 | 36.0 | 36.0 | 36.0 | | | Total Split (s) | 10.0 | 54.0 | 44.0 | 44.0 | 44.0 | 36.0 | 36.0 | 36.0 | 36.0 | | | Total Split (%) | 11.1% | 60.0% | 48.9% | 48.9% | 48.9% | 40.0% | 40.0% | 40.0% | 40.0% | | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | All-Red Time (s) | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Lost Time (s) | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | | | Lead/Lag | Lead | | Lag | Lag | Lag | | | | | | | Lead-Lag Optimize? | Yes | | Yes | Yes | Yes | | | | | | | Recall Mode | None | C-Max | C-Max | C-Max | C-Max | Ped | Ped | Ped | Ped | | Cycle Length: 90 Actuated Cycle Length: 90 Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green Natural Cycle: 90 Control Type: Actuated-Coordinated Splits and Phases: 119: Queens Quay & Bay Street | | • | - | ← | - | 4 | |----------------------|-------|----------|-------------|-------|-------| | Lane Group | EBL | EBT | WBT | SBL | SBR | | Lane Configurations | ሻ | † | ∱ 1≽ | ሻ | 7 | | Volume (vph) | 200 | 400 | 735 | 95 | 240 | | Turn Type | pm+pt | | | | Perm | | Protected Phases | 5 | 2 | 6 | 4 | | | Permitted Phases | 2 | | | | 4 | | Detector Phase | 5 | 2 | 6 | 4 | 4 | | Switch Phase | | | | | | | Minimum Initial (s) | 4.0 | 41.0 | 41.0 | 27.0 | 27.0 | | Minimum Split (s) | 10.0 | 47.0 | 47.0 | 33.0 | 33.0 | | Total Split (s) | 10.0 | 57.0 | 47.0 | 33.0 | 33.0 | | Total Split (%) | 11.1% | 63.3% | 52.2% | 36.7% | 36.7% | | Yellow Time (s) | 3.0 | 4.0 | 4.0 | 3.0 | 3.0 | | All-Red Time (s) | 1.0 | 2.0 | 2.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 4.0 | 6.0 | 6.0 | 6.0 | 6.0 | | Lead/Lag | Lead | | Lag | | | | Lead-Lag Optimize? | Yes | | Yes | | | | Recall Mode | None | C-Max | C-Max | None | None | Cycle Length: 90 Actuated Cycle Length: 90 Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 90 Control Type: Actuated-Coordinated Splits and Phases: 123: Queens Quay & Yonge Street | | • | - | † | - | ļ | |----------------------|-------|-----------------|------------|-------|----------| | Lane Group | EBL | EBT | NBT | SBL | SBT | | Lane Configurations | 1/1 | ተተ _ጉ | ↑ ↑ | ሻ | ^ | | Volume (vph) | 1520 | 2530 | 70 | 165 | 115 | | Turn Type | Split | | | pm+pt | | | Protected Phases | 2 | 2 | 8 | 7 | 4 | | Permitted Phases | | | | 4 | | | Detector Phase | 2 | 2 | 8 | 7 | 4 | | Switch Phase | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 7.0 | 10.0 | | Minimum Split (s) | 96.0 | 96.0 | 24.0 | 16.0 | 24.0 | | Total Split (s) | 99.0 | 99.0 | 24.0 | 21.0 | 45.0 | | Total Split (%) | 68.8% | 68.8% | 16.7% | 14.6% | 31.3% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 3.0 | 4.0 | | All-Red Time (s) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 6.0 | 7.0 | | Lead/Lag | | | Lag | Lead | | | Lead-Lag Optimize? | | | Yes | Yes | | | Recall Mode | C-Max | C-Max | Ped | None | Ped | | | | | | | | Cycle Length: 144 Actuated Cycle Length: 144 Offset: 0 (0%), Referenced to phase 2:EBTL, Start of Green Natural Cycle: 140 Control Type: Actuated-Coordinated Splits and Phases: 201: Lake Shore Boulevard & Spadina Avenue | | • | → | • | *_ | ሻ | † | > | ļ | ₩ J | | |----------------------|-------|-----------------|-------|--------|-------|----------|-------------|-------|------------|--| | Lane Group | EBL | EBT | WBL | WBR | NBL | NBT | SBL | SBT | SBR2 | | | Lane Configurations | 44 | ተተ _ጉ | ሻ | 777 | ሻ | ĵ» | | 41∱ | 7 | | | Volume (vph) | 470 | 2275 | 10 | 940 | 10 | 65 | 190 | 55 | 10 | | | Turn Type | Prot | | Prot | custom | Perm | | Perm | | Perm | | | Protected Phases | 5 | 2 | 1 | | | 8 | | 4 | | | | Permitted Phases | | | | 6 | 8 | | 4 | | 4 | | | Detector Phase | 5 | 2 | 1 | 6 | 8 | 8 | 4 | 4 | 4 | | | Switch Phase | | | | | | | | | | | | Minimum Initial (s) | 22.0 | 10.0 | 22.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | | Minimum Split (s) | 28.0 | 49.0 | 28.0 | 49.0 | 35.0 | 35.0 | 35.0 | 35.0 | 35.0 | | | Total Split (s) | 28.0 | 49.0 | 28.0 | 49.0 | 35.0 | 35.0 | 35.0 | 35.0 | 35.0 | | | Total Split (%) | 25.0% | 43.8% | 25.0% | 43.8% | 31.3% | 31.3% | 31.3% | 31.3% | 31.3% | | | Yellow Time (s) | 3.0 | 4.0 | 3.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | All-Red Time (s) | 3.0 | 2.0 | 3.0 | 2.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Lost Time (s) | 6.0 | 6.0 | 6.0 | 6.0 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | | | Lead/Lag | Lag | Lead | Lag | Lead | | | | | | | | Lead-Lag Optimize? | Yes | Yes | Yes | Yes | | | | | | | | Recall Mode | None |
C-Max | None | C-Max | Ped | Ped | Ped | Ped | Ped | | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 51 (46%), Referenced to phase 2:EBT and 6:WBR, Start of Green Natural Cycle: 115 Control Type: Actuated-Coordinated Splits and Phases: 205: Lake Shore Boulevard & Rees Street | | • | - | 4 | † | - | ↓ | ~ | |----------------------|-------|-------------|-------|----------|-------|----------|--------| | Lane Group | EBL2 | EBT | NBL | NBT | SBL | SBT | SWR | | Lane Configurations | , j | ↑ 1> | 7 | f) | 7 | f) | 776 | | Volume (vph) | 85 | 1130 | 25 | 30 | 95 | 25 | 1010 | | Turn Type | pm+pt | | Perm | | Perm | | custom | | Protected Phases | 5 | 2 | | 8 | | 4 | | | Permitted Phases | 2 | | 8 | | 4 | | 6 | | Detector Phase | 5 | 2 | 8 | 8 | 4 | 4 | 6 | | Switch Phase | | | | | | | | | Minimum Initial (s) | 7.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 13.0 | 60.0 | 39.0 | 39.0 | 39.0 | 39.0 | 60.0 | | Total Split (s) | 13.0 | 73.0 | 39.0 | 39.0 | 39.0 | 39.0 | 60.0 | | Total Split (%) | 11.6% | 65.2% | 34.8% | 34.8% | 34.8% | 34.8% | 53.6% | | Yellow Time (s) | 3.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 2.0 | 3.0 | 3.0 | 3.0 | 3.0 | 2.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 6.0 | 7.0 | 7.0 | 7.0 | 7.0 | 6.0 | | Lead/Lag | Lead | | | | | | Lag | | Lead-Lag Optimize? | Yes | | | | | | Yes | | Recall Mode | None | C-Max | Ped | Ped | Ped | Ped | C-Max | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 4 (4%), Referenced to phase 2:EBTL and 6:SWR, Start of Green Natural Cycle: 115 Control Type: Actuated-Coordinated Splits and Phases: 208: Lake Shore Boulevard & Lower Simcoe | | F | ← | * | † | ţ | |----------------------|-------------|-------------|-------|------------|------------| | Lane Group | WBL | WBT | NBL2 | NBT | SBT | | Lane Configurations | <u>ች</u> ሻሻ | ∱ 1> | | † † | ↑ } | | Volume (vph) | 1090 | 595 | 100 | 895 | 250 | | Turn Type | Split | | pm+pt | | | | Protected Phases | 6 | 6 | 3 | 8 | 4 | | Permitted Phases | | | 8 | | | | Detector Phase | 6 | 6 | 3 | 8 | 4 | | Switch Phase | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 12.0 | 10.0 | 10.0 | | Minimum Split (s) | 42.0 | 42.0 | 15.0 | 55.0 | 55.0 | | Total Split (s) | 42.0 | 42.0 | 15.0 | 70.0 | 55.0 | | Total Split (%) | 37.5% | 37.5% | 13.4% | 62.5% | 49.1% | | Yellow Time (s) | 4.0 | 4.0 | 3.0 | 4.0 | 4.0 | | All-Red Time (s) | 2.0 | 2.0 | 0.0 | 4.0 | 4.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 6.0 | 3.0 | 8.0 | 8.0 | | Lead/Lag | | | Lead | | Lag | | Lead-Lag Optimize? | | | Yes | | Yes | | Recall Mode | C-Max | C-Max | None | None | Ped | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 8 (7%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 115 Control Type: Actuated-Coordinated Splits and Phases: 209: Gardiner WB On-Ramp & York Street | | ← | 1 | † | ¥ | 4 | |----------------------|----------|-------|----------|----------|--------| | Lane Group | WBT | NBL | NBT | SBT | SBR | | Lane Configurations | नाा | J. | ^ | † | 77 | | Volume (vph) | 2005 | 145 | 675 | 245 | 265 | | Turn Type | | Perm | | | custom | | Protected Phases | 6 | | 8 | 4 | 3 | | Permitted Phases | | 8 | | | | | Detector Phase | 6 | 8 | 8 | 4 | 3 | | Switch Phase | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 43.0 | 38.0 | 38.0 | 31.0 | 38.0 | | Total Split (s) | 43.0 | 69.0 | 69.0 | 31.0 | 38.0 | | Total Split (%) | 38.4% | 61.6% | 61.6% | 27.7% | 33.9% | | Yellow Time (s) | 4.0 | 5.0 | 5.0 | 7.0 | 4.0 | | All-Red Time (s) | 3.0 | 2.0 | 2.0 | 0.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | Lead/Lag | | | | Lead | Lag | | Lead-Lag Optimize? | | | | Yes | Yes | | Recall Mode | C-Max | Ped | Ped | Ped | Max | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 98 (88%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 115 Control Type: Actuated-Coordinated Splits and Phases: 214: Lake Shore Boulevard & Bay Street Cycle Length: 112 Actuated Cycle Length: 112 Offset: 72 (64%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 115 Control Type: Actuated-Coordinated Splits and Phases: 218: Lake Shore Boulevard & Yonge Street | | - | † | - | ļ | |----------------------|-----------------|----------|-------|-------| | Lane Group | EBT | NBT | SBL | SBT | | Lane Configurations | ተተ _ጉ | ^ | | 414 | | Volume (vph) | 1215 | 1015 | 155 | 190 | | Turn Type | | | pm+pt | | | Protected Phases | 2 | 8 | 7 | 4 | | Permitted Phases | | | 4 | | | Detector Phase | 2 | 8 | 7 | 4 | | Switch Phase | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 12.0 | 10.0 | | Minimum Split (s) | 45.0 | 51.0 | 16.0 | 51.0 | | Total Split (s) | 45.0 | 51.0 | 16.0 | 67.0 | | Total Split (%) | 40.2% | 45.5% | 14.3% | 59.8% | | Yellow Time (s) | 4.0 | 4.0 | 2.0 | 4.0 | | All-Red Time (s) | 2.0 | 4.0 | 2.0 | 4.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 8.0 | 4.0 | 8.0 | | Lead/Lag | | Lag | Lead | | | Lead-Lag Optimize? | | Yes | Yes | | | Recall Mode | C-Max | Ped | None | Ped | | | | | | | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 14 (13%), Referenced to phase 2:EBT, Start of Green Natural Cycle: 115 Control Type: Actuated-Coordinated Splits and Phases: 210: Lake Shore Boulevard & York Street | | ۶ | → | † | > | ↓ | / | 4 | |-----------------------|-------|----------|------------|-------------|----------|--------|--------| | Lane Group | EBL | EBT | NBT | SBL | SBT | NER | NER2 | | Lane Configurations | 7 | 414 | ↑ ↑ | J. | ^ | 7 | 7 | | Volume (vph) | 820 | 1075 | 340 | 175 | 275 | 605 | 180 | | Turn Type | Perm | | | Perm | | custom | custom | | Protected Phases | | 2 | 8 | | 4 | | | | Permitted Phases | 2 | | | 4 | | 2 | 2 | | Detector Phase | 2 | 2 | 8 | 4 | 4 | 2 | 2 | | Switch Phase | | | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 66.0 | 66.0 | 46.0 | 46.0 | 46.0 | 66.0 | 66.0 | | Total Split (s) | 66.0 | 66.0 | 46.0 | 46.0 | 46.0 | 66.0 | 66.0 | | Total Split (%) | 58.9% | 58.9% | 41.1% | 41.1% | 41.1% | 58.9% | 58.9% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | Lead/Lag | | | | | | | | | Lead-Lag Optimize? | | | | | | | | | Recall Mode | C-Max | C-Max | Ped | Ped | Ped | C-Max | C-Max | | Interpolation Cummers | | | | | | | | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 6 (5%), Referenced to phase 2:EBTL, Start of Green Natural Cycle: 115 Control Type: Actuated-Coordinated Splits and Phases: 213: Lake Shore Boulevard & Bay Street | | † | ļ | * | × | |----------------------|------------|----------|----------|-------| | Lane Group | NBT | SBT | NEL | NET | | Lane Configurations | ↑ ↑ | ^ | ሻ | 41∱ | | Volume (vph) | 170 | 240 | 1100 | 705 | | Turn Type | | | Perm | | | Protected Phases | 8 | 4 | | 2 | | Permitted Phases | | | 2 | | | Detector Phase | 8 | 4 | 2 | 2 | | Switch Phase | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 50.0 | 50.0 | 62.0 | 62.0 | | Total Split (s) | 50.0 | 50.0 | 62.0 | 62.0 | | Total Split (%) | 44.6% | 44.6% | 55.4% | 55.4% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 3.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 7.0 | | Lead/Lag | | | | | | Lead-Lag Optimize? | | | | | | Recall Mode | Ped | Ped | C-Max | C-Max | | Intersection Summary | | | | | | Cycle Length: 112 | | | | | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 17 (15%), Referenced to phase 2:NETL, Start of Green Natural Cycle: 115 Control Type: Actuated-Coordinated Splits and Phases: 217: Yonge Street & Lake Shore Boulevard | | • | - | † | - | Ţ | |----------------------|-------|-----------------|------------|-------|----------| | Lane Group | EBL | EBT | NBT | SBL | SBT | | Lane Configurations | 14.54 | ተተ _ጉ | ↑ ↑ | ሻ | ^ | | Volume (vph) | 825 | 2095 | 200 | 280 | 40 | | Turn Type | Split | | | pm+pt | | | Protected Phases | 2 | 2 | 8 | 7 | 4 | | Permitted Phases | | | | 4 | | | Detector Phase | 2 | 2 | 8 | 7 | 4 | | Switch Phase | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 6.0 | 10.0 | | Minimum Split (s) | 51.0 | 51.0 | 24.0 | 12.0 | 24.0 | | Total Split (s) | 68.0 | 68.0 | 24.0 | 20.0 | 44.0 | | Total Split (%) | 60.7% | 60.7% | 21.4% | 17.9% | 39.3% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 3.0 | 4.0 | | All-Red Time (s) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 6.0 | 7.0 | | Lead/Lag | | | Lag | Lead | | | Lead-Lag Optimize? | | | Yes | Yes | | | Recall Mode | C-Max | C-Max | Ped | None | Ped | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 97 (87%), Referenced to phase 2:EBTL, Start of Green Natural Cycle: 90 Control Type: Actuated-Coordinated Splits and Phases: 201: Lake Shore Boulevard & Spadina Avenue | | • | → | • | *_ | ሻ | † | > | ļ | ₩J | |----------------------|-------|------------|-------|--------|-------|----------|-------------|---------|-------| | Lane Group | EBL | EBT | WBL | WBR | NBL | NBT | SBL | SBT | SBR2 | | Lane Configurations | 44 | † † | 7 | 772 | * | f) | * | | 7 | | Volume (vph) | 260 | 2110 | 25 | 1815 | 25 | 65 | 460 | 115 | 30 | | Turn Type | Prot | | Prot | custom | Perm | | pm+pt | | Perm | | Protected Phases | 5 | 2 | 1 | | | 8 | 7 | 4 | | | Permitted Phases | | | | 6 | 8 | |
4 | | 4 | | Detector Phase | 5 | 2 | 1 | 6 | 8 | 8 | 7 | 4 | 4 | | Switch Phase | | | | | | | | | | | Minimum Initial (s) | 6.0 | 10.0 | 6.0 | 10.0 | 10.0 | 10.0 | 14.0 | 10.0 | 10.0 | | Minimum Split (s) | 12.0 | 34.0 | 12.0 | 34.0 | 35.0 | 35.0 | 19.0 | 35.0 | 35.0 | | Total Split (s) | 13.0 | 46.0 | 12.0 | 45.0 | 35.0 | 35.0 | 19.0 | 54.0 | 54.0 | | Total Split (%) | 11.6% | 41.1% | 10.7% | 40.2% | 31.3% | 31.3% | 17.0% | 48.2% | 48.2% | | Yellow Time (s) | 3.0 | 4.0 | 3.0 | 4.0 | 4.0 | 4.0 | 5.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 2.0 | 3.0 | 2.0 | 4.0 | 4.0 | 0.0 | 4.0 | 4.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 6.0 | 6.0 | 6.0 | 8.0 | 8.0 | 5.0 | 8.0 | 8.0 | | Lead/Lag | Lag | Lead | Lag | Lead | Lag | Lag | Lead | | | | Lead-Lag Optimize? | Yes | | | Recall Mode | None | C-Max | None | C-Max | Ped | Ped | None | Ped | Ped | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 38 (34%), Referenced to phase 2:EBT and 6:WBR, Start of Green Natural Cycle: 100 Control Type: Actuated-Coordinated Splits and Phases: 205: Lake Shore Boulevard & Rees Street | | • | - | 4 | † | - | ↓ | ~ | |----------------------|-------|------------|-------|----------|-------|----------|--------| | Lane Group | EBL2 | EBT | NBL | NBT | SBL | SBT | SWR | | Lane Configurations | ሻ | ↑ ↑ | ሻ | † | ሻ | ą. | 775 | | Volume (vph) | 85 | 1065 | 80 | 80 | 140 | 60 | 1820 | | Turn Type | Prot | | Perm | | Perm | | custom | | Protected Phases | 5 | 2 | | 8 | | 4 | | | Permitted Phases | | | 8 | | 4 | | 6 | | Detector Phase | 5 | 2 | 8 | 8 | 4 | 4 | 6 | | Switch Phase | | | | | | | | | Minimum Initial (s) | 7.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 13.0 | 60.0 | 39.0 | 39.0 | 39.0 | 39.0 | 60.0 | | Total Split (s) | 13.0 | 73.0 | 39.0 | 39.0 | 39.0 | 39.0 | 60.0 | | Total Split (%) | 11.6% | 65.2% | 34.8% | 34.8% | 34.8% | 34.8% | 53.6% | | Yellow Time (s) | 3.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 2.0 | 3.0 | 3.0 | 3.0 | 3.0 | 2.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 6.0 | 7.0 | 7.0 | 7.0 | 7.0 | 6.0 | | Lead/Lag | Lead | | | | | | Lag | | Lead-Lag Optimize? | Yes | | | | | | Yes | | Recall Mode | None | C-Max | Ped | Ped | Ped | Ped | Max | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 98 (88%), Referenced to phase 2:EBT, Start of Green Natural Cycle: 115 Control Type: Actuated-Coordinated Splits and Phases: 208: Lake Shore Boulevard & Lower Simcoe | | * | • | * | 1 | ↓ | |----------------------|-------------|------------|-------|----------|------------| | Lane Group | WBL | WBT | NBL2 | NBT | SBT | | Lane Configurations | <u>ች</u> ችች | ↑ } | , j | † | ↑ ↑ | | Volume (vph) | 1870 | 655 | 160 | 620 | 585 | | Turn Type | Split | | pm+pt | | | | Protected Phases | 6 | 6 | 3 | 8 | 4 | | Permitted Phases | | | 8 | | | | Detector Phase | 6 | 6 | 3 | 8 | 4 | | Switch Phase | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 4.0 | 10.0 | 10.0 | | Minimum Split (s) | 28.0 | 28.0 | 10.0 | 45.0 | 45.0 | | Total Split (s) | 54.0 | 54.0 | 10.0 | 58.0 | 48.0 | | Total Split (%) | 48.2% | 48.2% | 8.9% | 51.8% | 42.9% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 2.0 | 2.0 | 2.0 | 4.0 | 4.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 6.0 | 6.0 | 8.0 | 8.0 | | Lead/Lag | | | Lead | | Lag | | Lead-Lag Optimize? | | | Yes | | Yes | | Recall Mode | C-Max | C-Max | None | None | Ped | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 102 (91%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 85 Control Type: Actuated-Coordinated Splits and Phases: 209: Gardiner WB On-Ramp & York Street | | ← | 1 | † | ↓ | 4 | |----------------------|-------|-------|------------|----------|--------| | Lane Group | WBT | NBL | NBT | SBT | SBR | | Lane Configurations | नीकि | ሻ | 十 十 | † | 77 | | Volume (vph) | 2220 | 115 | 525 | 335 | 455 | | Turn Type | | Perm | | | custom | | Protected Phases | 6 | | 8 | 4 | 3 | | Permitted Phases | | 8 | | | | | Detector Phase | 6 | 8 | 8 | 4 | 3 | | Switch Phase | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 10.0 | 7.0 | | Minimum Split (s) | 28.0 | 31.0 | 31.0 | 31.0 | 25.0 | | Total Split (s) | 56.0 | 56.0 | 56.0 | 31.0 | 25.0 | | Total Split (%) | 50.0% | 50.0% | 50.0% | 27.7% | 22.3% | | Yellow Time (s) | 4.0 | 7.0 | 7.0 | 7.0 | 4.0 | | All-Red Time (s) | 3.0 | 0.0 | 0.0 | 0.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | Lead/Lag | | | | Lead | Lag | | Lead-Lag Optimize? | | | | Yes | Yes | | Recall Mode | C-Max | Ped | Ped | Ped | Max | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 79 (71%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 85 Control Type: Actuated-Coordinated Splits and Phases: 214: Lake Shore Boulevard & Bay Street | | • | 1 | Ť | ↓ | | |----------------------|-------|-------|------------|------------|------| | Lane Group | WBT | NBL | NBT | SBT | ø2 | | Lane Configurations | 414 | ķ | † † | ↑ Ъ | | | Volume (vph) | 1925 | 170 | 705 | 200 | | | Turn Type | | pm+pt | | | | | Protected Phases | 6 | 3 | 8 | 4 | 2 | | Permitted Phases | | 8 | | | | | Detector Phase | 6 | 3 | 8 | 4 | | | Switch Phase | | | | | | | Minimum Initial (s) | 10.0 | 6.0 | 10.0 | 10.0 | 4.0 | | Minimum Split (s) | 29.0 | 10.0 | 31.0 | 31.0 | 24.0 | | Total Split (s) | 63.0 | 11.0 | 49.0 | 38.0 | 63.0 | | Total Split (%) | 56.3% | 9.8% | 43.8% | 33.9% | 56% | | Yellow Time (s) | 4.0 | 3.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 1.0 | 3.0 | 3.0 | 2.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Lost Time (s) | 7.0 | 4.0 | 7.0 | 7.0 | | | Lead/Lag | | Lead | | Lag | | | Lead-Lag Optimize? | | Yes | | Yes | | | Recall Mode | C-Max | None | Ped | Ped | None | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 64 (57%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 90 Control Type: Actuated-Coordinated Splits and Phases: 218: Lake Shore Boulevard & Yonge Street | | - | † | - | ↓ | |----------------------|-------|----------|-------|----------| | Lane Group | EBT | NBT | SBL | SBT | | Lane Configurations | ተተጉ | ^ | ň | † | | Volume (vph) | 1265 | 795 | 470 | 165 | | Turn Type | | | pm+pt | | | Protected Phases | 2 | 8 | 7 | 4 | | Permitted Phases | | | 4 | | | Detector Phase | 2 | 8 | 7 | 4 | | Switch Phase | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 12.0 | 10.0 | | Minimum Split (s) | 27.0 | 27.0 | 16.0 | 27.0 | | Total Split (s) | 41.0 | 37.0 | 34.0 | 71.0 | | Total Split (%) | 36.6% | 33.0% | 30.4% | 63.4% | | Yellow Time (s) | 4.0 | 4.0 | 2.0 | 4.0 | | All-Red Time (s) | 2.0 | 4.0 | 2.0 | 4.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 8.0 | 4.0 | 8.0 | | Lead/Lag | | Lag | Lead | | | Lead-Lag Optimize? | | Yes | Yes | | | Recall Mode | C-Max | Ped | None | Ped | | | | | | | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 111 (99%), Referenced to phase 2:EBT, Start of Green Natural Cycle: 75 Control Type: Actuated-Coordinated Splits and Phases: 210: Lake Shore Boulevard & York Street | | • | - | † | - | ↓ | / | 4 | |----------------------|-------|-------|------------|-------|----------|--------|--------| | Lane Group | EBL | EBT | NBT | SBL | SBT | NER | NER2 | | Lane Configurations | Ť | 41∱ | ∱ } | Ţ | ^ | 7 | 7 | | Volume (vph) | 870 | 1215 | 400 | 275 | 140 | 695 | 75 | | Turn Type | Perm | | | pm+pt | | custom | custom | | Protected Phases | | 2 | 8 | 7 | 4 | | | | Permitted Phases | 2 | | | 4 | | 2 | 2 | | Detector Phase | 2 | 2 | 8 | 7 | 4 | 2 | 2 | | Switch Phase | | | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 4.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 25.0 | 25.0 | 26.0 | 10.0 | 26.0 | 25.0 | 25.0 | | Total Split (s) | 66.0 | 66.0 | 26.0 | 20.0 | 46.0 | 66.0 | 66.0 | | Total Split (%) | 58.9% | 58.9% | 23.2% | 17.9% | 41.1% | 58.9% | 58.9% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 3.0 | 3.0 | 2.0 | 3.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 6.0 | 7.0 | 7.0 | 7.0 | | Lead/Lag | | | Lag | Lead | | | | | Lead-Lag Optimize? | | | Yes | Yes | | | | | Recall Mode | C-Max | C-Max | Ped | None | Ped | C-Max | C-Max | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 0 (0%), Referenced to phase 2:EBTL, Start of Green Natural Cycle: 90 Control Type: Actuated-Coordinated Splits and Phases: 213: Lake Shore Boulevard & Bay Street | | † | ļ | <i>•</i> | × | |-------------------------------|------------|----------|------------|-------| | Lane Group | NBT | SBT | NEL | NET | | Lane Configurations | ↑ ↑ | ^ | ሻ | 41 | | Volume (vph) | 110 | 300 | 750 | 1390 | | Turn Type | | | Perm | | | Protected Phases | 8 | 4 | | 2 | | Permitted Phases | | | 2 | | | Detector Phase | 8 | 4 | 2 | 2 | | Switch Phase | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 33.0 | 33.0 | 44.0 | 44.0 | | Total Split (s) | 33.0 | 33.0 | 79.0 | 79.0 | | Total Split (%) | 29.5% | 29.5% | 70.5% | 70.5% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 3.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 7.0 | | Lead/Lag | | | | | | Lead-Lag Optimize? | | | | | | Recall Mode | Ped | Ped | C-Max | C-Max | | Intersection Summary | | | | | | Cycle Length: 112 | | | | | | Actuated Cycle Length: 112 | | | | | | Offset: 4 (4%), Referenced to | | NETL. St | art of Gre | en | Offset: 4 (4%), Ref Natural Cycle: 80 Control Type: Actuated-Coordinated Splits and Phases: 217: Yonge Street &
Lake Shore Boulevard # F4 South Side One-Way | | ← | • | 1 | | | |----------------------|-------|-------|--------|------|------| | Lane Group | WBT | WBR | SBR | ø21 | ø22 | | | VVD1 | ₩ ₩ | JUIN | ושע | WZZ | | Lane Configurations | T | | | | | | Volume (vph) | 355 | 100 | 60 | | | | Turn Type | | Perm | custom | | | | Protected Phases | 6 | | | 21 | 22 | | Permitted Phases | | 6 | 4 | | | | Detector Phase | 6 | 6 | 4 | | | | Switch Phase | | | | | | | Minimum Initial (s) | 36.0 | 36.0 | 35.0 | 7.0 | 7.0 | | Minimum Split (s) | 43.0 | 43.0 | 42.0 | 14.0 | 14.0 | | Total Split (s) | 50.0 | 50.0 | 42.0 | 14.0 | 14.0 | | Total Split (%) | 41.7% | 41.7% | 35.0% | 12% | 12% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | | | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | | | | Lead/Lag | | | | | | | Lead-Lag Optimize? | | | | | | | Recall Mode | C-Max | C-Max | Ped | None | None | Cycle Length: 120 Actuated Cycle Length: 120 Offset: 37 (31%), Referenced to phase 6:WBT, Start of Green Natural Cycle: 115 | | • | ← | 4 | 4 | | | | | |----------------------|-------|------------|-------|--------|-------|------|------|--| | Lane Group | WBL | WBT | NBL | SBR | ø2 | ø4 | ø10 | | | Lane Configurations | Ť | ↑ ↑ | * | 7 | | | | | | Volume (vph) | 5 | 385 | 5 | 70 | | | | | | Turn Type | Prot | | Prot | custom | | | | | | Protected Phases | 1 | 6 | 8 | 4 10 | 2 | 4 | 10 | | | Permitted Phases | | | | | | | | | | Detector Phase | 1 | 6 | 8 | 4 10 | | | | | | Switch Phase | | | | | | | | | | Minimum Initial (s) | 7.0 | 10.0 | 10.0 | | 10.0 | 10.0 | 10.0 | | | Minimum Split (s) | 14.0 | 24.0 | 17.0 | | 24.0 | 17.0 | 17.0 | | | Total Split (s) | 14.0 | 69.0 | 17.0 | 34.0 | 55.0 | 17.0 | 17.0 | | | Total Split (%) | 11.7% | 57.5% | 14.2% | 28.3% | 46% | 14% | 14% | | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | | 4.0 | 4.0 | 4.0 | | | All-Red Time (s) | 3.0 | 2.0 | 3.0 | | 2.0 | 2.0 | 2.0 | | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | Total Lost Time (s) | 7.0 | 6.0 | 7.0 | 6.0 | | | | | | Lead/Lag | Lead | | | | Lag | | | | | Lead-Lag Optimize? | Yes | | | | Yes | | | | | Recall Mode | None | C-Max | None | | C-Max | None | None | | Cycle Length: 120 Actuated Cycle Length: 120 Offset: 42 (35%), Referenced to phase 2:Hold and 6:WBT, Start of Green Natural Cycle: 90 | | ← | Ţ | | | | |----------------------|-------|-------|------|-------|------| | | | • | | | | | Lane Group | WBT | SBT | ø1 | ø2 | ø8 | | Lane Configurations | ተኈ | ₽ | | | | | Volume (vph) | 400 | 0 | | | | | Turn Type | | | | | | | Protected Phases | 6 | 4 | 1 | 2 | 8 | | Permitted Phases | | | | | | | Detector Phase | 6 | 4 | | | | | Switch Phase | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 7.0 | 10.0 | 10.0 | | Minimum Split (s) | 24.0 | 25.0 | 14.0 | 24.0 | 25.0 | | Total Split (s) | 85.0 | 35.0 | 14.0 | 71.0 | 35.0 | | Total Split (%) | 70.8% | 29.2% | 12% | 59% | 29% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 2.0 | 3.0 | 3.0 | 2.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | | | | | Total Lost Time (s) | 6.0 | 7.0 | | | | | Lead/Lag | | | Lead | Lag | | | Lead-Lag Optimize? | | | Yes | Yes | | | Recall Mode | C-Max | Ped | None | C-Max | Ped | Cycle Length: 120 Actuated Cycle Length: 120 Offset: 14 (12%), Referenced to phase 2:Hold and 6:WBT, Start of Green Natural Cycle: 65 Control Type: Actuated-Coordinated Splits and Phases: 105: Queens Quay & Beer Store | | • | ← | 4 | † | ↓ | | |----------------------|-------|------------|-------|----------|----------|-------| | Lane Group | WBL | WBT | NBL | NBT | SBT | ø2 | | Lane Configurations | 7 | ↑ ↑ | | ર્ન | - f | | | Volume (vph) | 20 | 330 | 10 | 40 | 45 | | | Turn Type | Prot | | Perm | | | | | Protected Phases | 1 | 6 | | 8 | 4 | 2 | | Permitted Phases | | | 8 | | | | | Detector Phase | 1 | 6 | 8 | 8 | 4 | | | Switch Phase | | | | | | | | Minimum Initial (s) | 7.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 14.0 | 24.0 | 34.0 | 34.0 | 34.0 | 24.0 | | Total Split (s) | 14.0 | 86.0 | 34.0 | 34.0 | 34.0 | 72.0 | | Total Split (%) | 11.7% | 71.7% | 28.3% | 28.3% | 28.3% | 60% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 2.0 | 3.0 | 3.0 | 3.0 | 2.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Lost Time (s) | 7.0 | 6.0 | 7.0 | 7.0 | 7.0 | | | Lead/Lag | Lead | | | | | Lag | | Lead-Lag Optimize? | Yes | | | | | Yes | | Recall Mode | None | C-Max | Ped | Ped | Ped | C-Max | Cycle Length: 120 Actuated Cycle Length: 120 Offset: 0 (0%), Referenced to phase 2:Hold and 6:WBT, Start of Green Natural Cycle: 75 Control Type: Actuated-Coordinated Description: Queen's Quay / Rees / Radisson West Splits and Phases: 107: Queens Quay & Rees Street | | • | ← | † | ↓ | | |----------------------|-------|------------|----------|----------|-------| | Lane Group | WBL | WBT | NBT | SBT | ø2 | | Lane Configurations | Ť | ↑ ↑ | | f) | | | Volume (vph) | 55 | 395 | 5 | 35 | | | Turn Type | Prot | | | | | | Protected Phases | 1 | 6 | 8 | 4 | 2 | | Permitted Phases | | | | | | | Detector Phase | 1 | 6 | 8 | 4 | | | Switch Phase | | | | | | | Minimum Initial (s) | 7.0 | 10.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 14.0 | 38.0 | 36.0 | 36.0 | 24.0 | | Total Split (s) | 17.0 | 84.0 | 36.0 | 36.0 | 67.0 | | Total Split (%) | 14.2% | 70.0% | 30.0% | 30.0% | 56% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 2.0 | 3.0 | 3.0 | 2.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Lost Time (s) | 7.0 | 6.0 | 7.0 | 7.0 | | | Lead/Lag | Lead | | | | Lag | | Lead-Lag Optimize? | Yes | | | | Yes | | Recall Mode | None | C-Max | Ped | Ped | C-Max | Cycle Length: 120 Actuated Cycle Length: 120 Offset: 0 (0%), Referenced to phase 2:Hold and 6:WBT, Start of Green Natural Cycle: 75 Control Type: Actuated-Coordinated Description: Queen's Quay / Lower Simcoe / Harbourfront East Splits and Phases: 111: Queens Quay & Lower Simcoe | | • | ← | 1 | | |----------------------|-------|----------|-------|-------| | Lane Group | WBL | WBT | NBL | ø2 | | Lane Configurations | ሻ | ^ | ሻ | | | Volume (vph) | 20 | 530 | 20 | | | Turn Type | Prot | | | | | Protected Phases | 1 | 6 | 8 | 2 | | Permitted Phases | | | | | | Detector Phase | 1 | 6 | 8 | | | Switch Phase | | | | | | Minimum Initial (s) | 7.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 14.0 | 24.0 | 25.0 | 24.0 | | Total Split (s) | 17.0 | 84.0 | 36.0 | 67.0 | | Total Split (%) | 14.2% | 70.0% | 30.0% | 56% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 2.0 | 3.0 | 2.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | | | Total Lost Time (s) | 7.0 | 6.0 | 7.0 | | | Lead/Lag | Lead | | | Lag | | Lead-Lag Optimize? | Yes | | | Yes | | Recall Mode | None | C-Max | Ped | C-Max | | Intersection Summary | | | | | Cycle Length: 120 Actuated Cycle Length: 120 Offset: 14 (12%), Referenced to phase 2:Hold and 6:WBT, Start of Green Natural Cycle: 65 ### 115: Queens Quay & York Street | | • | ← | 4 | † | - | ļ | 1 | |----------------------|-------|------------|-------|----------|-------|---------|-------| | Lane Group | WBL | WBT | NBL | NBT | SBL | SBT | SBR | | Lane Configurations | , j | ↑ ↑ | | 4 | 7 | | 7 | | Volume (vph) | 30 | 425 | 45 | 60 | 540 | 30 | 100 | | Turn Type | Perm | | Perm | | pm+pt | | Perm | | Protected Phases | | 6 | | 8 | 7 | 4 | | | Permitted Phases | 6 | | 8 | | 4 | | 4 | | Detector Phase | 6 | 6 | 8 | 8 | 7 | 4 | 4 | | Switch Phase | | | | | | | | | Minimum Initial (s) | 25.0 | 25.0 | 28.0 | 28.0 | 4.0 | 28.0 | 28.0 | | Minimum Split (s) | 32.0 | 32.0 | 35.0 | 35.0 | 10.0 | 35.0 | 35.0 | | Total Split (s) | 41.0 | 41.0 | 35.0 | 35.0 | 44.0 | 79.0 | 79.0 | | Total Split (%) | 34.2% | 34.2% | 29.2% | 29.2% | 36.7% | 65.8% | 65.8% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 2.0 | 2.0 | 3.0 | 3.0 | 2.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 6.0 | 7.0 | 7.0 | 6.0 | 7.0 | 7.0 | | Lead/Lag | | | Lag | Lag | Lead | | | | Lead-Lag Optimize? | | | Yes | Yes | Yes | | | | Recall Mode | C-Max | C-Max | Ped | Ped | None | Ped | Ped | ### Intersection Summary Cycle Length: 120 Actuated Cycle Length: 120 Offset: 112 (93%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 90 ### 119: Queens Quay & Bay Street | | • | - | • | • | 1 | † | - | ļ | |----------------------|-------|-------|-------|------------|-------|----------|-------|-------| | Lane Group | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT | | Lane Configurations | 7 | f) | 7 | ∱ } | | 4 | * | f) | | Volume (vph) | 105 | 450 | 50 | 675 | 5 | 65 | 80 | 10 | | Turn Type | pm+pt | | Perm | | Perm | | Perm | | | Protected Phases | 5 | 2 | | 6 | | 8 | | 4 | | Permitted Phases | 2 | | 6 | | 8 | | 4 | | | Detector Phase | 5 | 2 | 6 | 6 | 8 | 8 | 4 | 4 | | Switch Phase | | | | | | | | | | Minimum Initial (s) | 6.0 | 27.0 | 27.0 | 27.0 | 29.0 | 29.0 | 29.0 | 29.0 | | Minimum Split (s) | 11.0 | 34.0 | 34.0 | 34.0 | 36.0 | 36.0 | 36.0 | 36.0 | | Total Split (s) | 13.0 | 64.0 | 51.0 | 51.0 | 39.0 | 39.0 | 39.0 | 39.0 | | Total Split (%) | 12.6% | 62.1% | 49.5% | 49.5% | 37.9% | 37.9% | 37.9% | 37.9% | | Yellow Time (s) | 3.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 2.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 5.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | Lead/Lag | Lead | | Lag | Lag | | | | | | Lead-Lag Optimize? | Yes | | Yes | Yes | | | | | | Recall Mode | None | C-Max | C-Max | C-Max | Max | Max | Max | Max | ### Intersection Summary Cycle Length: 103 Actuated Cycle Length: 103 Offset: 51 (50%), Referenced to phase 2:EBTL and
6:WBTL, Start of Green Natural Cycle: 85 | | ۶ | → | + | / | 4 | |------------------------------|-------------|----------|------------|------------|----------| | Lane Group | EBL | EBT | WBT | SBL | SBR | | Lane Configurations | ¥ | † | ↑ ↑ | J. | 7 | | Volume (vph) | 95 | 435 | 735 | 155 | 240 | | Turn Type | Perm | | | | Perm | | Protected Phases | | 2 | 6 | 4 | | | Permitted Phases | 2 | | | | 4 | | Detector Phase | 2 | 2 | 6 | 4 | 4 | | Switch Phase | | | | | | | Minimum Initial (s) | 41.0 | 41.0 | 41.0 | 27.0 | 27.0 | | Minimum Split (s) | 47.0 | 47.0 | 47.0 | 33.0 | 33.0 | | Total Split (s) | 68.0 | 68.0 | 68.0 | 35.0 | 35.0 | | Total Split (%) | 66.0% | 66.0% | 66.0% | 34.0% | 34.0% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 3.0 | 3.0 | | All-Red Time (s) | 2.0 | 2.0 | 2.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | | Lead/Lag | | | | | | | Lead-Lag Optimize? | | | | | | | Recall Mode | C-Max | C-Max | C-Max | None | None | | Intersection Summary | | | | | | | Cycle Length: 103 | | | | | | | Actuated Cycle Length: 103 | | | | | | | Offset: 48 (47%), Referenced | d to phase | 2:FBTL | and 6:WB | T. Start o | f Green | | Natural Cycle: 80 | . 10 p.1000 | | | ., otalico | . 3.00.1 | | | ← | • | 1 | | | |----------------------|----------|-------|--------|------|------| | Lane Group | WBT | WBR | SBR | ø21 | ø22 | | Lane Configurations | * | 7 | 7 | | | | Volume (vph) | 580 | 165 | 95 | | | | Turn Type | | Perm | custom | | | | Protected Phases | 6 | | | 21 | 22 | | Permitted Phases | | 6 | 4 | | | | Detector Phase | 6 | 6 | 4 | | | | Switch Phase | | | | | | | Minimum Initial (s) | 36.0 | 36.0 | 35.0 | 7.0 | 7.0 | | Minimum Split (s) | 43.0 | 43.0 | 42.0 | 14.0 | 14.0 | | Total Split (s) | 50.0 | 50.0 | 42.0 | 14.0 | 14.0 | | Total Split (%) | 41.7% | 41.7% | 35.0% | 12% | 12% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | | | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | | | | Lead/Lag | | | | | | | Lead-Lag Optimize? | | | | | | | Recall Mode | C-Max | C-Max | Ped | None | None | | | | | | | | Cycle Length: 120 Actuated Cycle Length: 120 Offset: 0 (0%), Referenced to phase 6:WBT, Start of Green Natural Cycle: 115 ### 102: Queens Quay & TTC Loop | | • | ← | 1 | 4 | | | | |----------------------|-------|------------|-------|--------|-------|------|------| | Lane Group | WBL | WBT | NBL | SBR | ø2 | ø4 | ø10 | | Lane Configurations | J. | ↑ ↑ | 7 | 7 | | | | | Volume (vph) | 10 | 695 | 5 | 50 | | | | | Turn Type | Prot | | Prot | custom | | | | | Protected Phases | 1 | 6 | 8 | 4 10 | 2 | 4 | 10 | | Permitted Phases | | | | | | | | | Detector Phase | 1 | 6 | 8 | 4 10 | | | | | Switch Phase | | | | | | | | | Minimum Initial (s) | 7.0 | 10.0 | 10.0 | | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 14.0 | 24.0 | 17.0 | | 24.0 | 17.0 | 17.0 | | Total Split (s) | 14.0 | 69.0 | 17.0 | 34.0 | 55.0 | 17.0 | 17.0 | | Total Split (%) | 11.7% | 57.5% | 14.2% | 28.3% | 46% | 14% | 14% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 2.0 | 3.0 | | 2.0 | 2.0 | 2.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Total Lost Time (s) | 7.0 | 6.0 | 7.0 | 6.0 | | | | | Lead/Lag | Lead | | | | Lag | | | | Lead-Lag Optimize? | Yes | | | | Yes | | | | Recall Mode | None | C-Max | None | | C-Max | None | None | ### Intersection Summary Cycle Length: 120 Actuated Cycle Length: 120 Offset: 14 (12%), Referenced to phase 2:Hold and 6:WBT, Start of Green Natural Cycle: 90 | | ← | ţ | | | | |----------------------|------------|-------|------|-------|------| | Lane Group | WBT | SBT | ø1 | ø2 | ø8 | | Lane Configurations | ∱ } | £ | | | · | | Volume (vph) | 755 | 0 | | | | | Turn Type | | | | | | | Protected Phases | 6 | 4 | 1 | 2 | 8 | | Permitted Phases | | | | | | | Detector Phase | 6 | 4 | | | | | Switch Phase | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 7.0 | 10.0 | 10.0 | | Minimum Split (s) | 24.0 | 25.0 | 14.0 | 24.0 | 25.0 | | Total Split (s) | 85.0 | 35.0 | 14.0 | 71.0 | 35.0 | | Total Split (%) | 70.8% | 29.2% | 12% | 59% | 29% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 2.0 | 3.0 | 3.0 | 2.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | | | | | Total Lost Time (s) | 6.0 | 7.0 | | | | | Lead/Lag | | | Lead | Lag | | | Lead-Lag Optimize? | | | Yes | Yes | | | Recall Mode | C-Max | Ped | None | C-Max | Ped | Cycle Length: 120 Actuated Cycle Length: 120 Offset: 14 (12%), Referenced to phase 2:Hold and 6:WBT, Start of Green Natural Cycle: 65 Control Type: Actuated-Coordinated Splits and Phases: 105: Queens Quay & Beer Store ### 107: Queens Quay & Rees Street | | • | ← | 4 | † | ļ | 1 | | |----------------------|-------|------------|-------|----------|----------|-------|-------| | Lane Group | WBL | WBT | NBL | NBT | SBT | SBR | ø2 | | Lane Configurations | 7 | ∱ ∱ | | ર્ન | † | 7 | | | Volume (vph) | 30 | 610 | 15 | 70 | 40 | 165 | | | Turn Type | Prot | | Perm | | | Perm | | | Protected Phases | 1 | 6 | | 8 | 4 | | 2 | | Permitted Phases | | | 8 | | | 4 | | | Detector Phase | 1 | 6 | 8 | 8 | 4 | 4 | | | Switch Phase | | | | | | | | | Minimum Initial (s) | 7.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 14.0 | 24.0 | 34.0 | 34.0 | 34.0 | 34.0 | 24.0 | | Total Split (s) | 14.0 | 86.0 | 34.0 | 34.0 | 34.0 | 34.0 | 72.0 | | Total Split (%) | 11.7% | 71.7% | 28.3% | 28.3% | 28.3% | 28.3% | 60% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 2.0 | 3.0 | 3.0 | 3.0 | 3.0 | 2.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Lost Time (s) | 7.0 | 6.0 | 7.0 | 7.0 | 7.0 | 7.0 | | | Lead/Lag | Lead | | | | | | Lag | | Lead-Lag Optimize? | Yes | | | | | | Yes | | Recall Mode | None | C-Max | Ped | Ped | Ped | Ped | C-Max | ### Intersection Summary Cycle Length: 120 Actuated Cycle Length: 120 Offset: 0 (0%), Referenced to phase 2:Hold and 6:WBT, Start of Green Natural Cycle: 75 Control Type: Actuated-Coordinated Description: Queen's Quay / Rees / Radisson West Splits and Phases: 107: Queens Quay & Rees Street ### 111: Queens Quay & Lower Simcoe | | • | ← | 4 | † | ↓ | | |----------------------|-------|------------|-------|----------|----------|-------| | Lane Group | WBL | WBT | NBL | NBT | SBT | ø2 | | Lane Configurations | , j | ↑ ↑ | 7 | <u></u> | - f | | | Volume (vph) | 25 | 645 | 20 | 80 | 5 | | | Turn Type | Prot | | Perm | | | | | Protected Phases | 1 | 6 | | 8 | 4 | 2 | | Permitted Phases | | | 8 | | | | | Detector Phase | 1 | 6 | 8 | 8 | 4 | | | Switch Phase | | | | | | | | Minimum Initial (s) | 7.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 14.0 | 38.0 | 36.0 | 36.0 | 36.0 | 24.0 | | Total Split (s) | 17.0 | 84.0 | 36.0 | 36.0 | 36.0 | 67.0 | | Total Split (%) | 14.2% | 70.0% | 30.0% | 30.0% | 30.0% | 56% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 2.0 | 3.0 | 3.0 | 3.0 | 2.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Lost Time (s) | 7.0 | 6.0 | 7.0 | 7.0 | 7.0 | | | Lead/Lag | Lead | | | | | Lag | | Lead-Lag Optimize? | Yes | | | | | Yes | | Recall Mode | None | C-Max | Ped | Ped | Ped | C-Max | ### Intersection Summary Cycle Length: 120 Actuated Cycle Length: 120 Offset: 0 (0%), Referenced to phase 2:Hold and 6:WBT, Start of Green Natural Cycle: 75 Control Type: Actuated-Coordinated Description: Queen's Quay / Lower Simcoe / Harbourfront East Splits and Phases: 111: Queens Quay & Lower Simcoe | | • | ← | 1 | | |----------------------------|-------|------------|-------|-------| | Lane Group | WBL | WBT | NBL | ø2 | | Lane Configurations | ሻ | † † | ሻ | | | Volume (vph) | 20 | 785 | 15 | | | Turn Type | Prot | | | | | Protected Phases | 1 | 6 | 8 | 2 | | Permitted Phases | | | | | | Detector Phase | 1 | 6 | 8 | | | Switch Phase | | | | | | Minimum Initial (s) | 7.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 14.0 | 24.0 | 25.0 | 24.0 | | Total Split (s) | 17.0 | 84.0 | 36.0 | 67.0 | | Total Split (%) | 14.2% | 70.0% | 30.0% | 56% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 2.0 | 3.0 | 2.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | | | Total Lost Time (s) | 7.0 | 6.0 | 7.0 | | | Lead/Lag | Lead | | | Lag | | Lead-Lag Optimize? | Yes | | | Yes | | Recall Mode | None | C-Max | Ped | C-Max | | Intersection Summary | | | | | | • | | | | | | Cycle Length: 120 | | | | | | Actuated Cycle Length: 120 | | | | | Offset: 14 (12%), Referenced to phase 2:Hold and 6:WBT, Start of Green Natural Cycle: 65 ### 115: Queens Quay & York Street | | • | ← | 4 | † | - | ļ | 1 | |----------------------|-------|------------|-------|----------|-------|----------|-------| | Lane Group | WBL | WBT | NBL | NBT | SBL | SBT | SBR | | Lane Configurations | 7 | ↑ ↑ | | 4 | 7 | † | 7 | | Volume (vph) | 25 | 700 | 15 | 20 | 480 | 35 | 90 | | Turn Type | Perm | | Perm | | pm+pt | | Perm | | Protected Phases | | 6 | | 8 | 7 | 4 | | | Permitted Phases | 6 | | 8 | | 4 | | 4 | | Detector Phase | 6 | 6 | 8 | 8 | 7 | 4 | 4 | | Switch Phase | | | | | | | | | Minimum Initial (s) | 25.0 | 25.0 | 28.0 | 28.0 | 4.0 | 28.0 | 28.0 | | Minimum Split (s) | 32.0 | 32.0 | 35.0 | 35.0 | 10.0 | 35.0 | 35.0 | | Total Split (s) | 52.0 | 52.0 | 35.0 | 35.0 | 33.0 | 68.0 | 68.0 | | Total Split (%) | 43.3% | 43.3% | 29.2% | 29.2% | 27.5% | 56.7% | 56.7% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 2.0 | 2.0 | 3.0 | 3.0 | 2.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 6.0 | 7.0 | 7.0 | 6.0 | 7.0 | 7.0 | | Lead/Lag | | | Lag | Lag | Lead | | | | Lead-Lag Optimize? | | | Yes | Yes | Yes | | | | Recall Mode
 C-Max | C-Max | Ped | Ped | None | Ped | Ped | ### Intersection Summary Cycle Length: 120 Actuated Cycle Length: 120 Offset: 2 (2%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 90 ### 119: Queens Quay & Bay Street | | • | - | • | • | ~ | † | - | ļ | |----------------------|-------|-------|-------|------------|----------|----------|-------|-------| | Lane Group | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT | | Lane Configurations | 7 | f) | 7 | ∱ } | | 4 | * | f) | | Volume (vph) | 95 | 450 | 50 | 675 | 5 | 20 | 95 | 30 | | Turn Type | pm+pt | | Perm | | Perm | | Perm | | | Protected Phases | 5 | 2 | | 6 | | 8 | | 4 | | Permitted Phases | 2 | | 6 | | 8 | | 4 | | | Detector Phase | 5 | 2 | 6 | 6 | 8 | 8 | 4 | 4 | | Switch Phase | | | | | | | | | | Minimum Initial (s) | 6.0 | 27.0 | 27.0 | 27.0 | 29.0 | 29.0 | 29.0 | 29.0 | | Minimum Split (s) | 11.0 | 34.0 | 34.0 | 34.0 | 36.0 | 36.0 | 36.0 | 36.0 | | Total Split (s) | 16.0 | 67.0 | 51.0 | 51.0 | 36.0 | 36.0 | 36.0 | 36.0 | | Total Split (%) | 15.5% | 65.0% | 49.5% | 49.5% | 35.0% | 35.0% | 35.0% | 35.0% | | Yellow Time (s) | 3.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 2.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 5.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | Lead/Lag | Lead | | Lag | Lag | | | | | | Lead-Lag Optimize? | Yes | | Yes | Yes | | | | | | Recall Mode | None | C-Max | C-Max | C-Max | Max | Max | Max | Max | ### Intersection Summary Cycle Length: 103 Actuated Cycle Length: 103 Offset: 2 (2%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green Natural Cycle: 85 Control Type: Actuated-Coordinated Splits and Phases: 119: Queens Quay & Bay Street # 123: Queens Quay & Yonge Street | | • | → | ← | / | 4 | |-----------------------------|-------|----------|------------|------------|---------| | Lane Group | EBL | EBT | WBT | SBL | SBR | | Lane Configurations | ሻ | † | ↑ ↑ | ሻ | 7 | | Volume (vph) | 120 | 420 | 640 | 390 | 355 | | Turn Type | Perm | | | | Perm | | Protected Phases | | 2 | 6 | 4 | | | Permitted Phases | 2 | | | | 4 | | Detector Phase | 2 | 2 | 6 | 4 | 4 | | Switch Phase | | | | | | | Minimum Initial (s) | 41.0 | 41.0 | 41.0 | 27.0 | 27.0 | | Minimum Split (s) | 47.0 | 47.0 | 47.0 | 33.0 | 33.0 | | Total Split (s) | 59.0 | 59.0 | 59.0 | 44.0 | 44.0 | | Total Split (%) | 57.3% | 57.3% | 57.3% | 42.7% | 42.7% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 3.0 | 3.0 | | All-Red Time (s) | 2.0 | 2.0 | 2.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | | Lead/Lag | | | | | | | Lead-Lag Optimize? | | | | | | | Recall Mode | C-Max | C-Max | C-Max | None | None | | Intersection Summary | | | | | | | Cycle Length: 103 | | | | | | | Actuated Cycle Length: 103 | 3 | | | | | | Offset: 51 (50%), Reference | | 2:EBTL | and 6:WB | T, Start o | f Green | Natural Cycle: 80 | | • | → | † | / | ţ | |----------------------------|-------|-----------------|------------|----------|----------| | Lane Group | EBL | EBT | NBT | SBL | SBT | | Lane Configurations | ሻሻ | ተተ _ጉ | ↑ ↑ | 1,1 | † | | Volume (vph) | 1510 | 3150 | 0 | 245 | 35 | | Turn Type | Split | | | pm+pt | | | Protected Phases | 2 | 2 | 8 | 7 | 4 | | Permitted Phases | | | | 4 | | | Detector Phase | 2 | 2 | 8 | 7 | 4 | | Switch Phase | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 7.0 | 10.0 | | Minimum Split (s) | 96.0 | 96.0 | 24.0 | 24.0 | 24.0 | | Total Split (s) | 96.0 | 96.0 | 24.0 | 24.0 | 48.0 | | Total Split (%) | 66.7% | 66.7% | 16.7% | 16.7% | 33.3% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 3.0 | 4.0 | | All-Red Time (s) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 6.0 | 7.0 | | Lead/Lag | | | Lag | Lead | | | Lead-Lag Optimize? | | | Yes | Yes | | | Recall Mode | C-Max | C-Max | Ped | None | Ped | | Intersection Summary | | | | | | | Cycle Length: 144 | | | | | | | Actuated Cycle Length: 144 | | | | | | | Officety 0 (0%) Deferenced | | EDTI CA | | | | Offset: 0 (0%), Referenced to phase 2:EBTL, Start of Green Natural Cycle: 145 | | • | - | • | *_ | ሻ | † | - | ļ | » J | | |----------------------|-------|----------|-------|--------|-------|----------|-------|-------|------------|--| | Lane Group | EBL | EBT | WBL | WBR | NBL | NBT | SBL | SBT | SBR2 | | | Lane Configurations | 44 | ^ | , j | 777 | 7 | ĵ» | | 414 | 7 | | | Volume (vph) | 525 | 2910 | 10 | 940 | 10 | 65 | 190 | 55 | 10 | | | Turn Type | Prot | | Prot | custom | Perm | | Perm | | Perm | | | Protected Phases | 5 | 2 | 1 | | | 8 | | 4 | | | | Permitted Phases | | | | 6 | 8 | | 4 | | 4 | | | Detector Phase | 5 | 2 | 1 | 6 | 8 | 8 | 4 | 4 | 4 | | | Switch Phase | | | | | | | | | | | | Minimum Initial (s) | 22.0 | 10.0 | 22.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | | Minimum Split (s) | 28.0 | 49.0 | 28.0 | 49.0 | 35.0 | 35.0 | 35.0 | 35.0 | 35.0 | | | Total Split (s) | 28.0 | 49.0 | 28.0 | 49.0 | 35.0 | 35.0 | 35.0 | 35.0 | 35.0 | | | Total Split (%) | 25.0% | 43.8% | 25.0% | 43.8% | 31.3% | 31.3% | 31.3% | 31.3% | 31.3% | | | Yellow Time (s) | 3.0 | 4.0 | 3.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | All-Red Time (s) | 3.0 | 2.0 | 3.0 | 2.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Lost Time (s) | 6.0 | 6.0 | 6.0 | 6.0 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | | | Lead/Lag | Lag | Lead | Lag | Lead | | | | | | | | Lead-Lag Optimize? | Yes | Yes | Yes | Yes | | | | | | | | Recall Mode | None | C-Max | None | C-Max | Ped | Ped | Ped | Ped | Ped | | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 58 (52%), Referenced to phase 2:EBT and 6:WBR, Start of Green Natural Cycle: 115 Control Type: Actuated-Coordinated Splits and Phases: 205: Lake Shore Boulevard & Rees Street # 208: Lake Shore Boulevard & Lower Simcoe | | • | - | 4 | † | - | ↓ | ~ | |----------------------|-------|------------|-------|----------|-------|----------|--------| | Lane Group | EBL2 | EBT | NBL | NBT | SBL | SBT | SWR | | Lane Configurations | 7 | ∱ ∱ | 7 | f) | 7 | f) | 776 | | Volume (vph) | 170 | 1665 | 25 | 0 | 105 | 10 | 1010 | | Turn Type | pm+pt | | Perm | | Perm | | custom | | Protected Phases | 5 | 2 | | 8 | | 4 | | | Permitted Phases | 2 | | 8 | | 4 | | 6 | | Detector Phase | 5 | 2 | 8 | 8 | 4 | 4 | 6 | | Switch Phase | | | | | | | | | Minimum Initial (s) | 7.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 13.0 | 60.0 | 39.0 | 39.0 | 39.0 | 39.0 | 60.0 | | Total Split (s) | 13.0 | 73.0 | 39.0 | 39.0 | 39.0 | 39.0 | 60.0 | | Total Split (%) | 11.6% | 65.2% | 34.8% | 34.8% | 34.8% | 34.8% | 53.6% | | Yellow Time (s) | 3.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 2.0 | 3.0 | 3.0 | 3.0 | 3.0 | 2.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 6.0 | 7.0 | 7.0 | 7.0 | 7.0 | 6.0 | | Lead/Lag | Lead | | | | | | Lag | | Lead-Lag Optimize? | Yes | | | | | | Yes | | Recall Mode | None | C-Max | Ped | Ped | Ped | Ped | C-Max | ### Intersection Summary Cycle Length: 112 Actuated Cycle Length: 112 Offset: 4 (4%), Referenced to phase 2:EBTL and 6:SWR, Start of Green Natural Cycle: 115 Control Type: Actuated-Coordinated Splits and Phases: 208: Lake Shore Boulevard & Lower Simcoe | | / | • | * | † | ļ | |----------------------|-------------|-------|-------|----------|------------| | Lane Group | WBL | WBT | NBL2 | NBT | SBT | | Lane Configurations | <u>ሕ</u> ፕፕ | ħβ | • | ^ | ∱ } | | Volume (vph) | 1090 | 595 | 100 | 785 | 250 | | Turn Type | Split | | pm+pt | | | | Protected Phases | 6 | 6 | 3 | 8 | 4 | | Permitted Phases | | | 8 | | | | Detector Phase | 6 | 6 | 3 | 8 | 4 | | Switch Phase | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 12.0 | 10.0 | 10.0 | | Minimum Split (s) | 42.0 | 42.0 | 15.0 | 55.0 | 55.0 | | Total Split (s) | 42.0 | 42.0 | 15.0 | 70.0 | 55.0 | | Total Split (%) | 37.5% | 37.5% | 13.4% | 62.5% | 49.1% | | Yellow Time (s) | 4.0 | 4.0 | 3.0 | 4.0 | 4.0 | | All-Red Time (s) | 2.0 | 2.0 | 0.0 | 4.0 | 4.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 6.0 | 3.0 | 8.0 | 8.0 | | Lead/Lag | | | Lead | | Lag | | Lead-Lag Optimize? | | | Yes | | Yes | | Recall Mode | C-Max | C-Max | None | None | Ped | | | | | | | | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 6 (5%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 115 | | ← | 4 | † | ↓ | 4 | |----------------------|-------|-------|----------|----------|--------| | Lane Group | WBT | NBL | NBT | SBT | SBR | | Lane Configurations | नाकि | ň | ^ | | 77 | | Volume (vph) | 2005 | 145 | 675 | 245 | 260 | | Turn Type | | Perm | | | custom | | Protected Phases | 6 | | 8 | 4 | 3 | | Permitted Phases | | 8 | | | | | Detector Phase | 6 | 8 | 8 | 4 | 3 | | Switch Phase | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 43.0 | 38.0 | 38.0 | 31.0 | 38.0 | | Total Split (s) | 43.0 | 69.0 | 69.0 | 31.0 | 38.0 | | Total Split (%) | 38.4% | 61.6% | 61.6% | 27.7% | 33.9% | | Yellow Time (s) | 4.0 | 5.0 | 5.0 | 7.0 | 4.0 | | All-Red Time (s) | 3.0 | 2.0 | 2.0 | 0.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | Lead/Lag | | | | Lead | Lag | | Lead-Lag Optimize? | | | | Yes | Yes | | Recall Mode | C-Max | Ped | Ped | Ped | Max | | | | | | | | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 96 (86%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 115 ## 218: Lake Shore Boulevard & Yonge Street | | ← | 4 | † | ļ | |----------------------|---------------|-------|----------
------------| | Lane Group | WBT | NBL | NBT | SBT | | Lane Configurations | 4 † †} | ሻ | ^ | ↑ ₽ | | Volume (vph) | 2060 | 110 | 1170 | 125 | | Turn Type | | pm+pt | | | | Protected Phases | 6 | 3 | 8 | 4 | | Permitted Phases | | 8 | | | | Detector Phase | 6 | 3 | 8 | 4 | | Switch Phase | | | | | | Minimum Initial (s) | 10.0 | 6.0 | 10.0 | 10.0 | | Minimum Split (s) | 54.0 | 10.0 | 48.0 | 48.0 | | Total Split (s) | 54.0 | 10.0 | 58.0 | 48.0 | | Total Split (%) | 48.2% | 8.9% | 51.8% | 42.9% | | Yellow Time (s) | 4.0 | 3.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 1.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 7.0 | 4.0 | 7.0 | 7.0 | | Lead/Lag | | Lead | | Lag | | Lead-Lag Optimize? | | Yes | | Yes | | Recall Mode | C-Max | None | Ped | Ped | | Intersection Summary | | | | | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 70 (63%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 115 Control Type: Actuated-Coordinated Splits and Phases: 218: Lake Shore Boulevard & Yonge Street | | → | † | - | ļ | |----------------------|-----------------|----------|-------|-------| | Lane Group | EBT | NBT | SBL | SBT | | Lane Configurations | ተተ _ጉ | ^ | | 414 | | Volume (vph) | 1320 | 905 | 165 | 195 | | Turn Type | | | pm+pt | | | Protected Phases | 2 | 8 | 7 | 4 | | Permitted Phases | | | 4 | | | Detector Phase | 2 | 8 | 7 | 4 | | Switch Phase | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 12.0 | 10.0 | | Minimum Split (s) | 45.0 | 51.0 | 16.0 | 51.0 | | Total Split (s) | 45.0 | 51.0 | 16.0 | 67.0 | | Total Split (%) | 40.2% | 45.5% | 14.3% | 59.8% | | Yellow Time (s) | 4.0 | 4.0 | 2.0 | 4.0 | | All-Red Time (s) | 2.0 | 4.0 | 2.0 | 4.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 8.0 | 4.0 | 8.0 | | Lead/Lag | | Lag | Lead | | | Lead-Lag Optimize? | | Yes | Yes | | | Recall Mode | C-Max | Ped | None | Ped | | Intersection Summary | | | | | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 12 (11%), Referenced to phase 2:EBT, Start of Green Natural Cycle: 115 Control Type: Actuated-Coordinated Splits and Phases: 210: Lake Shore Boulevard & York Street ### 213: Lake Shore Boulevard & Bay Street | | ۶ | - | † | - | ţ | / | 4 | |----------------------|-------|-------|------------|-------|----------|--------|--------| | Lane Group | EBL | EBT | NBT | SBL | SBT | NER | NER2 | | Lane Configurations | 7 | 41₽ | ∱ } | 7 | ^ | 7 | 7 | | Volume (vph) | 830 | 1120 | 340 | 180 | 275 | 635 | 180 | | Turn Type | Perm | | | Perm | | custom | custom | | Protected Phases | | 2 | 8 | | 4 | | | | Permitted Phases | 2 | | | 4 | | 2 | 2 | | Detector Phase | 2 | 2 | 8 | 4 | 4 | 2 | 2 | | Switch Phase | | | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 66.0 | 66.0 | 46.0 | 46.0 | 46.0 | 66.0 | 66.0 | | Total Split (s) | 66.0 | 66.0 | 46.0 | 46.0 | 46.0 | 66.0 | 66.0 | | Total Split (%) | 58.9% | 58.9% | 41.1% | 41.1% | 41.1% | 58.9% | 58.9% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | Lead/Lag | | | | | | | | | Lead-Lag Optimize? | | | | | | | | | Recall Mode | C-Max | C-Max | Ped | Ped | Ped | C-Max | C-Max | | I-t | | | | | | | | #### Intersection Summary Cycle Length: 112 Actuated Cycle Length: 112 Offset: 4 (4%), Referenced to phase 2:EBTL, Start of Green Natural Cycle: 115 Control Type: Actuated-Coordinated Splits and Phases: 213: Lake Shore Boulevard & Bay Street | | † | | • | × | |-----------------------------|-------------|----------|------------|-------| | Lane Group | NBT | SBT | NEL | NET | | Lane Configurations | ∱ 1≽ | ^ | * | 41 | | Volume (vph) | 165 | 230 | 1100 | 700 | | Turn Type | | | Perm | | | Protected Phases | 8 | 4 | | 2 | | Permitted Phases | | | 2 | | | Detector Phase | 8 | 4 | 2 | 2 | | Switch Phase | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 50.0 | 50.0 | 62.0 | 62.0 | | Total Split (s) | 50.0 | 50.0 | 62.0 | 62.0 | | Total Split (%) | 44.6% | 44.6% | 55.4% | 55.4% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 3.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 7.0 | | Lead/Lag | | | | | | Lead-Lag Optimize? | | | | | | Recall Mode | Ped | Ped | C-Max | C-Max | | Intersection Summary | | | | | | Cycle Length: 112 | | | | | | Actuated Cycle Length: 112 |) | | | | | Offset: 13 (12%), Reference | | 2:NETL, | Start of C | Green | Natural Cycle: 115 Control Type: Actuated-Coordinated Splits and Phases: 217: Yonge Street & Lake Shore Boulevard | | ۶ | → | † | > | ļ | |----------------------|-------|-----------------|------------|-------------|----------| | Lane Group | EBL | EBT | NBT | SBL | SBT | | Lane Configurations | 44 | ተተ _ጉ | ∱ } | 44 | † | | Volume (vph) | 895 | 2735 | 130 | 380 | 5 | | Turn Type | Split | | | Prot | | | Protected Phases | 2 | 2 | 8 | 7 | 4 | | Permitted Phases | | | | | | | Detector Phase | 2 | 2 | 8 | 7 | 4 | | Switch Phase | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 4.0 | 10.0 | | Minimum Split (s) | 51.0 | 51.0 | 24.0 | 10.0 | 24.0 | | Total Split (s) | 71.0 | 71.0 | 24.0 | 17.0 | 41.0 | | Total Split (%) | 63.4% | 63.4% | 21.4% | 15.2% | 36.6% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 3.0 | 3.0 | 2.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 6.0 | 7.0 | | Lead/Lag | | | Lag | Lead | | | Lead-Lag Optimize? | | | Yes | Yes | | | Recall Mode | C-Max | C-Max | Ped | None | Ped | | Intersection Summary | | | | | | | Cycle Length: 112 | | | | | | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 111 (99%), Referenced to phase 2:EBTL, Start of Green Natural Cycle: 85 Control Type: Actuated-Coordinated Splits and Phases: 201: Lake Shore Boulevard & Spadina Avenue | | • | - | • | *_ | ሻ | † | - | ţ | ₩ J | | |----------------------|-------|----------|-------|--------|-------|------------|-------|---------|------------|--| | Lane Group | EBL | EBT | WBL | WBR | NBL | NBT | SBL | SBT | SBR2 | | | Lane Configurations | 44 | ^ | , j | 776 | | ↑ ↑ | * | | 7 | | | Volume (vph) | 300 | 2785 | 25 | 1815 | 25 | 65 | 460 | 115 | 30 | | | Turn Type | Prot | | Prot | custom | Perm | | pm+pt | | Perm | | | Protected Phases | 5 | 2 | 1 | | | 8 | 7 | 4 | | | | Permitted Phases | | | | 6 | 8 | | 4 | | 4 | | | Detector Phase | 5 | 2 | 1 | 6 | 8 | 8 | 7 | 4 | 4 | | | Switch Phase | | | | | | | | | | | | Minimum Initial (s) | 6.0 | 10.0 | 6.0 | 10.0 | 10.0 | 10.0 | 7.0 | 10.0 | 10.0 | | | Minimum Split (s) | 12.0 | 34.0 | 12.0 | 34.0 | 35.0 | 35.0 | 12.0 | 35.0 | 35.0 | | | Total Split (s) | 13.0 | 53.0 | 12.0 | 52.0 | 35.0 | 35.0 | 12.0 | 47.0 | 47.0 | | | Total Split (%) | 11.6% | 47.3% | 10.7% | 46.4% | 31.3% | 31.3% | 10.7% | 42.0% | 42.0% | | | Yellow Time (s) | 3.0 | 4.0 | 3.0 | 4.0 | 4.0 | 4.0 | 5.0 | 4.0 | 4.0 | | | All-Red Time (s) | 3.0 | 2.0 | 3.0 | 2.0 | 4.0 | 4.0 | 0.0 | 4.0 | 4.0 | | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Lost Time (s) | 6.0 | 6.0 | 6.0 | 6.0 | 8.0 | 8.0 | 5.0 | 8.0 | 8.0 | | | Lead/Lag | Lag | Lead | Lag | Lead | Lag | Lag | Lead | | | | | Lead-Lag Optimize? | Yes | | | | Recall Mode | None | C-Max | None | C-Max | Ped | Ped | None | Ped | Ped | | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBR, Start of Green Natural Cycle: 95 Control Type: Actuated-Coordinated Splits and Phases: 205: Lake Shore Boulevard & Rees Street | | • | - | 4 | † | - | ļ | ~ | |----------------------|-------|------------|-------|----------|-------|-------|--------| | Lane Group | EBL2 | EBT | NBL | NBT | SBL | SBT | SWR | | Lane Configurations | ሻ | ↑ ↑ | 7 | + | 7 | ą. | 772 | | Volume (vph) | 175 | 1620 | 80 | 30 | 170 | 30 | 1820 | | Turn Type | Prot | | Perm | | Perm | | custom | | Protected Phases | 5 | 2 | | 8 | | 4 | | | Permitted Phases | | | 8 | | 4 | | 6 | | Detector Phase | 5 | 2 | 8 | 8 | 4 | 4 | 6 | | Switch Phase | | | | | | | | | Minimum Initial (s) | 7.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 13.0 | 60.0 | 39.0 | 39.0 | 39.0 | 39.0 | 60.0 | | Total Split (s) | 13.0 | 73.0 | 39.0 | 39.0 | 39.0 | 39.0 | 60.0 | | Total Split (%) | 11.6% | 65.2% | 34.8% | 34.8% | 34.8% | 34.8% | 53.6% | | Yellow Time (s) | 3.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 2.0 | 3.0 | 3.0 | 3.0 | 3.0 | 2.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 6.0 | 7.0 | 7.0 | 7.0 | 7.0 | 6.0 | | Lead/Lag | Lead | | | | | | Lag | | Lead-Lag Optimize? | Yes | | | | | | Yes | | Recall Mode | None | C-Max | Ped | Ped | Ped | Ped | Max | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 98 (88%), Referenced to phase 2:EBT, Start of Green Natural Cycle: 115 Control Type: Actuated-Coordinated Splits and Phases: 208: Lake Shore Boulevard & Lower Simcoe | | / | ← | * | † | ţ | |----------------------|-------------|------------|-------|----------|------------| | Lane Group | WBL | WBT | NBL2 | NBT | SBT | | Lane Configurations | <u>ሕ</u> ፕፕ | ↑ ↑ | ň | † | ↑ ↑ | | Volume (vph) | 1870 | 655 | 160 | 545 | 585 | | Turn Type | Split | | pm+pt | | | | Protected Phases | 6 | 6 | 3 | 8 | 4 | | Permitted Phases | | | 8 | | | | Detector Phase | 6 | 6 | 3 | 8 | 4 | | Switch Phase | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 4.0 | 10.0 | 10.0 | | Minimum Split (s) | 28.0 | 28.0 | 10.0 | 45.0 | 45.0 | | Total Split (s) |
54.0 | 54.0 | 10.0 | 58.0 | 48.0 | | Total Split (%) | 48.2% | 48.2% | 8.9% | 51.8% | 42.9% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 2.0 | 2.0 | 2.0 | 4.0 | 4.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 6.0 | 6.0 | 8.0 | 8.0 | | Lead/Lag | | | Lead | | Lag | | Lead-Lag Optimize? | | | Yes | | Yes | | Recall Mode | C-Max | C-Max | None | None | Ped | | Intersection Cummen | | | | | | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 0 (0%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 85 | | ← | 4 | † | ļ | 1 | |----------------------|-------|-------|----------|----------|--------| | Lane Group | WBT | NBL | NBT | SBT | SBR | | Lane Configurations | नीकि | ሻ | ^ | † | 77 | | Volume (vph) | 2220 | 115 | 525 | 345 | 455 | | Turn Type | | Perm | | | custom | | Protected Phases | 6 | | 8 | 4 | 3 | | Permitted Phases | | 8 | | | | | Detector Phase | 6 | 8 | 8 | 4 | 3 | | Switch Phase | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 10.0 | 7.0 | | Minimum Split (s) | 28.0 | 31.0 | 31.0 | 31.0 | 25.0 | | Total Split (s) | 55.0 | 57.0 | 57.0 | 32.0 | 25.0 | | Total Split (%) | 49.1% | 50.9% | 50.9% | 28.6% | 22.3% | | Yellow Time (s) | 4.0 | 7.0 | 7.0 | 7.0 | 4.0 | | All-Red Time (s) | 3.0 | 0.0 | 0.0 | 0.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | Lead/Lag | | | | Lead | Lag | | Lead-Lag Optimize? | | | | Yes | Yes | | Recall Mode | C-Max | Ped | Ped | Ped | Max | | Intersection Summary | | | | | | | | | | | | | | Cycle Length: 112 | | | | | | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 89 (79%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 85 | | ← | 4 | † | ţ | |---|---------------|-------|----------|------------| | Lane Group | WBT | NBL | NBT | SBT | | Lane Configurations | 41 † } | ሻ | ^ | ↑ ↑ | | Volume (vph) | 1925 | 170 | 705 | 175 | | Turn Type | | pm+pt | | | | Protected Phases | 6 | 3 | 8 | 4 | | Permitted Phases | | 8 | | | | Detector Phase | 6 | 3 | 8 | 4 | | Switch Phase | | | | | | Minimum Initial (s) | 10.0 | 6.0 | 10.0 | 10.0 | | Minimum Split (s) | 29.0 | 10.0 | 31.0 | 31.0 | | Total Split (s) | 63.0 | 11.0 | 49.0 | 38.0 | | Total Split (%) | 56.3% | 9.8% | 43.8% | 33.9% | | Yellow Time (s) | 4.0 | 3.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 1.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 7.0 | 4.0 | 7.0 | 7.0 | | Lead/Lag | | Lead | | Lag | | Lead-Lag Optimize? | | Yes | | Yes | | Recall Mode | C-Max | None | Ped | Ped | | Intersection Summary | | | | | | Cycle Length: 112 | | | | | | 5 y 5 1 5 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 68 (61%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 90 Control Type: Actuated-Coordinated Splits and Phases: 218: Lake Shore Boulevard & Yonge Street | | - | † | - | ţ | |----------------------|-------|----------|-------|----------| | Lane Group | EBT | NBT | SBL | SBT | | Lane Configurations | ተተጉ | ^ | ሻ | 1 | | Volume (vph) | 1465 | 720 | 470 | 165 | | Turn Type | | | pm+pt | | | Protected Phases | 2 | 8 | 7 | 4 | | Permitted Phases | | | 4 | | | Detector Phase | 2 | 8 | 7 | 4 | | Switch Phase | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 12.0 | 10.0 | | Minimum Split (s) | 27.0 | 27.0 | 16.0 | 27.0 | | Total Split (s) | 53.0 | 31.0 | 28.0 | 59.0 | | Total Split (%) | 47.3% | 27.7% | 25.0% | 52.7% | | Yellow Time (s) | 4.0 | 4.0 | 2.0 | 4.0 | | All-Red Time (s) | 2.0 | 4.0 | 2.0 | 4.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 8.0 | 4.0 | 8.0 | | Lead/Lag | | Lag | Lead | | | Lead-Lag Optimize? | | Yes | Yes | | | Recall Mode | C-Max | Ped | None | Ped | | Intersection Summary | | | | | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 0 (0%), Referenced to phase 2:EBT, Start of Green Natural Cycle: 90 | | • | - | † | - | ↓ | / | 4 | |----------------------|-------|-------|------------|-------|----------|--------|--------| | Lane Group | EBL | EBT | NBT | SBL | SBT | NER | NER2 | | Lane Configurations | * | 41∱ | ∱ } | * | 44 | 7 | 7 | | Volume (vph) | 960 | 1420 | 310 | 295 | 140 | 760 | 75 | | Turn Type | Perm | | | pm+pt | | custom | custom | | Protected Phases | | 2 | 8 | 7 | 4 | | | | Permitted Phases | 2 | | | 4 | | 2 | 2 | | Detector Phase | 2 | 2 | 8 | 7 | 4 | 2 | 2 | | Switch Phase | | | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 4.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 25.0 | 25.0 | 26.0 | 10.0 | 26.0 | 25.0 | 25.0 | | Total Split (s) | 66.0 | 66.0 | 27.0 | 19.0 | 46.0 | 66.0 | 66.0 | | Total Split (%) | 58.9% | 58.9% | 24.1% | 17.0% | 41.1% | 58.9% | 58.9% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 3.0 | 3.0 | 2.0 | 3.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 6.0 | 7.0 | 7.0 | 7.0 | | Lead/Lag | | | Lag | Lead | | | | | Lead-Lag Optimize? | | | Yes | Yes | | | | | Recall Mode | C-Max | C-Max | Ped | None | Ped | C-Max | C-Max | | | | | | | | | | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 0 (0%), Referenced to phase 2:EBTL, Start of Green Natural Cycle: 90 # F5 South Side Two-Way ### 100: Queens Quay & Spadina Avenue | | • | → | • | • | - | 4 | | | | |----------------------|-------|----------|----------|-------|-------|-------|------|------|--| | Lane Group | EBL | EBT | WBT | WBR | SBL | SBR | ø21 | ø22 | | | Lane Configurations | ሻ | | † | 7 | ሻ | 7 | | | | | Volume (vph) | 70 | 555 | 355 | 90 | 120 | 60 | | | | | Turn Type | Perm | | | Perm | | Perm | | | | | Protected Phases | | 2 | 6 | | 4 | | 21 | 22 | | | Permitted Phases | 2 | | | 6 | | 4 | | | | | Detector Phase | 2 | 2 | 6 | 6 | 4 | 4 | | | | | Switch Phase | | | | | | | | | | | Minimum Initial (s) | 4.0 | 4.0 | 10.0 | 10.0 | 10.0 | 10.0 | 7.0 | 7.0 | | | Minimum Split (s) | 24.0 | 24.0 | 31.0 | 31.0 | 44.0 | 44.0 | 14.0 | 14.0 | | | Total Split (s) | 48.0 | 48.0 | 48.0 | 48.0 | 44.0 | 44.0 | 14.0 | 14.0 | | | Total Split (%) | 40.0% | 40.0% | 40.0% | 40.0% | 36.7% | 36.7% | 12% | 12% | | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | All-Red Time (s) | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 3.0 | 3.0 | | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Total Lost Time (s) | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | | | | | Lead/Lag | | | | | | | | | | | Lead-Lag Optimize? | | | | | | | | | | | Recall Mode | C-Max | C-Max | C-Max | C-Max | Ped | Ped | None | None | | ### Intersection Summary Cycle Length: 120 Actuated Cycle Length: 120 Offset: 25 (21%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 105 ### 102: Queens Quay & TTC Loop | | • | → | • | ← | † | ↓ | | | | |----------------------|-------|----------|-------|-------|----------|----------|------|------|--| | Lane Group | EBL | EBT | WBL | WBT | NBT | SBT | ø4 | ø10 | | | Lane Configurations | 7 | † | * | £ | 4 | 4 | | | | | Volume (vph) | 25 | 650 | 5 | 375 | 0 | 0 | | | | | Turn Type | pm+pt | | Prot | | | | | | | | Protected Phases | 5 | 2 | 1 | 6 | 8 | 4 10 | 4 | 10 | | | Permitted Phases | 2 | | | | | | | | | | Detector Phase | 5 | 2 | 1 | 6 | 8 | 4 10 | | | | | Switch Phase | | | | | | | | | | | Minimum Initial (s) | 6.0 | 10.0 | 7.0 | 10.0 | 10.0 | | 10.0 | 10.0 | | | Minimum Split (s) | 12.0 | 24.0 | 14.0 | 24.0 | 17.0 | | 17.0 | 17.0 | | | Total Split (s) | 12.0 | 55.0 | 14.0 | 57.0 | 17.0 | 34.0 | 17.0 | 17.0 | | | Total Split (%) | 10.0% | 45.8% | 11.7% | 47.5% | 14.2% | 28.3% | 14% | 14% | | | Yellow Time (s) | 3.0 | 4.0 | 4.0 | 4.0 | 4.0 | | 4.0 | 4.0 | | | All-Red Time (s) | 0.0 | 2.0 | 3.0 | 2.0 | 3.0 | | 2.0 | 2.0 | | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Total Lost Time (s) | 3.0 | 6.0 | 7.0 | 6.0 | 7.0 | 6.0 | | | | | Lead/Lag | Lead | Lag | Lead | Lag | | | | | | | Lead-Lag Optimize? | | | | | | | | | | | Recall Mode | None | C-Max | None | C-Max | None | | None | None | | ### Intersection Summary Cycle Length: 120 Actuated Cycle Length: 120 Offset: 30 (25%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 90 ### 105: Queens Quay & Beer Store | | → | ← | - | ↓ | | | |----------------------|----------|-------|-------|----------|------|------| | Lane Group | EBT | WBT | SBL | SBT | ø1 | ø8 | | Lane Configurations | † | £ | | 4 | | | | Volume (vph) | 650 | 375 | 10 | 0 | | | | Turn Type | | | Perm | | | | | Protected Phases | 2 | 6 | | 4 | 1 | 8 | | Permitted Phases | | | 4 | | | | | Detector Phase | 2 | 6 | 4 | 4 | | | | Switch Phase | | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 10.0 | 7.0 | 10.0 | | Minimum Split (s) | 24.0 | 24.0 | 30.0 | 30.0 | 14.0 | 30.0 | | Total Split (s) | 76.0 | 90.0 | 30.0 | 30.0 | 14.0 | 30.0 | | Total Split (%) | 63.3% | 75.0% | 25.0% | 25.0% | 12% | 25% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 2.0 | 2.0 | 3.0 | 3.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | | | | Total Lost Time (s) | 6.0 | 6.0 | 7.0 | 7.0 | | | | Lead/Lag | Lag | | | | Lead | | | Lead-Lag Optimize? | | | | | | | | Recall Mode | C-Max | C-Max | Ped | Ped | None | Ped | ### Intersection Summary Cycle Length: 120 Actuated Cycle Length: 120 Offset: 40 (33%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 90 ### 107: Queens Quay & Rees Street | Lane Group EBL EBT EBR WBT NBL NBT SBL SBT | |---| | Lane Configurations 4 7 5 5 5 | | Volume (vph) 45 580 35 330 10 15 45 30 | | Turn Type Perm custom Perm Perm | | Protected Phases 2 5 6 8 4 | | Permitted Phases 2 8 4 |
| Detector Phase 2 2 5 6 8 4 4 | | Switch Phase | | Minimum Initial (s) 10.0 10.0 7.0 7.0 10.0 10.0 10.0 10.0 | | Minimum Split (s) 31.0 31.0 14.0 31.0 30.0 30.0 30.0 30.0 | | Total Split (s) 90.0 90.0 15.0 75.0 30.0 30.0 30.0 30.0 | | Total Split (%) 75.0% 75.0% 12.5% 62.5% 25.0% 25.0% 25.0% 25.0% | | Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 | | All-Red Time (s) 2.0 2.0 3.0 2.0 3.0 3.0 3.0 | | Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | Total Lost Time (s) 6.0 6.0 7.0 6.0 7.0 7.0 7.0 7.0 | | Lead/Lag Lead Lag | | Lead-Lag Optimize? | | Recall Mode C-Max C-Max None C-Max Ped Ped Ped Ped | ### Intersection Summary Cycle Length: 120 Actuated Cycle Length: 120 Offset: 62 (52%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 90 Control Type: Actuated-Coordinated Description: Queen's Quay / Rees / Radisson West Splits and Phases: 107: Queens Quay & Rees Street ### 111: Queens Quay & Lower Simcoe | | ۶ | - | • | ← | † | - | ļ | |----------------------|-------|----------|-------|----------|----------|-------|-------| | Lane Group | EBL | EBT | WBL | WBT | NBT | SBL | SBT | | Lane Configurations | 7 | ^ | ሻ | 4î | f) | ሻ | ₽ | | Volume (vph) | 80 | 570 | 55 | 375 | 0 | 75 | 35 | | Turn Type | Perm | | Prot | | | Perm | | | Protected Phases | | 2 | 1 | 6 | 8 | | 4 | | Permitted Phases | 2 | | | | | 4 | | | Detector Phase | 2 | 2 | 1 | 6 | 8 | 4 | 4 | | Switch Phase | | | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 7.0 | 10.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 29.0 | 29.0 | 14.0 | 29.0 | 30.0 | 30.0 | 30.0 | | Total Split (s) | 73.0 | 73.0 | 17.0 | 90.0 | 30.0 | 30.0 | 30.0 | | Total Split (%) | 60.8% | 60.8% | 14.2% | 75.0% | 25.0% | 25.0% | 25.0% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 2.0 | 2.0 | 3.0 | 2.0 | 3.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 6.0 | 7.0 | 6.0 | 7.0 | 7.0 | 7.0 | | Lead/Lag | Lag | Lag | Lead | | | | | | Lead-Lag Optimize? | | | | | | | | | Recall Mode | C-Max | C-Max | None | C-Max | Ped | Ped | Ped | ### Intersection Summary Cycle Length: 120 Actuated Cycle Length: 120 Offset: 80 (67%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 80 Control Type: Actuated-Coordinated Description: Queen's Quay / Lower Simcoe / Harbourfront East Splits and Phases: 111: Queens Quay & Lower Simcoe ### 114: Queens Quay & Queen's Quay Terminal | | - | • | • | 1 | ~ | |----------------------|----------|--------|----------|-------|-------| | Lane Group | EBT | EBR | WBT | NBL | NBR | | Lane Configurations | † | 7 | † | Ť | 7 | | Volume (vph) | 630 | 20 | 510 | 5 | 15 | | Turn Type | | custom | | | Perm | | Protected Phases | 2 | 5 | 6 | 8 | | | Permitted Phases | | | | | 8 | | Detector Phase | 2 | 5 | 6 | 8 | 8 | | Switch Phase | | | | | | | Minimum Initial (s) | 10.0 | 7.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 29.0 | 14.0 | 29.0 | 30.0 | 30.0 | | Total Split (s) | 90.0 | 16.0 | 74.0 | 30.0 | 30.0 | | Total Split (%) | 75.0% | 13.3% | 61.7% | 25.0% | 25.0% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 2.0 | 3.0 | 2.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 7.0 | 6.0 | 7.0 | 7.0 | | Lead/Lag | | Lead | Lag | | | | Lead-Lag Optimize? | | | | | | | Recall Mode | C-Max | None | C-Max | Ped | Ped | | Intersection Summary | | | | | | #### Intersection Summary Cycle Length: 120 Actuated Cycle Length: 120 Offset: 111 (93%), Referenced to phase 2:EBT and 6:WBT, Start of Green Natural Cycle: 80 ### 115: Queens Quay & York Street | | • | → | • | ← | • | 4 | † | - | ↓ | 1 | | |----------------------|-------|----------|-------|----------|-------|-------|----------|-------|----------|-------|--| | Lane Group | EBL | EBT | WBL | WBT | WBR | NBL | NBT | SBL | SBT | SBR | | | Lane Configurations | 7 | † | * | † | 7 | | 4 | Ť | † | 7 | | | Volume (vph) | 110 | 535 | 30 | 385 | 130 | 45 | 60 | 110 | 30 | 100 | | | Turn Type | Perm | | Prot | | Perm | Perm | | Perm | | Perm | | | Protected Phases | | 2 | 1 | 6 | | | 8 | | 4 | | | | Permitted Phases | 2 | | | | 6 | 8 | | 4 | | 4 | | | Detector Phase | 2 | 2 | 1 | 6 | 6 | 8 | 8 | 4 | 4 | 4 | | | Switch Phase | | | | | | | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 7.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | | Minimum Split (s) | 35.0 | 35.0 | 14.0 | 35.0 | 35.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | | | Total Split (s) | 66.0 | 66.0 | 14.0 | 80.0 | 80.0 | 40.0 | 40.0 | 40.0 | 40.0 | 40.0 | | | Total Split (%) | 55.0% | 55.0% | 11.7% | 66.7% | 66.7% | 33.3% | 33.3% | 33.3% | 33.3% | 33.3% | | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | All-Red Time (s) | 2.0 | 2.0 | 3.0 | 2.0 | 2.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Lost Time (s) | 6.0 | 6.0 | 7.0 | 6.0 | 6.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | | Lead/Lag | Lag | Lag | Lead | | | | | | | | | | Lead-Lag Optimize? | | | | | | | | | | | | | Recall Mode | C-Max | C-Max | None | C-Max | C-Max | Ped | Ped | Ped | Ped | Ped | | ### Intersection Summary Cycle Length: 120 Actuated Cycle Length: 120 Offset: 3 (3%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 85 Control Type: Actuated-Coordinated Splits and Phases: 115: Queens Quay & York Street ### 119: Queens Quay & Bay Street | | ۶ | - | • | ← | • | 1 | † | - | ļ | |----------------------|-------|-------|-------|----------|-------|-------|----------|-------|-------| | Lane Group | EBL | EBT | WBL | WBT | WBR | NBL | NBT | SBL | SBT | | Lane Configurations | 7 | ĵ. | 7 | <u></u> | 7 | 7 | ^ | 7 | ĵ» | | Volume (vph) | 115 | 520 | 50 | 675 | 210 | 5 | 65 | 80 | 10 | | Turn Type | pm+pt | | Perm | | Perm | Perm | | Perm | | | Protected Phases | 5 | 2 | | 6 | | | 8 | | 4 | | Permitted Phases | 2 | | 6 | | 6 | 8 | | 4 | | | Detector Phase | 5 | 2 | 6 | 6 | 6 | 8 | 8 | 4 | 4 | | Switch Phase | | | | | | | | | | | Minimum Initial (s) | 7.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 13.0 | 34.0 | 34.0 | 34.0 | 34.0 | 36.0 | 36.0 | 36.0 | 36.0 | | Total Split (s) | 13.0 | 67.0 | 54.0 | 54.0 | 54.0 | 36.0 | 36.0 | 36.0 | 36.0 | | Total Split (%) | 12.6% | 65.0% | 52.4% | 52.4% | 52.4% | 35.0% | 35.0% | 35.0% | 35.0% | | Yellow Time (s) | 3.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 0.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 3.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | | Lead/Lag | Lead | | Lag | Lag | Lag | | | | | | Lead-Lag Optimize? | | | | | | | | | | | Recall Mode | None | C-Max | C-Max | C-Max | C-Max | Ped | Ped | Ped | Ped | ### Intersection Summary Cycle Length: 103 Actuated Cycle Length: 103 Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green Natural Cycle: 85 Control Type: Actuated-Coordinated Splits and Phases: 119: Queens Quay & Bay Street ### 123: Queens Quay & Yonge Street | | • | → | ← | • | > | 4 | |----------------------|-------|----------|----------|-------|-------------|-------| | Lane Group | EBL | EBT | WBT | WBR | SBL | SBR | | Lane Configurations | * | † | † | 7 | Ť | 7 | | Volume (vph) | 100 | 500 | 735 | 115 | 90 | 240 | | Turn Type | Perm | | | Perm | | Perm | | Protected Phases | | 2 | 6 | | 4 | | | Permitted Phases | 2 | | | 6 | | 4 | | Detector Phase | 2 | 2 | 6 | 6 | 4 | 4 | | Switch Phase | | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 47.0 | 47.0 | 47.0 | 47.0 | 33.0 | 33.0 | | Total Split (s) | 70.0 | 70.0 | 70.0 | 70.0 | 33.0 | 33.0 | | Total Split (%) | 68.0% | 68.0% | 68.0% | 68.0% | 32.0% | 32.0% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | | Lead/Lag | | | | | | | | Lead-Lag Optimize? | | | | | | | | Recall Mode | C-Max | C-Max | C-Max | C-Max | Ped | Ped | | Intersection Cummery | | | | | | | #### Intersection Summary Cycle Length: 103 Actuated Cycle Length: 103 Offset: 20 (19%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 90 ### 100: Queens Quay & Spadina Avenue | | • | → | ← | • | - | 1 | | | | |----------------------|-------|----------|---------|-------|-------|-------|------|------|--| | Lane Group | EBL | EBT | WBT | WBR | SBL | SBR | ø21 | ø22 | | | Lane Configurations | * | | | 7 | ሻ | 7 | | | | | Volume (vph) | 70 | 620 | 580 | 155 | 95 | 95 | | | | | Turn Type | Perm | | | Perm | | Perm | | | | | Protected Phases | | 2 | 6 | | 4 | | 21 | 22 | | | Permitted Phases | 2 | | | 6 | | 4 | | | | | Detector Phase | 2 | 2 | 6 | 6 | 4 | 4 | | | | | Switch Phase | | | | | | | | | | | Minimum Initial (s) | 4.0 | 4.0 | 10.0 | 10.0 | 10.0 | 10.0 | 7.0 | 7.0 | | | Minimum Split (s) | 24.0 | 24.0 | 31.0 | 31.0 | 44.0 | 44.0 | 14.0 | 14.0 | | | Total Split (s) | 45.0 | 45.0 | 45.0 | 45.0 | 45.0 | 45.0 | 15.0 | 15.0 | | | Total Split (%) | 37.5% | 37.5% | 37.5% | 37.5% | 37.5% | 37.5% | 13% | 13% | | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | All-Red Time (s) | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 3.0 | 3.0 | | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Total Lost Time (s) | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | | | | | Lead/Lag | | | | | | | | | | | Lead-Lag Optimize? | | | | | | | | | | | Recall Mode | C-Max | C-Max | C-Max | C-Max | Ped | Ped | None | None | | ### Intersection Summary Cycle Length: 120 Actuated Cycle Length: 120 Offset: 25 (21%),
Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 105 ### 102: Queens Quay & TTC Loop | | • | - | • | ← | † | 1 | | | | |----------------------|-------|----------|-------|-------|----------|--------|------|------|--| | Lane Group | EBL | EBT | WBL | WBT | NBT | SBR | ø4 | ø10 | | | Lane Configurations | * | † | ሻ | f) | 4 | 7 | | | | | Volume (vph) | 45 | 670 | 10 | 685 | 0 | 50 | | | | | Turn Type | pm+pt | | Prot | | | custom | | | | | Protected Phases | 5 | 2 | 1 | 6 | 8 | | 4 | 10 | | | Permitted Phases | 2 | | | | | 4 10 | | | | | Detector Phase | 5 | 2 | 1 | 6 | 8 | 4 10 | | | | | Switch Phase | | | | | | | | | | | Minimum Initial (s) | 6.0 | 10.0 | 7.0 | 10.0 | 10.0 | | 10.0 | 10.0 | | | Minimum Split (s) | 14.0 | 25.0 | 14.0 | 25.0 | 17.0 | | 17.0 | 17.0 | | | Total Split (s) | 14.0 | 55.0 | 14.0 | 55.0 | 17.0 | 34.0 | 17.0 | 17.0 | | | Total Split (%) | 11.7% | 45.8% | 11.7% | 45.8% | 14.2% | 28.3% | 14% | 14% | | | Yellow Time (s) | 3.0 | 4.0 | 4.0 | 4.0 | 4.0 | | 4.0 | 4.0 | | | All-Red Time (s) | 0.0 | 2.0 | 3.0 | 2.0 | 3.0 | | 2.0 | 2.0 | | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Total Lost Time (s) | 3.0 | 6.0 | 7.0 | 6.0 | 7.0 | 6.0 | | | | | Lead/Lag | Lead | Lag | Lead | Lag | | | | | | | Lead-Lag Optimize? | | | | | | | | | | | Recall Mode | None | C-Max | None | C-Max | None | | None | None | | | | | | | | | | | | | ### Intersection Summary Cycle Length: 120 Actuated Cycle Length: 120 Offset: 30 (25%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 90 | | • | - | ← | - | ļ | | | |----------------------|-------|----------|-------|-------|-------|------|------| | Lane Group | EBL | EBT | WBT | SBL | SBT | ø1 | ø8 | | Lane Configurations | ሻ | † | î» | | 4 | | | | Volume (vph) | 5 | 665 | 710 | 10 | 0 | | | | Turn Type | Perm | | | Perm | | | | | Protected Phases | | 2 | 6 | | 4 | 1 | 8 | | Permitted Phases | 2 | | | 4 | | | | | Detector Phase | 2 | 2 | 6 | 4 | 4 | | | | Switch Phase | | | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 7.0 | 10.0 | | Minimum Split (s) | 30.0 | 30.0 | 30.0 | 29.0 | 29.0 | 14.0 | 30.0 | | Total Split (s) | 76.0 | 76.0 | 90.0 | 30.0 | 30.0 | 14.0 | 30.0 | | Total Split (%) | 63.3% | 63.3% | 75.0% | 25.0% | 25.0% | 12% | 25% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Total Lost Time (s) | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | | | | Lead/Lag | Lag | Lag | | | | Lead | | | Lead-Lag Optimize? | Yes | Yes | | | | | | | Recall Mode | C-Max | C-Max | C-Max | Ped | Ped | None | Ped | Cycle Length: 120 Actuated Cycle Length: 120 Offset: 40 (33%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 90 ### 107: Queens Quay & Rees Street | | • | - | • | ← | 4 | † | - | ļ | |----------------------|-------|-------|--------|-------|-------|----------|-------|-------| | Lane Group | EBL | EBT | EBR | WBT | NBL | NBT | SBL | SBT | | Lane Configurations | | ર્ન | 7 | 4î | Ť | £ | 7 | f) | | Volume (vph) | 55 | 595 | 25 | 610 | 15 | 25 | 50 | 45 | | Turn Type | Perm | | custom | | Perm | | Perm | | | Protected Phases | | 2 | 5 | 6 | | 8 | | 4 | | Permitted Phases | 2 | | | | 8 | | 4 | | | Detector Phase | 2 | 2 | 5 | 6 | 8 | 8 | 4 | 4 | | Switch Phase | | | | | | | | | | Minimum Initial (s) | 23.0 | 23.0 | 7.0 | 23.0 | 23.0 | 23.0 | 23.0 | 23.0 | | Minimum Split (s) | 31.0 | 31.0 | 14.0 | 31.0 | 30.0 | 30.0 | 30.0 | 30.0 | | Total Split (s) | 90.0 | 90.0 | 14.0 | 76.0 | 30.0 | 30.0 | 30.0 | 30.0 | | Total Split (%) | 75.0% | 75.0% | 11.7% | 63.3% | 25.0% | 25.0% | 25.0% | 25.0% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 2.0 | 2.0 | 3.0 | 2.0 | 3.0 | 3.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 6.0 | 7.0 | 6.0 | 7.0 | 7.0 | 7.0 | 7.0 | | Lead/Lag | | | Lead | Lag | | | | | | Lead-Lag Optimize? | | | | Yes | | | | | | Recall Mode | Ped | Ped | None | Ped | C-Max | C-Max | C-Max | C-Max | ### Intersection Summary Cycle Length: 120 Actuated Cycle Length: 120 Offset: 62 (52%), Referenced to phase 4:SBTL and 8:NBTL, Start of Green Natural Cycle: 90 Control Type: Actuated-Coordinated Description: Queen's Quay / Rees / Radisson West Splits and Phases: 107: Queens Quay & Rees Street ### 111: Queens Quay & Lower Simcoe | | • | - | • | • | 4 | † | - | ļ | |----------------------|-------|----------|-------|-------|-------|----------|-------|-------| | Lane Group | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT | | Lane Configurations | 7 | † | 7 | ą. | 7 | f) | * | 4î | | Volume (vph) | 120 | 570 | 20 | 620 | 15 | 45 | 90 | 5 | | Turn Type | Perm | | Prot | | Perm | | Perm | | | Protected Phases | | 2 | 1 | 6 | | 8 | | 4 | | Permitted Phases | 2 | | | | 8 | | 4 | | | Detector Phase | 2 | 2 | 1 | 6 | 8 | 8 | 4 | 4 | | Switch Phase | | | | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 7.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 30.0 | 30.0 | 14.0 | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 | | Total Split (s) | 75.0 | 75.0 | 14.0 | 89.0 | 31.0 | 31.0 | 31.0 | 31.0 | | Total Split (%) | 62.5% | 62.5% | 11.7% | 74.2% | 25.8% | 25.8% | 25.8% | 25.8% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 2.0 | 2.0 | 3.0 | 2.0 | 3.0 | 3.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 6.0 | 7.0 | 6.0 | 7.0 | 7.0 | 7.0 | 7.0 | | Lead/Lag | Lag | Lag | Lead | | | | | | | Lead-Lag Optimize? | | | | | | | | | | Recall Mode | C-Max | C-Max | None | C-Max | Ped | Ped | Ped | Ped | ### Intersection Summary Cycle Length: 120 Actuated Cycle Length: 120 Offset: 80 (67%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 80 Control Type: Actuated-Coordinated Description: Queen's Quay / Lower Simcoe / Harbourfront East Splits and Phases: 111: Queens Quay & Lower Simcoe # 113: Queens Quay & Queens Quay Terminal | | - | • | • | 1 | ~ | |----------------------|----------|--------|----------|-------|-------| | Lane Group | EBT | EBR | WBT | NBL | NBR | | Lane Configurations | † | 7 | † | Ţ | 7 | | Volume (vph) | 670 | 25 | 750 | 10 | 10 | | Turn Type | | custom | | | Perm | | Protected Phases | 2 | 5 | 6 | 8 | | | Permitted Phases | | | | | 8 | | Detector Phase | 2 | 5 | 6 | 8 | 8 | | Switch Phase | | | | | | | Minimum Initial (s) | 10.0 | 7.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 30.0 | 14.0 | 30.0 | 30.0 | 30.0 | | Total Split (s) | 90.0 | 14.0 | 76.0 | 30.0 | 30.0 | | Total Split (%) | 75.0% | 11.7% | 63.3% | 25.0% | 25.0% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 2.0 | 3.0 | 2.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 7.0 | 6.0 | 7.0 | 7.0 | | Lead/Lag | | Lead | Lag | | | | Lead-Lag Optimize? | | | | | | | Recall Mode | C-Min | None | C-Max | Ped | Ped | | Intersection Summary | | | | | | | Cycle Length: 120 | | | | | | Cycle Length: 120 Actuated Cycle Length: 120 Offset: 111 (93%), Referenced to phase 2:EBT and 6:WBT, Start of Green Natural Cycle: 90 ### 115: Queens Quay & York Street | | • | - | • | ← | • | 4 | † | > | ļ | 1 | | |----------------------|-------|---------|-------|---------|-------|-------|----------|-------------|---------|-------|--| | Lane Group | EBL | EBT | WBL | WBT | WBR | NBL | NBT | SBL | SBT | SBR | | | Lane Configurations | Ť | | ř | <u></u> | 7 | | 4 | * | | 7 | | | Volume (vph) | 80 | 600 | 25 | 645 | 260 | 15 | 20 | 80 | 35 | 90 | | | Turn Type | Perm | | Prot | | Perm | Perm | | Perm | | Perm | | | Protected Phases | | 2 | 1 | 6 | | | 8 | | 4 | | | | Permitted Phases | 2 | | | | 6 | 8 | | 4 | | 4 | | | Detector Phase | 2 | 2 | 1 | 6 | 6 | 8 | 8 | 4 | 4 | 4 | | | Switch Phase | | | | | | | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 7.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | | Minimum Split (s) | 32.0 | 32.0 | 14.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | | | Total Split (s) | 74.0 | 74.0 | 14.0 | 88.0 | 88.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | | | Total Split (%) | 61.7% | 61.7% | 11.7% | 73.3% | 73.3% | 26.7% | 26.7% | 26.7% | 26.7% | 26.7% | | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | All-Red Time (s) | 2.0 | 2.0 | 3.0 | 2.0 | 2.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Lost Time (s) | 6.0 | 6.0 | 7.0 | 6.0 | 6.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | | Lead/Lag | Lag | Lag | Lead | | | | | | | | | | Lead-Lag Optimize? | Yes | Yes | | | | | | | | | | | Recall Mode | C-Max | C-Max | None | C-Max | C-Max | Ped | Ped | Ped | Ped | Ped | | ### Intersection Summary Cycle Length: 120 Actuated Cycle Length: 120 Offset: 3 (3%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 90 Control Type: Actuated-Coordinated Description: Queens Quay / York Street Splits and Phases: 115: Queens Quay & York Street ### 119: Queens Quay & Bay Street | | ۶ | - | • | ← | • | 4 | † | > | ļ | |----------------------|-------|-------|-------|----------|-------|-------|----------|-------------|-------| | Lane Group | EBL | EBT | WBL | WBT | WBR | NBL | NBT | SBL | SBT | | Lane Configurations | ሻ | ĵ. | ሻ | 1 | 7 | ሻ | f) | ሻ | ĵ» | | Volume (vph) | 185 | 720 | 50 | 675 | 235 | 5 | 20 | 95 | 30 | | Turn Type | pm+pt | | Perm | | Perm | Perm | | Perm | | | Protected Phases | 5 | 2 | | 6 | | | 8 | | 4 | | Permitted Phases | 2 | | 6 | | 6 | 8 | | 4 | | | Detector Phase | 5 | 2 | 6 | 6 | 6 | 8 | 8 | 4 | 4 | | Switch Phase | | | | | | | | | | | Minimum Initial (s) | 6.0 | 23.0 | 23.0 | 23.0 | 23.0 | 23.0 | 23.0 | 27.0 | 27.0 | | Minimum
Split (s) | 12.0 | 29.0 | 29.0 | 29.0 | 29.0 | 33.0 | 33.0 | 34.0 | 34.0 | | Total Split (s) | 13.0 | 69.0 | 56.0 | 56.0 | 56.0 | 34.0 | 34.0 | 34.0 | 34.0 | | Total Split (%) | 12.6% | 67.0% | 54.4% | 54.4% | 54.4% | 33.0% | 33.0% | 33.0% | 33.0% | | Yellow Time (s) | 3.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 0.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 3.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | | Lead/Lag | Lead | | Lag | Lag | Lag | | | | | | Lead-Lag Optimize? | Yes | | Yes | Yes | Yes | | | | | | Recall Mode | None | C-Max | C-Max | C-Max | C-Max | Ped | Ped | Ped | Ped | ### Intersection Summary Cycle Length: 103 Actuated Cycle Length: 103 Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green Natural Cycle: 90 ### 123: Queens Quay & Yonge Street | | • | → | ← | • | > | 4 | |----------------------|-------|----------|----------|-------|-------------|-------| | Lane Group | EBL | EBT | WBT | WBR | SBL | SBR | | Lane Configurations | * | † | † | 7 | 7 | 7 | | Volume (vph) | 135 | 675 | 640 | 195 | 135 | 355 | | Turn Type | Perm | | | Perm | | Perm | | Protected Phases | | 2 | 6 | | 4 | | | Permitted Phases | 2 | | | 6 | | 4 | | Detector Phase | 2 | 2 | 6 | 6 | 4 | 4 | | Switch Phase | | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 47.0 | 47.0 | 33.0 | 33.0 | 33.0 | 33.0 | | Total Split (s) | 70.0 | 70.0 | 70.0 | 70.0 | 33.0 | 33.0 | | Total Split (%) | 68.0% | 68.0% | 68.0% | 68.0% | 32.0% | 32.0% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | | Lead/Lag | | | | | | | | Lead-Lag Optimize? | | | | | | | | Recall Mode | C-Max | C-Max | C-Max | C-Max | Ped | Ped | | Interception Cummens | | | | | | | #### Intersection Summary Cycle Length: 103 Actuated Cycle Length: 103 Offset: 20 (19%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 80 ## 201: Lake Shore Boulevard & Spadina Avenue | • | → | † | > | ţ | |-------|--|--|--|--| | EBL | EBT | NBT | SBL | SBT | | ሻሻ | | ↑ ↑ | 7 | ^ | | 1540 | 2575 | 70 | 165 | 115 | | Split | | | pm+pt | | | 2 | 2 | 8 | 7 | 4 | | | | | 4 | | | 2 | 2 | 8 | 7 | 4 | | | | | | | | 10.0 | 10.0 | 10.0 | 7.0 | 10.0 | | 96.0 | 96.0 | 24.0 | 16.0 | 24.0 | | 99.0 | 99.0 | 24.0 | 21.0 | 45.0 | | 68.8% | 68.8% | 16.7% | 14.6% | 31.3% | | 4.0 | 4.0 | 4.0 | 3.0 | 4.0 | | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 7.0 | 7.0 | 7.0 | 6.0 | 7.0 | | | | Lag | Lead | | | | | Yes | Yes | | | C-Max | C-Max | Ped | None | Ped | | | | | | | | | | | | | | | 1540
Split
2
2
10.0
96.0
99.0
68.8%
4.0
3.0
0.0
7.0 | 1540 2575 Split 2 2 10.0 10.0 96.0 96.0 99.0 99.0 68.8% 68.8% 4.0 4.0 3.0 3.0 0.0 0.0 7.0 7.0 | 1540 2575 70 Split 2 2 8 10.0 10.0 10.0 96.0 96.0 24.0 99.0 99.0 24.0 68.8% 68.8% 16.7% 4.0 4.0 4.0 3.0 3.0 3.0 0.0 0.0 0.0 7.0 7.0 7.0 Lag Yes | 1540 2575 70 165 Split pm+pt 2 2 2 8 7 2 2 8 7 10.0 10.0 10.0 7.0 96.0 96.0 24.0 16.0 99.0 99.0 24.0 21.0 68.8% 68.8% 16.7% 14.6% 4.0 4.0 4.0 3.0 3.0 3.0 3.0 3.0 0.0 0.0 0.0 0.0 7.0 7.0 7.0 6.0 Lag Lead Yes Yes | Cycle Length: 144 Actuated Cycle Length: 144 Offset: 0 (0%), Referenced to phase 2:EBTL, Start of Green Natural Cycle: 140 Control Type: Actuated-Coordinated Splits and Phases: 201: Lake Shore Boulevard & Spadina Avenue ### 205: Lake Shore Boulevard & Rees Street | | • | - | • | *_ | ሻ | † | - | ţ | ₩ J | |----------------------|-------|----------|-------|--------|-------|----------|-------|-------|------------| | Lane Group | EBL | EBT | WBL | WBR | NBL | NBT | SBL | SBT | SBR2 | | Lane Configurations | 44 | ^ | , j | 777 | 7 | f) | | 41₽ | 7 | | Volume (vph) | 470 | 2315 | 10 | 940 | 10 | 25 | 190 | 75 | 10 | | Turn Type | Prot | | Prot | custom | Perm | | Perm | | Perm | | Protected Phases | 5 | 2 | 1 | | | 8 | | 4 | | | Permitted Phases | | | | 6 | 8 | | 4 | | 4 | | Detector Phase | 5 | 2 | 1 | 6 | 8 | 8 | 4 | 4 | 4 | | Switch Phase | | | | | | | | | | | Minimum Initial (s) | 22.0 | 10.0 | 22.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 28.0 | 49.0 | 28.0 | 49.0 | 35.0 | 35.0 | 35.0 | 35.0 | 35.0 | | Total Split (s) | 28.0 | 49.0 | 28.0 | 49.0 | 35.0 | 35.0 | 35.0 | 35.0 | 35.0 | | Total Split (%) | 25.0% | 43.8% | 25.0% | 43.8% | 31.3% | 31.3% | 31.3% | 31.3% | 31.3% | | Yellow Time (s) | 3.0 | 4.0 | 3.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 2.0 | 3.0 | 2.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 6.0 | 6.0 | 6.0 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | | Lead/Lag | Lag | Lead | Lag | Lead | | | | | | | Lead-Lag Optimize? | Yes | Yes | Yes | Yes | | | | | | | Recall Mode | None | C-Max | None | C-Max | Ped | Ped | Ped | Ped | Ped | ### Intersection Summary Cycle Length: 112 Actuated Cycle Length: 112 Offset: 47 (42%), Referenced to phase 2:EBT and 6:WBR, Start of Green Natural Cycle: 115 Control Type: Actuated-Coordinated Splits and Phases: 205: Lake Shore Boulevard & Rees Street ## 208: Lake Shore Boulevard & Lower Simcoe | | • | - | 4 | † | - | ↓ | 1 | |----------------------|-------|------------|-------|----------------|-------|----------|--------| | Lane Group | EBL2 | EBT | NBL | NBT | SBL | SBT | SWR | | Lane Configurations | 7 | ↑ ↑ | * | (Î | * | f) | 776 | | Volume (vph) | 85 | 1150 | 25 | 70 | 95 | 25 | 1010 | | Turn Type | pm+pt | | Perm | | Perm | | custom | | Protected Phases | 5 | 2 | | 8 | | 4 | | | Permitted Phases | 2 | | 8 | | 4 | | 6 | | Detector Phase | 5 | 2 | 8 | 8 | 4 | 4 | 6 | | Switch Phase | | | | | | | | | Minimum Initial (s) | 7.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 13.0 | 60.0 | 39.0 | 39.0 | 39.0 | 39.0 | 60.0 | | Total Split (s) | 13.0 | 73.0 | 39.0 | 39.0 | 39.0 | 39.0 | 60.0 | | Total Split (%) | 11.6% | 65.2% | 34.8% | 34.8% | 34.8% | 34.8% | 53.6% | | Yellow Time (s) | 3.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 2.0 | 3.0 | 3.0 | 3.0 | 3.0 | 2.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 6.0 | 7.0 | 7.0 | 7.0 | 7.0 | 6.0 | | Lead/Lag | Lead | | | | | | Lag | | Lead-Lag Optimize? | Yes | | | | | | Yes | | Recall Mode | None | C-Max | Ped | Ped | Ped | Ped | C-Max | ### Intersection Summary Cycle Length: 112 Actuated Cycle Length: 112 Offset: 0 (0%), Referenced to phase 2:EBTL and 6:SWR, Start of Green Natural Cycle: 115 Control Type: Actuated-Coordinated Splits and Phases: 208: Lake Shore Boulevard & Lower Simcoe ## 209: Gardiner WB On-Ramp & York Street | | * | • | * | † | ţ | |----------------------|-------------|-------|-------|----------|------------| | Lane Group | WBL | WBT | NBL2 | NBT | SBT | | Lane Configurations | <u>አ</u> ካካ | ħβ | | ^ | ∱ ∱ | | Volume (vph) | 1090 | 595 | 100 | 895 | 250 | | Turn Type | Split | | pm+pt | | | | Protected Phases | 6 | 6 | 3 | 8 | 4 | | Permitted Phases | | | 8 | | | | Detector Phase | 6 | 6 | 3 | 8 | 4 | | Switch Phase | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 12.0 | 10.0 | 10.0 | | Minimum Split (s) | 42.0 | 42.0 | 15.0 | 55.0 | 55.0 | | Total Split (s) | 42.0 | 42.0 | 15.0 | 70.0 | 55.0 | | Total Split (%) | 37.5% | 37.5% | 13.4% | 62.5% | 49.1% | | Yellow Time (s) | 4.0 | 4.0 | 3.0 | 4.0 | 4.0 | | All-Red Time (s) | 2.0 | 2.0 | 0.0 | 4.0 | 4.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 6.0 | 3.0 | 8.0 | 8.0 | | Lead/Lag | | | Lead | | Lag | | Lead-Lag Optimize? | | | Yes | | Yes | | Recall Mode | C-Max | C-Max | None | None | Ped | ### Intersection Summary Cycle Length: 112 Actuated Cycle Length: 112 Offset: 8 (7%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 115 | | ← | 4 | † | ↓ | 4 | |----------------------|-------|-------|------------|----------|--------| | Lane Group | WBT | NBL | NBT | SBT | SBR | | Lane Configurations | नाकि | ሻ | † † | † | 77 | | Volume (vph) | 2005 | 145 | 675 | 245 | 265 | | Turn Type | | Perm | | | custom | | Protected Phases | 6 | | 8 | 4 | 3 | | Permitted Phases | | 8 | | | | | Detector Phase | 6 | 8 | 8 | 4 | 3 | | Switch Phase | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 43.0 | 38.0 | 38.0 | 31.0 | 38.0 | | Total Split (s) | 43.0 | 69.0 | 69.0 | 31.0 | 38.0 | | Total Split (%) | 38.4% | 61.6% | 61.6% | 27.7% | 33.9% | | Yellow Time (s) | 4.0 | 5.0 | 5.0 | 7.0 | 4.0 | | All-Red Time (s) | 3.0 | 2.0 | 2.0 | 0.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | Lead/Lag | | | | Lead | Lag | | Lead-Lag Optimize? | | | | Yes | Yes | | Recall Mode | C-Max | Ped | Ped | Ped | Max | | Interception Cummery | | | | | | #### Intersection Summary Cycle Length: 112 Actuated Cycle Length: 112 Offset: 98 (88%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 115 Control Type: Actuated-Coordinated Splits and Phases: 214: Lake Shore
Boulevard & Bay Street | | ← | • | † | ļ | |-----------------------------|-------------|---------|------------|------------| | Lane Group | WBT | NBL | NBT | SBT | | Lane Configurations | 414 | ሻ | ^ | ↑ ↑ | | Volume (vph) | 2060 | 110 | 1170 | 125 | | Turn Type | | pm+pt | | | | Protected Phases | 6 | 3 | 8 | 4 | | Permitted Phases | | 8 | | | | Detector Phase | 6 | 3 | 8 | 4 | | Switch Phase | | | | | | Minimum Initial (s) | 10.0 | 6.0 | 10.0 | 10.0 | | Minimum Split (s) | 54.0 | 10.0 | 48.0 | 48.0 | | Total Split (s) | 54.0 | 10.0 | 58.0 | 48.0 | | Total Split (%) | 48.2% | 8.9% | 51.8% | 42.9% | | Yellow Time (s) | 4.0 | 3.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 1.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 7.0 | 4.0 | 7.0 | 7.0 | | Lead/Lag | | Lead | | Lag | | Lead-Lag Optimize? | | Yes | | Yes | | Recall Mode | C-Max | None | Ped | Ped | | Intersection Summary | | | | | | Cycle Length: 112 | | | | | | Actuated Cycle Length: 112 | | | | | | Offset: 72 (64%), Reference | ed to phase | 6:WBTL, | Start of 0 | Green | Natural Cycle: 115 ## 210: Lake Shore Boulevard & York Street | | - | † | - | ļ | |----------------------|-----------------|----------|-------|-------| | Lane Group | EBT | NBT | SBL | SBT | | Lane Configurations | ተተ _ጉ | ^ | | 414 | | Volume (vph) | 1215 | 1015 | 165 | 190 | | Turn Type | | | pm+pt | | | Protected Phases | 2 | 8 | 7 | 4 | | Permitted Phases | | | 4 | | | Detector Phase | 2 | 8 | 7 | 4 | | Switch Phase | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 12.0 | 10.0 | | Minimum Split (s) | 45.0 | 51.0 | 16.0 | 51.0 | | Total Split (s) | 45.0 | 51.0 | 16.0 | 67.0 | | Total Split (%) | 40.2% | 45.5% | 14.3% | 59.8% | | Yellow Time (s) | 4.0 | 4.0 | 2.0 | 4.0 | | All-Red Time (s) | 2.0 | 4.0 | 2.0 | 4.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 8.0 | 4.0 | 8.0 | | Lead/Lag | | Lag | Lead | | | Lead-Lag Optimize? | | Yes | Yes | | | Recall Mode | C-Max | Ped | None | Ped | | | | | | | ### Intersection Summary Cycle Length: 112 Actuated Cycle Length: 112 Offset: 14 (13%), Referenced to phase 2:EBT, Start of Green Natural Cycle: 115 ## 213: Lake Shore Boulevard & Bay Street | | ۶ | → | † | - | ţ | / | 4 | |------------------------|-------|----------|------------|-------|----------|--------|--------| | Lane Group | EBL | EBT | NBT | SBL | SBT | NER | NER2 | | Lane Configurations | 7 | 41₽ | ∱ } | 7 | ^ | 7 | 7 | | Volume (vph) | 820 | 1085 | 340 | 180 | 275 | 615 | 140 | | Turn Type | Perm | | | Perm | | custom | custom | | Protected Phases | | 2 | 8 | | 4 | | | | Permitted Phases | 2 | | | 4 | | 2 | 2 | | Detector Phase | 2 | 2 | 8 | 4 | 4 | 2 | 2 | | Switch Phase | | | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 66.0 | 66.0 | 46.0 | 46.0 | 46.0 | 66.0 | 66.0 | | Total Split (s) | 66.0 | 66.0 | 46.0 | 46.0 | 46.0 | 66.0 | 66.0 | | Total Split (%) | 58.9% | 58.9% | 41.1% | 41.1% | 41.1% | 58.9% | 58.9% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | Lead/Lag | | | | | | | | | Lead-Lag Optimize? | | | | | | | | | Recall Mode | C-Max | C-Max | Ped | Ped | Ped | C-Max | C-Max | | latana satiana Communa | | | | | | | | #### Intersection Summary Cycle Length: 112 Actuated Cycle Length: 112 Offset: 5 (4%), Referenced to phase 2:EBTL, Start of Green Natural Cycle: 115 Control Type: Actuated-Coordinated Splits and Phases: 213: Lake Shore Boulevard & Bay Street ## 217: Yonge Street & Lake Shore Boulevard | | † | ļ | • | * | |----------------------------|------------|----------|------------|-------| | Lane Group | NBT | SBT | NEL | NET | | Lane Configurations | ↑ ↑ | ^ | ሻ | 414 | | Volume (vph) | 170 | 230 | 1100 | 710 | | Turn Type | | | Perm | | | Protected Phases | 8 | 4 | | 2 | | Permitted Phases | | | 2 | | | Detector Phase | 8 | 4 | 2 | 2 | | Switch Phase | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 50.0 | 50.0 | 62.0 | 62.0 | | Total Split (s) | 50.0 | 50.0 | 62.0 | 62.0 | | Total Split (%) | 44.6% | 44.6% | 55.4% | 55.4% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 3.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 7.0 | | Lead/Lag | | | | | | Lead-Lag Optimize? | | | | | | Recall Mode | Ped | Ped | C-Max | C-Max | | Intersection Summary | | | | | | Cycle Length: 112 | | | | | | Actuated Cycle Length: 112 |) | | | | | Offset: 15 (13%) Peference | | 2-NIETI | Ctart of C | roon | Offset: 15 (13%), Referenced to phase 2:NETL, Start of Green Natural Cycle: 115 Control Type: Actuated-Coordinated Splits and Phases: 217: Yonge Street & Lake Shore Boulevard # 201: Lake Shore Boulevard & Spadina Avenue | | • | - | † | - | ļ | |----------------------|-------|------------|------------|-------|----------| | Lane Group | EBL | EBT | NBT | SBL | SBT | | Lane Configurations | 77 | ↑ ↑ | ∱ } | 7 | ^ | | Volume (vph) | 855 | 2145 | 200 | 280 | 40 | | Turn Type | Split | | | pm+pt | | | Protected Phases | 2 | 2 | 8 | 7 | 4 | | Permitted Phases | | | | 4 | | | Detector Phase | 2 | 2 | 8 | 7 | 4 | | Switch Phase | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 6.0 | 10.0 | | Minimum Split (s) | 51.0 | 51.0 | 24.0 | 12.0 | 24.0 | | Total Split (s) | 68.0 | 68.0 | 24.0 | 20.0 | 44.0 | | Total Split (%) | 60.7% | 60.7% | 21.4% | 17.9% | 39.3% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 3.0 | 4.0 | | All-Red Time (s) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 6.0 | 7.0 | | Lead/Lag | | | Lag | Lead | | | Lead-Lag Optimize? | | | Yes | Yes | | | Recall Mode | C-Max | C-Max | Ped | None | Ped | | Intersection Summary | | | | | | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 95 (85%), Referenced to phase 2:EBTL, Start of Green Natural Cycle: 90 ## 205: Lake Shore Boulevard & Rees Street | | ۶ | - | • | *_ | ሻ | † | - | ţ | ₩ J | |----------------------|-------|----------|-------|--------|-------|----------|-------|---------|------------| | Lane Group | EBL | EBT | WBL | WBR | NBL | NBT | SBL | SBT | SBR2 | | Lane Configurations | 44 | ^ | , j | 776 | * | f) | * | | 7 | | Volume (vph) | 260 | 2150 | 25 | 1815 | 25 | 10 | 460 | 145 | 30 | | Turn Type | Prot | | Prot | custom | Perm | | pm+pt | | Perm | | Protected Phases | 5 | 2 | 1 | | | 8 | 7 | 4 | | | Permitted Phases | | | | 6 | 8 | | 4 | | 4 | | Detector Phase | 5 | 2 | 1 | 6 | 8 | 8 | 7 | 4 | 4 | | Switch Phase | | | | | | | | | | | Minimum Initial (s) | 6.0 | 10.0 | 6.0 | 10.0 | 10.0 | 10.0 | 14.0 | 10.0 | 10.0 | | Minimum Split (s) | 12.0 | 34.0 | 12.0 | 34.0 | 35.0 | 35.0 | 19.0 | 35.0 | 35.0 | | Total Split (s) | 13.0 | 46.0 | 12.0 | 45.0 | 35.0 | 35.0 | 19.0 | 54.0 | 54.0 | | Total Split (%) | 11.6% | 41.1% | 10.7% | 40.2% | 31.3% | 31.3% | 17.0% | 48.2% | 48.2% | | Yellow Time (s) | 3.0 | 4.0 | 3.0 | 4.0 | 4.0 | 4.0 | 5.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 2.0 | 3.0 | 2.0 | 4.0 | 4.0 | 0.0 | 4.0 | 4.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 6.0 | 6.0 | 6.0 | 8.0 | 8.0 | 5.0 | 8.0 | 8.0 | | Lead/Lag | Lag | Lead | Lag | Lead | Lag | Lag | Lead | | | | Lead-Lag Optimize? | Yes | | | Recall Mode | None | C-Max | None | C-Max | Ped | Ped | None | Ped | Ped | ### Intersection Summary Cycle Length: 112 Actuated Cycle Length: 112 Offset: 36 (32%), Referenced to phase 2:EBT and 6:WBR, Start of Green Natural Cycle: 100 Control Type: Actuated-Coordinated Splits and Phases: 205: Lake Shore Boulevard & Rees Street | | • | → | 4 | † | - | ↓ | 1 | |----------------------|-------|------------|-------|----------|-------|----------|--------| | Lane Group | EBL2 | EBT | NBL | NBT | SBL | SBT | SWR | | Lane Configurations | * | ∱ } | * | † | * | 4î | 775 | | Volume (vph) | 85 | 1080 | 80 | 135 | 140 | 60 | 1820 | | Turn Type | Prot | | Perm | | Perm | | custom | | Protected Phases | 5 | 2 | | 8 | | 4 | | | Permitted Phases | | | 8 | | 4 | | 6 | | Detector Phase | 5 | 2 | 8 | 8 | 4 | 4 | 6 | | Switch Phase | | | | | | | | | Minimum Initial (s) | 7.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 13.0 | 60.0 | 39.0 | 39.0 | 39.0 | 39.0 | 60.0 | | Total Split (s) | 13.0 | 73.0 | 39.0 | 39.0 | 39.0 | 39.0 | 60.0 | | Total Split (%) | 11.6% | 65.2% | 34.8% | 34.8% | 34.8% | 34.8% | 53.6% | | Yellow Time (s) | 3.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 2.0 | 3.0 | 3.0 | 3.0 | 3.0 | 2.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 6.0 | 7.0 | 7.0 | 7.0 | 7.0 | 6.0 | | Lead/Lag | Lead | | | | | | Lag | | Lead-Lag Optimize? | Yes | | | | | | Yes | | Recall Mode | None | C-Max | Ped | Ped | Ped | Ped | Max | | | | | | | | | | ### Intersection Summary Cycle Length: 112 Actuated Cycle Length: 112 Offset: 96 (86%), Referenced to phase 2:EBT, Start of Green Natural Cycle: 115 ## 209: Gardiner WB On-Ramp & York Street | Lane Group WBL WBT NBL2 NBT SBT Lane Configurations 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
---| | Volume (vph) 1870 655 160 620 585 Turn Type Split pm+pt pm+pt Protected Phases 6 6 3 8 4 Permitted Phases 8 8 4 Detector Phase 6 6 3 8 4 Switch Phase 8 4 10.0< | | Volume (vph) 1870 655 160 620 585 Turn Type Split pm+pt pm+pt Protected Phases 6 6 3 8 4 Permitted Phases 8 8 4 Detector Phase 6 6 3 8 4 Switch Phase 8 4 10.0< | | Protected Phases 6 6 3 8 4 Permitted Phases 8 8 4 Detector Phase 6 6 3 8 4 Switch Phase 8 4 10.0 | | Permitted Phases 8 Detector Phase 6 6 3 8 4 Switch Phase Minimum Initial (s) 10.0 10.0 4.0 10.0 10.0 Minimum Split (s) 28.0 28.0 10.0 45.0 45.0 Total Split (s) 55.0 55.0 10.0 57.0 47.0 Total Split (%) 49.1% 49.1% 8.9% 50.9% 42.0% Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 | | Detector Phase 6 6 3 8 4 Switch Phase 4 0 10.0< | | Switch Phase Minimum Initial (s) 10.0 10.0 4.0 10.0 10.0 Minimum Split (s) 28.0 28.0 10.0 45.0 45.0 Total Split (s) 55.0 55.0 10.0 57.0 47.0 Total Split (%) 49.1% 49.1% 8.9% 50.9% 42.0% Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 | | Minimum Initial (s) 10.0 10.0 4.0 10.0 10.0 Minimum Split (s) 28.0 28.0 10.0 45.0 45.0 Total Split (s) 55.0 55.0 10.0 57.0 47.0 Total Split (%) 49.1% 49.1% 8.9% 50.9% 42.0% Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 | | Minimum Split (s) 28.0 28.0 10.0 45.0 45.0 Total Split (s) 55.0 55.0 10.0 57.0 47.0 Total Split (%) 49.1% 49.1% 8.9% 50.9% 42.0% Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 | | Total Split (s) 55.0 55.0 10.0 57.0 47.0 Total Split (%) 49.1% 49.1% 8.9% 50.9% 42.0% Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 | | Total Split (%) 49.1% 49.1% 8.9% 50.9% 42.0% Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 | | Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 | | · / | | | | All-Red Time (s) 2.0 2.0 4.0 4.0 | | Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 | | Total Lost Time (s) 6.0 6.0 8.0 8.0 | | Lead/Lag Lead Lag | | Lead-Lag Optimize? Yes Yes | | Recall Mode C-Max C-Max None None Ped | ### Intersection Summary Cycle Length: 112 Actuated Cycle Length: 112 Offset: 102 (91%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 85 ## 214: Lake Shore Boulevard & Bay Street | | ← | 4 | † | Ţ | 4 | |----------------------|----------|-------|------------|---------|--------| | Lane Group | WBT | NBL | NBT | SBT | SBR | | Lane Configurations | नीकि | 7 | † † | <u></u> | 77 | | Volume (vph) | 2220 | 115 | 525 | 345 | 455 | | Turn Type | | Perm | | | custom | | Protected Phases | 6 | | 8 | 4 | 3 | | Permitted Phases | | 8 | | | | | Detector Phase | 6 | 8 | 8 | 4 | 3 | | Switch Phase | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 10.0 | 7.0 | | Minimum Split (s) | 28.0 | 31.0 | 31.0 | 31.0 | 25.0 | | Total Split (s) | 56.0 | 56.0 | 56.0 | 31.0 | 25.0 | | Total Split (%) | 50.0% | 50.0% | 50.0% | 27.7% | 22.3% | | Yellow Time (s) | 4.0 | 7.0 | 7.0 | 7.0 | 4.0 | | All-Red Time (s) | 3.0 | 0.0 | 0.0 | 0.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | Lead/Lag | | | | Lead | Lag | | Lead-Lag Optimize? | | | | Yes | Yes | | Recall Mode | C-Max | Ped | Ped | Ped | Max | | Intersection Cummers | | | | | | #### Intersection Summary Cycle Length: 112 Actuated Cycle Length: 112 Offset: 80 (71%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 85 ## 218: Lake Shore Boulevard & Yonge Street Cycle Length: 112 Actuated Cycle Length: 112 Offset: 65 (58%), Referenced to phase 6:WBTL, Start of Green Natural Cycle: 90 Control Type: Actuated-Coordinated Splits and Phases: 218: Lake Shore Boulevard & Yonge Street | | → | † | - | ļ | |----------------------|----------|----------|-------|---------| | Lane Group | EBT | NBT | SBL | SBT | | Lane Configurations | ተተኈ | ^ | ň | | | Volume (vph) | 1265 | 795 | 470 | 165 | | Turn Type | | | pm+pt | | | Protected Phases | 2 | 8 | 7 | 4 | | Permitted Phases | | | 4 | | | Detector Phase | 2 | 8 | 7 | 4 | | Switch Phase | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 12.0 | 10.0 | | Minimum Split (s) | 27.0 | 27.0 | 16.0 | 27.0 | | Total Split (s) | 41.0 | 38.0 | 33.0 | 71.0 | | Total Split (%) | 36.6% | 33.9% | 29.5% | 63.4% | | Yellow Time (s) | 4.0 | 4.0 | 2.0 | 4.0 | | All-Red Time (s) | 2.0 | 4.0 | 2.0 | 4.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 6.0 | 8.0 | 4.0 | 8.0 | | Lead/Lag | | Lag | Lead | | | Lead-Lag Optimize? | | Yes | Yes | | | Recall Mode | C-Max | Ped | None | Ped | | Intersection Summary | | | | | Cycle Length: 112 Actuated Cycle Length: 112 Offset: 0 (0%), Referenced to phase 2:EBT, Start of Green Natural Cycle: 80 ## 213: Lake Shore Boulevard & Bay Street | | • | - | † | - | ↓ | / | 4 | |----------------------|-------|-------|------------|-------|----------|--------|--------| | Lane Group | EBL | EBT | NBT | SBL | SBT | NER | NER2 | | Lane Configurations | 7 | 4∱ | ∱ } | * | 44 | 7 | 7 | | Volume (vph) | 870 | 1215 | 400 | 295 | 140 | 660 | 20 | | Turn Type | Perm | | | pm+pt | | custom | custom | | Protected Phases | | 2 | 8 | 7 | 4 | | | | Permitted Phases | 2 | | | 4 | | 2 | 2 | | Detector Phase | 2 | 2 | 8 | 7 | 4 | 2 | 2 | | Switch Phase | | | | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 4.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 25.0 | 25.0 | 26.0 | 10.0 | 26.0 | 25.0 | 25.0 | | Total Split (s) | 66.0 | 66.0 | 27.0 | 19.0 | 46.0 | 66.0 | 66.0 | | Total Split (%) | 58.9% | 58.9% | 24.1% | 17.0% | 41.1% | 58.9% | 58.9% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 3.0 | 3.0 | 2.0 | 3.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 6.0 | 7.0 | 7.0 | 7.0 | | Lead/Lag | | | Lag | Lead | | | | | Lead-Lag Optimize? | | | Yes | Yes | | | | | Recall Mode | C-Max | C-Max | Ped | None | Ped | C-Max | C-Max | ### Intersection Summary Cycle Length: 112 Actuated Cycle Length: 112 Offset: 1 (1%), Referenced to phase 2:EBTL, Start of Green Natural Cycle: 90 ## 217: Yonge Street & Lake Shore Boulevard | | † | ļ | * | × | |----------------------------|------------|----------|----------|-------| | Lane Group | NBT | SBT | NEL | NET | | Lane Configurations | ∱ ∱ | ^ | ሻ | 41 | | Volume (vph) | 110 | 275 | 750 | 1415 | | Turn Type | | | Perm | | | Protected Phases | 8 | 4 | | 2 | | Permitted Phases | | | 2 | | | Detector Phase | 8 | 4 | 2 | 2 | | Switch Phase | | | | | | Minimum Initial (s) | 10.0 | 10.0 | 10.0 | 10.0 | | Minimum Split (s) | 33.0 | 33.0 | 44.0 | 44.0 | | Total Split (s) | 33.0 | 33.0 | 79.0 | 79.0 | | Total Split (%) | 29.5% | 29.5% | 70.5% | 70.5% | | Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | | All-Red Time (s) | 3.0 | 3.0 | 3.0 | 3.0 | | Lost Time Adjust (s) | 0.0 | 0.0 | 0.0 | 0.0 | | Total Lost Time (s) | 7.0 | 7.0 | 7.0 | 7.0 | | Lead/Lag | | | | | | Lead-Lag Optimize? | | | | | | Recall Mode | Ped | Ped | C-Max | C-Max | | Intersection Summary | | | | | | Cycle Length: 112 | | | | | | Actuated Cycle Length: 112 |) | | | | | Officet 5 (49/) Deferenced | | NICTI CA | | | Offset: 5 (4%), Referenced to phase 2:NETL, Start of Green Natural Cycle: 80 Control Type: Actuated-Coordinated Splits and Phases: 217: Yonge Street & Lake Shore Boulevard