GARDINER EAST
Gardiner Expressway & Lake Shore Boulevard Reconfiguration Environmental Assessment & Urban Design Study
Public Information Centre #2 – 2013/10/16
John Livey
Deputy City Manager
City of Toronto
- Rehabilitation under way
- City needs well-informed, timely and implementable solution for Gardiner East
- Our City is growing on the basis of a more balanced transportation mode split
- Transportation planning today must support future Toronto
John Campbell
President & CEO
Waterfront Toronto
WATERFRONT REVITALIZATION PLANS UNDERWAY

- Largest urban development project in North America
- Waterfront communities taking shape
- Corporate head offices are relocating to waterfront
Don McKinnon
Project Manager
Dillon Consulting Limited

Karen Alschuler
Principal, Perkins+Will

Mary Margaret Jones
Principal, Hargreaves Associates
WHY ARE WE HERE?

1. Review the draft alternative concepts we have generated
2. Obtain feedback on the alternative concepts
3. Introduce the alternatives evaluation process
Round One Consultation – May 28th through June 28th, 2013. **Engaged over 5,000 individuals.** What was covered:

- EA and Study process;
- Refresher on the approved EA Terms of Reference;
- Identify any changes to the Study since 2009;
- Obtain feedback from participants to inform the development of alternative solutions; and
- Share information on case studies and innovative design options
WHAT WE’VE HEARD SO FAR

Some key ideas that the public identified as important:
• Balancing modes of transportation
• Enhancing waterfront connectivity
• Providing new transportation infrastructure
• Enhancing the public realm

Some items that people want more information on:
• The financial implications and life cycle costs of the alternatives
• Traffic conditions for each alternative
• How we relate to the rail corridor
STUDY AREA

Note: Certain disciplines will conduct investigations at a city or regional level. These areas are not defined here.
COORDINATING WITH OTHER STUDIES

1. Gardiner Expressway and Lakeshore Blvd Reconfiguration EA Study
2. Downtown Transportation Operations Study
3. Richmond-Adelaide Cycle Track Study
4. York-Bay-Yonge Ramp EA Study
5. East Bayfront Transit Strategy Study
6. Lower Yonge Precinct Transportation Master Plan Study
7. Cousins Quay Precinct Plan
8. Film Studio Precinct Plan
9. Lower Don Lands and Don Mouth Revitalization EA Study
10. Gardiner Expressway Rehabilitation Study
11. Rapid Transit Expansion Study
12. First Gulf Application Review
13. Billy Bishop Airport Strategic Transportation Strategy
14. Relief Line - East
15. South of Eastern Ave TMP

Toronto Metropolitan Area Map
STUDY GOALS

1. Revitalize the Waterfront
2. Reconnect the City with the Lake
3. Balance Modes of Travel
4. Achieve Sustainability
5. Create Value
Approved EA Terms of Reference

Public Ideas, Design Ideas, Your Ideas

Consult on Alternative Solutions & Evaluation Criteria (Public Meeting, Online, Stakeholder Workshops)

Evaluate & Consult on Four Alternatives

City Council Review & Approval of Recommended Preferred Alternative

Develop & Consult on Design

Council Approval of EA Document & Submission to MOE

MOE Review & Decision

2009

June 2013

Winter 2013 / 2014

Spring 2014

Spring/Summer/Fall 2014

Spring 2015

2015 Onwards

You are here!
TRANSPORTATION

Some Background Information
ROLE & FUNCTION

ORIGIN / DESTINATION STUDY

EASTBOUND

- Vast majority of morning traffic is going downtown

WESTBOUND (from the East)

- 25% or less of traffic travels through the study area

WESTBOUND (from the North)
Assumed in Modeling

• Downtown Relief Line
• Broadview and Cherry Streetcar
• Richmond/Adelaide Cycle Track
• Waterfront East LRT
• Approved and planned road modifications
• GO Lakeshore and Stouffville service improvements

Other Improvements

• New higher-capacity streetcar fleet
• Increased capacity on Yonge, Bloor/Danforth subway
• Union Station expansion
• Trinity Street pedestrian crossing
Transportation trends incorporated in the analyses of future travel:

- Increased use of transit, walking and cycling
- People will make fewer trips due to telecommuting, teleconferencing, etc.
- Travel will occur at different times of day due to flexible schedules; peak hour trips will spread throughout the day
- People will choose different routes avoiding the study area
- Reduced road capacity will accelerate these trends
There will be more people living and working in the study area, which encourages walking and cycling.
Increase in cycling and walking trips within the study area during the morning peak period
Increase in morning peak period travel to the study area is largely handled by transit, mostly GO as auto capacity has remained relatively static since 1986.
Increase in morning peak period travel from the study area largely handled by an increase in autos and TTC.
FOUR ALTERNATIVES

Maintain

Replace

Improve

Remove
MAINTAIN
the elevated expressway.
• Implement rehabilitation program including deck replacement
• Potential for public realm improvements including public art.
• Potential for bike path along north side
• Consistent with Re-naturalization of Don River
• Keating Precinct Plan
 o Approved plan for the area north of Keating Channel, west of Don River
 o Realignment of Lake Shore Blvd & new local street network
Keating Precinct Plan

- Existing Lake Shore Boulevard Alignment under Gardiner
- New Lake Shore Boulevard Alignment

Key Locations:
- LAKE SHORE BOULEVARD
- Don Roadway
- Parliament St.
- Queens Quay East
- Cherry St.
• Open up access to Keating Channel with public promenade

• Recreation under Gardiner (e.g. Underpass Park)
Maintain VIEW FROM PARLIAMENT LOOKING NORTH
IMPROVE the urban fabric while maintaining the existing expressway.
Improve CONSOLIDATED INFRASTRUCTURE

- Selected Gardiner Columns Relocated & Modernized
- Lane Reductions on Gardiner
- Open Median for more Light and Air
- Lake Shore Blvd tucked under Gardiner
- Opens up space for Parks, Public Art and/or Enlarged Development Parcels
TRANSPORTATION – Reduced lanes on Lakeshore relocated under Gardiner, Gardiner re-decked with two less lanes to open up light and air
URBAN DESIGN - Improved experience walking, biking, driving – greenway, trails
ECONOMICS - Expanded development parcels & value of improved public realm
ENVIRONMENT - Green space creation opportunities
AERIAL VIEW FROM PARLIAMENT LOOKING WEST
Street Cross Section

BEFORE

<table>
<thead>
<tr>
<th>3.9</th>
<th>3.9</th>
<th>3.9</th>
<th>3.9</th>
<th>9.3</th>
<th>7.6</th>
<th>3.9</th>
<th>3.9</th>
<th>3.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varies</td>
<td>Gravel Edge</td>
<td>15.7m</td>
<td>Lake Shore Blvd.</td>
<td>9.3m</td>
<td>Median</td>
<td>Lake Shore Blvd.</td>
<td>Varies</td>
<td>Sidewalk</td>
</tr>
</tbody>
</table>

AFTER

- 6.9m Deck Separation
- Gardiner
- Relocated & Modernized Pier
- Westbound
- Eastbound
- Jarvis Ramp
- Public Art

<table>
<thead>
<tr>
<th>4.0</th>
<th>13.9</th>
<th>3.5</th>
<th>3.5</th>
<th>2.5</th>
<th>3.5</th>
<th>3.5</th>
<th>9.6</th>
<th>7.6</th>
<th>16.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0m Multi-Use Trail</td>
<td>varies</td>
<td>Skateboard Park / Court Sports</td>
<td>20.0m Lake Shore Blvd.</td>
<td>17.2m Median & Ramp</td>
<td>varies (10m min.) Plaza & Stormwater Gardens</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Improve BEFORE & AFTER (Looking East of Jarvis)
REPLACE
with a new above or below grade expressway.
Three ideas have been examined:

- **New Tunnel Expressway**
- **New Elevated Expressway**
- **New Rail Embankment Expressway**

Considered technical feasibility, constructability, transportation function, public realm and pedestrian environment improvements, cost and economic benefits.

Embarkment option is not feasible due to need to protect rail corridor for improved regional transit.

Considered public idea of “Sky Path” (suspended bridge over rail corridor) - but not possible due to rail corridor use restrictions.

Further examined **New Elevated and Tunnel**
TUNNEL EXPRESSWAY

Small Linear Parks and public art between Lake Shore Boulevard and Rail Berm

New Development Parcels for a Two-Sided Street

New opportunities for Park spaces

Gardiner Expressway in Tunnel

No ramp connections between Yonge and the DVP

Reduced Lake Shore Boulevard. Gardiner in Tunnel under Lake Shore Blvd

Rail Berm
NEW TUNNEL EXPRESSWAY

TRANSPORTATION - Elevated Expressway replaced with Tunnel Expressway with no exit ramps between DVP and Yonge Street, Narrowed and landscaped Lakeshore Boulevard.

ECONOMICS – Offers greatest development opportunities.

ENVIRONMENT – Enables a green corridor.
BEFORE

Opportunity for new development parcels and/or green space

AFTER

Opportunity for new development parcels and/or green space
NEW ELEVATED EXPRESSWAY

- Opens up space for green space, public art or enlarged development parcels
- Narrows Gardiner with single columns widely spaced
- Lake Shore Blvd tucked under Gardiner
NEW ELEVATED EXPRESSWAY

TRANSPORTATION- Reduced lanes (2 each direction) on both LSB and Gardiner. New, elegant expressway with widely-spaced single columns.

URBAN DESIGN- Reduced lakeshore allows for greater green space and cycling opportunities.

ECONOMICS- Expanded development parcels & value from improved public realm.

ENVIRONMENT- Improved green space providing noise barrier and natural areas.
New Elevated AERIAL VIEW FROM PARLIAMENT LOOKING WEST
New Elevated BEFORE & AFTER (Sherbourne looking West)
New Elevated BEFORE & AFTER (Looking East of Jarvis)
New Elevated OPPORTUNITIES with NEW ELEVATED
New Tunnel vs. New Elevated

<table>
<thead>
<tr>
<th>PROS</th>
<th>New Tunnel</th>
<th>New Elevated</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Improves north–south connections</td>
<td></td>
<td>• Improves light and experience</td>
</tr>
<tr>
<td>• Opens views</td>
<td></td>
<td>• Minimal transition issues</td>
</tr>
<tr>
<td>• Opens up most land for development</td>
<td></td>
<td>• Improved public space</td>
</tr>
<tr>
<td>• Greatest potential for public space</td>
<td></td>
<td>• Improved development opportunities</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONS</th>
<th>New Tunnel</th>
<th>New Elevated</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Technically challenging</td>
<td></td>
<td>• Physical barrier and obstructed views</td>
</tr>
<tr>
<td>• Transition areas create new barrier</td>
<td></td>
<td>• Less new development opportunities</td>
</tr>
<tr>
<td>• Complex construction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• High costs ($2.5 B estimate for capital and O&M costs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Functions as through route which satisfies only 20-25% of demand;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• No access to surface streets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• About 1 km of tunnel with 1 km of transition</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recommend **not** considering further

Recommend as the Replace alternative for further consideration
REMOVE the elevated expressway and build a new boulevard.
New linear park space and a continuous cycle track and pathway

At grade boulevard landscaped and with planted green median
TRANSPORTATION - Gardiner removed and Lakeshore Boulevard rebuilt as an 8-lane landscaped boulevard with maximum exposure to light and air

URBAN DESIGN - Entire corridor opened to light, air, trees & open space

ECONOMICS – Improved development opportunities in Keating

ENVIRONMENT – Enables a green corridor
AERIAL VIEW FROM PARLIAMENT LOOKING WEST
UNIVERSITY AVENUE

8-LANE REMOVE

street cross section
UNIVERSITY AVENUE

Street Cross Section

10-LANE REMOVE

- Westbound: 2 lanes
- Eastbound: 3 lanes

- 8.5m Multi-Use Trail
- Varies Linear Park
- Varies Plaza & Stormwater Gardens

42m Lake Shore Blvd.
BECOME & AFTER (Sherbourne looking West)
Remove

BEFORE & AFTER (Looking East of Jarvis)
VIEW FROM PARLIAMENT LOOKING NORTH
BOULEVARD OPPORTUNITIES
ASSESSING THE ALTERNATIVES

• Urban Design
• Transportation
• Economics & Cost
• Environment
What we considered in the modeling:

- Transportation trends
- City policy directions
- Planned & proposed transit, cycling and pedestrian infrastructure
- Population and employment growth forecasts
- Traffic modeling
- Case studies
Other Cities Have Successfully Made Changes

- West Side Highway, New York
- Embarcadero Freeway, San Francisco
TRANSPORTATION CAPACITY WILL EXCEED DEMAND

Capacity across the Don River - Lakeshore to Bloor Street (Person trips, peak hour-peak direction)

Significant increase in the capacity to move people. Some options include a reduction in the capacity for the automobile.
Transportation modeling is a tool to help us forecast how the transportation system will function in the future.

The model outputs are only as good as the inputs (data and assumptions).

The model informs us how travel times from representative origin and destination points will change.

Model vs. actual results are highly dependent on people’s behaviour.

We are presenting the projected travel times for 2031 – times could be less or greater than these values.
Inbound Travel Time 2031 AM

2031 - Projected Inbound Travel Times - AM Peak Hour Average

<table>
<thead>
<tr>
<th>Route</th>
<th>Maintain</th>
<th>Remove</th>
<th>Replace</th>
<th>Improve</th>
</tr>
</thead>
<tbody>
<tr>
<td>A to D</td>
<td>50 min</td>
<td>60 min</td>
<td>50 min</td>
<td>55 min</td>
</tr>
<tr>
<td>B to D</td>
<td>30 min</td>
<td>40 min</td>
<td>30 min</td>
<td>35 min</td>
</tr>
<tr>
<td>C to D</td>
<td>25 min</td>
<td>30 min</td>
<td>25 min</td>
<td>25 min</td>
</tr>
<tr>
<td>E to C</td>
<td>40 min</td>
<td>50 min</td>
<td>40 min</td>
<td>45 min</td>
</tr>
<tr>
<td>C to E</td>
<td>45 min</td>
<td>50 min</td>
<td>45 min</td>
<td>45 min</td>
</tr>
</tbody>
</table>

Note: Values represent the average travel time. Actual travel times will vary throughout the peak travel period. Travel times could be less or greater than these average values.
Inbound Travel Time 2031 AM

2031 - Projected Inbound Travel Times - AM Peak Hour Average

<table>
<thead>
<tr>
<th></th>
<th>Maintain</th>
<th>Remove</th>
<th>Replace</th>
<th>Improve</th>
</tr>
</thead>
<tbody>
<tr>
<td>A to D</td>
<td>50 min</td>
<td>60 min</td>
<td>50 min</td>
<td>55 min</td>
</tr>
<tr>
<td>B to D</td>
<td>30 min</td>
<td>40 min</td>
<td>30 min</td>
<td>35 min</td>
</tr>
<tr>
<td>C to D</td>
<td>25 min</td>
<td>30 min</td>
<td>25 min</td>
<td>25 min</td>
</tr>
<tr>
<td>E to C</td>
<td>40 min</td>
<td>50 min</td>
<td>40 min</td>
<td>45 min</td>
</tr>
<tr>
<td>C to E</td>
<td>45 min</td>
<td>50 min</td>
<td>45 min</td>
<td>45 min</td>
</tr>
</tbody>
</table>

Note: Values represent the average travel time. Actual travel times will vary throughout the peak travel period. Travel times could be less or greater than these average values.
2031 - Projected Inbound Travel Times - AM Peak Hour Average

<table>
<thead>
<tr>
<th></th>
<th>Maintain</th>
<th>Remove</th>
<th>Replace</th>
<th>Improve</th>
</tr>
</thead>
<tbody>
<tr>
<td>A to D</td>
<td>50 min</td>
<td>60 min</td>
<td>50 min</td>
<td>55 min</td>
</tr>
<tr>
<td>B to D</td>
<td>30 min</td>
<td>40 min</td>
<td>30 min</td>
<td>35 min</td>
</tr>
<tr>
<td>C to D</td>
<td>25 min</td>
<td>30 min</td>
<td>25 min</td>
<td>25 min</td>
</tr>
<tr>
<td>E to C</td>
<td>40 min</td>
<td>50 min</td>
<td>40 min</td>
<td>45 min</td>
</tr>
<tr>
<td>C to E</td>
<td>45 min</td>
<td>50 min</td>
<td>45 min</td>
<td>45 min</td>
</tr>
</tbody>
</table>

Note: Values represent the average travel time. Actual travel times will vary throughout the peak travel period. Travel times could be less or greater than these average values.
Inbound Travel Time 2031 AM

2031 - Projected Inbound Travel Times - AM Peak Hour Average

<table>
<thead>
<tr>
<th></th>
<th>Maintain</th>
<th>Remove</th>
<th>Replace</th>
<th>Improve</th>
</tr>
</thead>
<tbody>
<tr>
<td>A to D</td>
<td>50 min</td>
<td>60 min</td>
<td>50 min</td>
<td>55 min</td>
</tr>
<tr>
<td>B to D</td>
<td>30 min</td>
<td>40 min</td>
<td>30 min</td>
<td>35 min</td>
</tr>
<tr>
<td>C to D</td>
<td>25 min</td>
<td>30 min</td>
<td>25 min</td>
<td>25 min</td>
</tr>
<tr>
<td>E to C</td>
<td>40 min</td>
<td>50 min</td>
<td>40 min</td>
<td>45 min</td>
</tr>
</tbody>
</table>

Note: Values represent the average travel time. Actual travel times will vary throughout the peak travel period. Travel times could be less or greater than these average values.
Inbound Travel Time 2031 AM

2031 - Projected Inbound Travel Times - AM Peak Hour Average

<table>
<thead>
<tr>
<th></th>
<th>Maintain</th>
<th>Remove</th>
<th>Replace</th>
<th>Improve</th>
</tr>
</thead>
<tbody>
<tr>
<td>A to D</td>
<td>50 min</td>
<td>60 min</td>
<td>50 min</td>
<td>55 min</td>
</tr>
<tr>
<td>B to D</td>
<td>30 min</td>
<td>40 min</td>
<td>30 min</td>
<td>35 min</td>
</tr>
<tr>
<td>C to D</td>
<td>25 min</td>
<td>30 min</td>
<td>25 min</td>
<td>25 min</td>
</tr>
<tr>
<td>E to C</td>
<td>40 min</td>
<td>50 min</td>
<td>40 min</td>
<td>45 min</td>
</tr>
<tr>
<td>C to E</td>
<td>45 min</td>
<td>50 min</td>
<td>45 min</td>
<td>45 min</td>
</tr>
</tbody>
</table>

Note: Values represent the average travel time. Actual travel times will vary throughout the peak travel period. Travel times could be less or greater than these average values.
City has grown and will continue to grow with greater reliance on non-auto forms of travel.

The planned future total transportation system capacity will exceed future demand.

Auto-based travel times will increase for all scenarios in the future.
Cities such as New York and San Francisco have reduced traffic capacity successfully, without significant impact on the system.

Other activities could be implemented to reduce auto travel times, e.g. signal optimization and other system improvements.
COST AND ECONOMIC BENEFITS ANALYSIS

• How much will these solutions cost to build, operate and maintain?
• What economic benefits will result from these solutions?
Note 1: FGE Rehab Capital Cost from Jarvis to Logan Ave are the Council approved amount of $235 million in 2013 dollars

Note 2: Capital Cost estimate for Lake Shore Blvd (Keating Precinct)

Note 3: Maintain option does not include any transition work costs from Jarvis to Yonge nor the Gardiner ramps to the DVP/Lakeshore, which are included in the other options
VALUE CREATION ANALYSIS

Potential for value creation from the alternatives:

- Enhance economic competitiveness
- Enhanced waterfront property value
- New land development opportunities
Placemaking enhances economic competitiveness.

- Hudson River Park, New York City
- Ferry Building Market and Plaza, San Francisco
- Rose Kennedy Greenway, Boston
ENHANCED WATERFRONT PROPERTY VALUE

Precedents show new and improved public realm improves neighbourhood property values

The High Line, New York City

3% increase

Millennium Park, Chicago

10% increase

ESTIMATED PERCENTAGE CHANGE IN NEIGHBOURHOOD PROPERTY VALUES

Anticipate enhancement of property values with some Alternatives

Gain of 1-4% for 19 million SF in 3 waterfront precincts plus additional value in Keating East
NEW LAND DEVELOPMENT OPPORTUNITIES

Maintain
- Land development opportunities limited to current approved plans

Improve
- **West of Cherry**: 500,000 GFA south of Lake Shore Boulevard adjacent to existing parcels
- **East of Cherry**: Limited to approved plans

Replace Elevated
- **West of Cherry**: 500,000 GFA south of Lake Shore Boulevard adjacent to existing parcels
- **East of Cherry**: 1.45 M additional GFA in Keating

Remove
- **West of Cherry**: Limited to approved plans
- **East of Cherry**: 1.48 M additional GFA in Keating
UNLOCKS SIGNIFICANT VALUE IN KEATING

![Chart showing development potential and land value PSF for different options: Maintain, Improve, Replace with Elevated, Remove. The options are represented in millions of SF and land value PSF in 2013$.]
• Enhancing/creating natural places has been a consideration in alternatives development
• Starting to assess environmental effects/benefits of the alternatives
• Air quality and noise effects modeling is underway
• Transportation is closely tied to environmental conditions
Summary of Alternatives
Alternatives Summary

<table>
<thead>
<tr>
<th>Alternatives / Study Goals</th>
<th>Maintain</th>
<th>Improve</th>
<th>Replace – New Elevated</th>
<th>Remove</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revitalize the waterfront</td>
<td>No Change</td>
<td>Pedestrian improvements. No change in Keating area.</td>
<td>Light and air. Enhanced Keating waterfront. East of Don River improvements to LSB.</td>
<td>Sunshine + rich landscape. Enhanced Keating waterfront. East of Don River improvements to LSB.</td>
</tr>
<tr>
<td>Reconnect the City with the Lake</td>
<td>No Change</td>
<td>Narrowed & consolidated roadway reduces barrier.</td>
<td>Narrowed & consolidated roadway reduces barrier Barrier eliminated. Lake approach transformed.</td>
<td>Barrier eliminated. Lake approach transformed.</td>
</tr>
<tr>
<td>Balance mode of travel</td>
<td>No Change – mode split expected to increase</td>
<td>Some increase in auto based travel times. Further increase in mode split expected.</td>
<td>Some increase in auto based travel times. Further increase in mode split expected.</td>
<td>Longer auto travel times expected. Incentive for higher mode split.</td>
</tr>
<tr>
<td>Achieve sustainability</td>
<td>No Change</td>
<td>Modest increase in improved sustainability.</td>
<td>Modest increase in improved sustainability.</td>
<td>Greatest increase in improved sustainability.</td>
</tr>
<tr>
<td>Create Value</td>
<td>No Change – area grows as per plans</td>
<td>Modest increase in property value</td>
<td>Appreciable increase in property value, significant increase in GFA</td>
<td>Appreciable increase in property value, significant increase in GFA</td>
</tr>
</tbody>
</table>
Beginning the Evaluation
KEY STEPS IN THE EVALUATION

1. Develop evaluation criteria
2. Obtain public input on criteria & importance
3. Evaluation of alternative solutions for each evaluation criteria
4. Consideration of enhancement opportunities
5. Comparison of alternative solutions
6. Public presentation of results/recommended alternatives
<table>
<thead>
<tr>
<th>Study Lenses</th>
<th>Examples of What we Intend to Consider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban Design & Public Realm</td>
<td>• Contributes to the development of the new waterfront precincts as high quality urban neighbourhoods</td>
</tr>
<tr>
<td></td>
<td>• Contributes to the development of attractive urban streets within the study area.</td>
</tr>
<tr>
<td>Economics</td>
<td>• Creates new developable parcel opportunities</td>
</tr>
<tr>
<td></td>
<td>• Increases development value of existing parcels/development</td>
</tr>
<tr>
<td></td>
<td>• Capital and long term O&M cost of alternatives</td>
</tr>
<tr>
<td>Transportation & Infrastructure</td>
<td>• Contributes to higher mode split levels</td>
</tr>
<tr>
<td></td>
<td>• Travel times between select origin-destination points</td>
</tr>
<tr>
<td></td>
<td>• Construction complexity and timing</td>
</tr>
<tr>
<td></td>
<td>• Ability to accommodate traffic during construction</td>
</tr>
<tr>
<td>Environment</td>
<td>• Opportunity to enhance natural features</td>
</tr>
<tr>
<td></td>
<td>• Air quality and noise effects</td>
</tr>
<tr>
<td></td>
<td>• Other relevant likelihoods</td>
</tr>
</tbody>
</table>
Thinking about the proposed alternative solutions... What modifications or improvements would you suggest? Why?

What are the top 3 most important criteria to apply in deciding between alternative solutions? Which 3 criteria are least important?
GET INVOLVED

• Participate in Online: GardinerEast.ca
• Phone: 416-479-0662
• Email: info@gardinereast.ca
• Send us a letter
Thank You!